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ABSTRACT In mobile ad hoc networks (MANETs), asset-task assignment problems have been explored
with vastly different approaches. Considering the unique characteristics of MANET environments, such
as no centralized trusted entity, a lack of resources, and high security vulnerabilities, resource allocation
is not a trivial problem particularly for situations where a mobile team aims to successfully complete a
common mission. Existing approaches have studied asset-task assignment problems by best matching a
node’s functionality and requirements of a given task. In this work, we propose a task assignment protocol
using the concept of multidimensional trust, namely COSTA (CompoSite Trust-based Assignment), aiming
to maximize the completion ratio of a common mission consisting of multiple tasks by balancing trust
and risk in executing them. Based on the core concept of trust defined as the willingness to take risk in
performing a given task, COSTA selects qualified nodes for a given task while meeting an acceptable risk
level for executing multiple tasks contributing to successful mission completion. Given a mission consisting
of dynamic multiple tasks, we model each task with importance, urgency, and difficulty characteristics and
use them for selecting qualified members. In addition, we model a node’s risk behavior (i.e., risk-seeking,
risk-neutral, and risk-averse) and investigate its impact on mission performance where a payoff is given for
member selection and task execution. We formulate an optimization problem for the task assignment using
Integer Linear Programming (ILP). Our simulation results validated with ILP solutions demonstrate the
existence of an optimal acceptable risk level that best balances trust and risk so as to maximize the mission
completion ratio. We conduct a comprehensive comparative analysis and show that COSTA achieves a
higher mission completion ratio while incurring a lower communication overhead compared with non-trust-
based counterparts.

INDEX TERMS trust, risk, risk behavior, task assignment, mobile ad hoc networks

I. INTRODUCTION

IN tactical or service-oriented mobile ad-hoc networks
(MANETs), a common mission is often assigned where it

has multiple tasks. Efficiency and effectiveness of the asset-
task assignment in such tactical contexts is considered as the
key to successfully complete the given mission. In this work,
a mission team is considered where the team is composed of
different entities responsible for completing respective tasks
to pursue a common mission in the tactical MANET environ-
ment. For example, such missions are given in situations of

disaster management, personnel rescue, facility construction,
surveillance / monitoring, target destruction, and so forth.
Entities in a network are treated as “assets” to execute
tasks contributing to completing a common mission. The
assignment process of assets to tasks significantly impacts
successful mission completion.

In this work, we measure the trust of entities in order to
solve an ‘asset-task assignment problem’ as the so called
‘soft security technique’ to deal with malicious entities. The
proposed trust-based mechanism has the goal of selecting
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qualified entities for each task characterized by trust-based
requirements to ultimately lead to a successful mission com-
pletion. Accurate trust estimation of entities in a network is
critical to making effective decision making, such as com-
posing a task team with qualified, trustworthy members. The
concept of trust is first discussed in social sciences and is
often defined as a subjective opinion or belief regarding how
an entity behaves based on certain criteria [1]. The asset-task
assignment problem can be seen as a decision making process
of a trustor node based on its peer-to-peer trust estimation
about other trustee nodes.

Although trust has been vastly differently defined depend-
ing on an application domain [2], [3], the common key
concept of trust has been identified as the “willingness to
take a risk.” We interpret trust as a decision making process
under uncertain situations in which each entity does not
have perfect knowledge about all other entities in a fully
distributed environment.

In this work, a composite trust based asset-task assignment
protocol is proposed, namely COSTA (CompoSite Trust-
based Assignment), aiming to maximize the ratio of mission
completion as well as only allowing an acceptable risk level
by assigning qualified, trustworthy entities to a task. A team
with sufficient members having high trust levels can meet the
maximum acceptable risk level and can lead to successful
task completion. We consider a node with vastly different
capabilities so that it can participate in multiple tasks that
arrive dynamically during its lifetime for maximizing its
utilization. A node’s active participation of task execution
will lead to high incentives that enables the node to maintain
high trust and continuously give more chances for active
participation in mission activities.

We model dynamic tasks of a common mission and as-
sume that entities including task leaders and members make
decisions to achieve their own goals based on their risk
behaviors (i.e., ‘risk-averse, risk-neutral, or risk-seeking’). In
addition, we analyze the effect of an acceptable level of risk
to maximize the ratio of mission completion in the presence
of uncooperative and malicious entities (see Section III-D for
the definition). An example system would be a community
of interest (CoI) system composed of heterogeneous entities
(i.e., members) each contributing their resources to achieve
the mission objective described as a set of tasks. The CoI
would advertise mission tasks and gather sufficient members
with adequate resources in order to carry out the tasks.
Such a system would have numerous applications, includ-
ing community search, spontaneous rescues missions, relief
operations, and/or location-based data gathering. Another
example would be for joined effort missions by different or-
ganizational entities, each contributing members (with their
resources) to achieve a mission such as military operations
consisting of joint forces and several humanitarian agencies.
In both examples, entities could possibly be unknown to
each other on an individual basis, be assembled on demand
and in short notice to the necessity of the mission, and the
assembled entities are heterogeneous in regards to capabili-

ties, resources, and risk behaviors. Mission effectiveness is
mainly influenced by: (a) a number of members executing a
given number of tasks; and (b) performance of the selected
members in completing the assigned task. A task may fail if
it has a high standard in which case it may not find sufficient
members to meet the high standard for task execution. On the
other hand, a task may fail if it has a low standard in which
case it may find sufficient members but the selected members
cannot execute the task successfully due to high risk exposed
by their untrustworthy behavior.

This work has the following key contributions:
1) We propose a novel ‘task assignment protocol’ that

balances between trust and risk. That is, by controlling
a degree of an acceptable risk level, we increase the
assignment of more tasks to maximize mission comple-
tion.

2) We investigate and analyze the impact of intrinsic char-
acteristics of tasks including importance, urgency, and
difficulty, as well as “risk behavior” of nodes including
‘risk-seeking, risk-neutral, and risk-averse behaviors’
to the overall mission risk and the mission completion
probability.

3) We adopt a context-dependent trust-based approach to
guide entity allocation to task assignment. In this work,
we consider ‘task-dependent trust’ where task require-
ments are key in entity evaluation.

4) We formulate the task assignment optimization problem
with trust and risk management as an Integer Lin-
ear Programming (ILP) problem [4]. The mathematical
formulation provides a theoretical basis and optimal
solutions against which the performance of our task
assignment protocol, with risk and trust management
based on auction/bidding, may be evaluated for validity.

We structure this paper as follows. Section II discusses
related work. Section III describes the system model in terms
of network model, trust bootstrapping model, node behavior
model, threat model, task model, and risk behavior model.
Section IV explains our composite trust metric to evaluate the
trustworthiness of mobile nodes based on multidimensional
trust derived from communication and social networks. Sec-
tion V provides the details of our proposed task assignment
protocol, COSTA, with risk and trust management. Sec-
tion VI gives the details of formulating the task assignment
optimization problem as an ILP problem to yield optimal
solutions against which the performance of our risk and trust
management protocol is evaluated. Section VII presents com-
parative performance analysis based on the results obtained
from our simulation experiments. Section VIII summarizes
the key findings from this work along with future research
directions.

II. RELATED WORK
A. TRUST MANAGEMENT IN MANETS
The term trust management is first coined by Blaze et al. [5]
and identified as a distinct part of security services in net-
works. Trust management research has been explored with
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considerable attention because of its high importance and
applicability in the process of decision making applications.
The key characteristics of estimating trust in MANET envi-
ronments have been discussed by considering: (1) potential
risks; (2) context-dependency; (3) interest of each party in-
volved in a decision making; (4) cognitive learning process;
and (5) system reliability. We consider the above charac-
teristics in developing a trust-based asset-task assignment
protocol with the special emphasis on the balance between
trust and risk to maximize mission completion ratio.

The vital need of trust management in MANETs has been
emphasized in terms of establishing a network consisting of
nodes with an acceptable level of trust where the participat-
ing nodes do not have any prior knowledge to each other.
Specifically trust management is critical to collecting and
distributing evidence to estimate trustworthiness of nodes
for successful task completion [6]. Many researchers have
adopted the concept of trust in order to maintain or assess
trust relationships among nodes in MANETs [7], [8], [9],
[10], [11], [12].

To estimate nodes’ trust, two trust management methods
have been popularly used: evidence-based and monitoring-
based [13]. In evidence-based trust management, any cre-
dentials proving the trust relationships among nodes are used
such as public key, address, identity, or any evidence that can
be generated through a challenge and response process be-
tween two entities. On the other hand, monitoring-based trust
management collects direct and/or indirect evidence based
on observations (e.g., behaviors such as packet dropping and
flooding) or recommendations from third parties (e.g., rep-
utation). Our work uses the monitoring-based method based
on observations and recommendations that are aggregated to
derive a trust level of other nodes.

The relationship between trust and risk has been discussed
in [14], [15]. When there exists high trust, risk is likely to be
low. If a node does not take a risk, it may not have any gain.
However, if taking a risk introduces a small gain or even a
high penalty, a node would not take the risk. In this work,
we identify the best balance between trust and risk in order
to maximize the mission completion ratio which leads to the
maximum payoff of a mission team.

B. TASK ASSIGNMENT IN MANETS

Task assignment problems have been studied to perform
tactical operations in military MANETs. Cho et al. [16]
used context-dependency to characterize trust and proposed a
trust management scheme for maximizing mission success in
tactical MANETs. The authors investigated a group member
selection process for mission execution. They also proposed a
combinatorial auction-based mission assignment algorithms
for MANET environments and analyzed the merit of the pro-
posed auction-based algorithm in communication cost and
mission completion performance [17]. However, The above
works [16], [17] did not address the effect of dynamically
arriving tasks and risk behaviors.

Task assignment problems have been also explored in
service-oriented MANETs. Wang et al. [18] proposed a
trust management protocol for autonomous service-oriented
MANETs with multiple conflicting objectives to effectively
deal with malicious nodes exhibiting opportunistic service
attacks and slandering attacks. In [19], the authors further in-
vestigated how trust-based service composition and binding
protocol outperforms non-trust-based counterparts in terms
of a user satisfaction level. Although the work is similar to
our work, it did not investigate how an acceptable risk level
for each task and an entity’s risk behavior characteristics
affect performance in service provision.

Auction-based approaches [20], [21], [22], [23], [24], [25],
[26], [27] have been actively employed for task assign-
ment. Lee et al. [20] proposed a resource-based task alloca-
tion algorithm for multi-robot systems. They considered an
auction-based algorithm that uses remaining resources when
performing task allocation. The proposed work, however,
is limited to multi-robot systems without considering risk
attitudes and behaviors. Schwarzrock et al. [21] studied a task
allocation problem in cooperative systems using Unmanned
Aerial Vehicles (UAVs). They used a swarm intelligence and
multi-agent system approach to enable UAVs to individually
decide which tasks to perform. But their work didn’t con-
sider malicious entities and is restricted to UAV operations.
Tolmidis et al. [22] provided a solution to a multi-robot
dynamic task allocation problem by leveraging an multi-
objective optimization technique for task allocation.

Du et al. [23] proposed an auction-based approach to
improve the sharing of data allowances among mobile users
acting as data auctioneers and requesters. They considered
mobile users’ behaviors and their demands when optimizing
for the sellers’ incomes and needs, which finally determines
the transfer of data allowances. In [24], they further investi-
gated a similar model for mobile offloading but for mobile
social platforms with the aim to balance data bidders and
increase the income per unit time for sellers. However, their
works [23], [24] didn’t consider mission-oriented tactical
environment requiring a level of trust and security to ensure
mission completion under hostility. In addition, they only
considered user’s behaviors with regards to data spending
without considering risk-based behavior modeling that sig-
nificantly affects in their decision making process. Asghari
et al. [25] studied the problem of on-line task assignment
in spatial crowdsourcing where the matching and scheduling
responsibilities are divided between a spatial crowdsourcing
server and workers. The authors focused on solving the
bottleneck issues of using spatial crowdsourcing of task
matching and task scheduling, and used an on-line auction-
based framework.

Whitbrook et al. [26] extended the performance impact
algorithm, which is a distributed auction-based task alloca-
tion algorithm, to allow dynamic online rescheduling and
enhance its exploratory properties. Similar to our work, they
considered dynamic task reassignment; however, their work
mainly focused on the scheduling efficiency of the algorithm,
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and didn’t consider the malicious entities in a given envi-
ronment. Li et al. [27] examined how to protect the privacy
of bidders in an auction-based mobile crowdsensing system.
They provided the theoretical analysis and real-life tracing
data simulations to prove the efficiency of the proposed
mechanism. However, their work is limited to preserving
privacy without considering a task allocation model. While
the above works [20], [21], [22], [23], [24], [25], [26], [27]
tackled different, important aspects for a mission-oriented
task allocation in MANETs, none of the above provide a
holistic solution for such a system based on the concept of
trust. Unlike these works, our work considers not only trust
but also risk, and explores the trade-off between them for an
optimal task assignment.

Unlike energy-aware performance metrics used in the
literature [28], [29], [30], we use a performance metric
called ‘mission completion ratio’ where a mission consists
of multiple dynamic tasks, similar to the metric measuring
the number of tasks completed in [31]. Unlike [29], our
work considers and analyzes the effect of task importance
on mission completion ratio.

Burnett et al. [32] proposed a decision making model that
allows three types of controls, namely, explicit incentives,
monitoring, and reputation, to enhance confidence and trust
in establishing initial interactions for delegation. Wang et
al. [33] proposed a trust-based task scheduling mechanism
for grid computing MANETs to maximize mission com-
pletion considering the required security and reliability in
task assignment with minimum delay. Like [32], [33], we
also took a trust-based approach; but we consider the risk
behavior tendency of a decision maker and its impact on
decision performance.

Unlike our previous works in [16], [17], [18], this work
considers a node’s risk behavior and aims to maximize the
completion ratio of missions of multiple tasks by balancing
trust and risk. Unlike these previous works, this work con-
siders not only trust but also risk, and explores the trade-off
between them for an optimal task assignment.

III. SYSTEM MODEL
A. NETWORK MODEL
In this work we consider a multi-hop MANET consisting of
heterogeneous entities differing in functionality (e.g. sensing
and actuating) and nature (i.e. machine or human). Thus enti-
ties include sensors, robots, unmanned vehicles, and humans
(dismounted or aboard manned vehicles). We consider a
mission with multiple tasks dynamically arriving where each
task is a basic unit. Entities are responsible for carrying out
tasks where each task has its own time frame (start and end
time) and constraints (e.g. some tasks can run concurrently
with tasks while others cannot).

We assume the use of a head leader (HL) responsible for
governing and choosing task leaders (TLs) where each TL is
responsible for leading a task team. TLs are chosen by the
HL based on trustworthiness and node type matching with
a given task. The TLs in turn choose members to carry out

the allocated task. When a TL is not available and cannot
lead a given task team due to its leave or being disconnected
from the network, the HL selects a new TL among members
available based on its type and level of its trustworthiness. A
symmetric key, as a group key, can be used to prevent outside
attackers from secure group communications between mem-
bers. We use Group Diffie-Hellman (GDH) [34], an exten-
sion of the well-known two-party Diffie-Hellman (DH) key
exchange protocol as a contributory key agreement (CKA)
protocol, to generate a group key based on the agreement
of group members as a shared secret key without having a
secure channel.

When a node is disconnected from the mission group, the
HL initiates running the GDH protocol and each node can
use a new key based on the shares of other member nodes to
maintain a valid, secret group key. Despite this key update,
a group member may keep old trust information with non-
member nodes (i.e., nodes that left the group) to be referred
for interactions in the future. This way can prevent potential
newcomer attackers (i.e., performing frequent rejoining to
nullify their low trust in the past or current sessions). Further,
the old trust information of non-members can be used as
their initial trust upon their rejoin to the group. To this
end, we use the authentication process when a node joins a
network based on a public/private key pair. In the beginning
of network deployment, each node is pre-loaded with a pair
of public/private keys and other nodes’ public keys. Upon
rejoining a network, a node will regenerate a new pair of
public/private keys based on old private/public keys respec-
tively where other nodes are also able to generate new public
keys of other nodes based on corresponding old public keys.
Through challenge/response process using a private/public
key pair of a node, the node’s ID is authenticated and its old
trust information is used to continue trust estimation upon the
node’s join.

B. TRUST BOOTSTRAPPING MODEL
We assume that when the network is initially deployed, there
is no predefined node trust except for the HL that governs
the mission group. At time of deployment, an entity’s trust
is computed based on limited direct observations, indirect
third-party information, and challenge/response process au-
thentication. A stronger trust level (i.e. with more confidence)
is established as time goes on and the entity interacts more
with other entities thus yielding more observations. Trust
levels are computed at intervals and are based on interactions,
thus without further updates or interactions between entities,
trust decays over time. While node mobility can increase the
chances of trust evaluation by bringing nodes into contact
with one another, it may also hinder trust evaluation when
the nodes physically out of reach. Mobility may occur when
a node disconnects from its current group, leaves a group
intentionally, or disconnects to save power. Involuntary dis-
connection may also occur due to physical location or terrain.

The motivation for a node to participate in task execution
is to increase its trust level so that it has more chances to
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TABLE 1: Characteristics of Node Types.

Node
type

Node characteristics QoS
trust

Social
trust

NT1 Stationary sensors X

NT2 Unmanned vehicles or robots carry-
ing devices

X

NT3 Human carrying devices X X

NT4 Manned vehicles equipped with de-
vices

X X

access network resources. Trust will decay when a node
does not participate in task execution. Trust will decrease
when a node fails to execute a task to completion due to
misbehavior. Hence, a node will continuously participate in
task assignment and select tasks with a reasonable chance
of success for task execution so as to increase or at least
maintain its trust level.

C. NODE BEHAVIOR MODEL
We consider M node types, NT1, · · · , NTM , representing
that a higher node type has higher capability than a lower
node type. Furthermore, node types involving human in-
teraction have more trust dimensions (i.e. QoS trust and
social trust). This is shown in Table 1 where node types,
their relevant characteristics, and trust dimensions are shown.
Figure 1 shows an example mission group composed of a
team leader (TL) and joined entities (i.e., bid-winners) to
execute a task.

FIGURE 1: An example mission group composed of a team
leader (TL) and joined entities (i.e., bid-winners) for task
execution.

We consider both stationary entities, such as sensors, and
mobile entities, including humans, robots, or vehicles. Prior
to task assignment, nodes are assumed to follow their own
mobility pattern (which we assume is random in this work).

A node’s mobility is influence by its TL and its assigned task,
where a node stays within reach of the TL (and its group
members) which assigned the task, and moves towards a new
TL when it subsequently switches to a new task belonging
to the new TL. Nodes have the freedom to leave and join the
group. This happens with rates λ and µ respectively. Nodes
have vastly different characteristics in terms of capabilities
in speed, monitoring, and cooperation level (i.e., packet
dropping). Furthermore, a node has monitoring capabilities
which it uses to monitor neighboring node behaviors and
actions. However, this monitoring and anomaly detection is
not without error, and is characterized by false positive and
false negative probabilities. We assume all nodes initially
are benign but can be captured and converted into malicious
nodes (see Section III-D for the definition). In this work,
we do not assume the various distributions required by the
protocol; we only investigate it in Section VII to show
insights found in terms of the impact of the heterogeneity
on performance. We summarize the parameters of a node
considered in this work as follows:
• Speed (vi): Node i moves randomly with speed vi in

between task assignments.
• Detection error (P fpi , P fni ): Node i’s monitoring and

detection is characterized by a false positive probability
(misidentify a good node) and a false negative probability
(fails to identify a bad node) when monitoring.

• Group join and leave (λi, µi): Node i may leave or
join a group where the inter-arrival time of the events is
exponentially distributed, with mean values λi and µi.

• Cooperativeness (PCi ): Node imay drop a packet with the
probability (1 − PCi ) based on its inherent characteristics
of cooperativeness.

• Reciprocity (PRi ): Node i may reciprocate the service
received by other nodes with this probability based on its
inherent characteristics of reciprocation.

• Node compromise time (σi): A node may be compro-
mised with a certain rate, 1

σi
where σi is selected from

[Cmin, Cmax] based on uniform distribution.

D. THREAT MODEL
Both uncooperative nodes and malicious nodes are consid-
ered in our system where uncooperative nodes exhibit selfish
behavior and refrain from protocol participation in our sys-
tem to selfishly hold on to their resources and maximize their
individual gain. Thus, for example, an uncooperative node
can choose to avoid relaying/transmitting packets in order
to avoid energy consumption. Whereas malicious nodes aim
to compromise and cause failure to the system. A malicious
node thus performs packet jamming, good/bad mouthing
attacks, forging and fabricating packets, in addition to packet
dropping.

E. TASK MODEL
The system executes a mission where each mission is com-
posed of multiple tasks where each task may be unique with
regards to start time and duration, with the task duration of
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task m denoted as DTm. Furthermore, each task will be
matched by the TL with suitable members with respect to
functionality (i.e., minimum NT2 refers to a node with a
node type equal to or above NT2 as an eligible node) and
trust level in each trust property X . We provide more details
of our composite trust metric in Section IV.

Tasks arrive asynchronously and may start and end at
different times. Each task has unique properties:

• Required node type Each task m is required to be exe-
cuted by a node with a functionally compatible node type
as specified by the TL (denoted by NTminm ). Higher node
types indicate higher compatibility, with human involve-
ment further indicating high trust dimensions.

• Task execution timeframe (ETm) refers to the start and
end times of task m where the duration of task m, DTm, is
computed by the difference between the end and start time.

• Minimum and maximum node population (Nmin
m and

Nmax
m ) is needed for executing task m.

• Minimum trust threshold (TX−thm ) is a threshold for each
trust property X of task m.

• Importance (Im) refers to the impact of task failure on
mission completion with a higher value indicating more
importance.

• Urgency (Um) indicates how urgent a given task should
be completed where a higher value means more urgent.
The time allowed for task completion is urgency dependent
where less urgent tasks may be allowed extra time for
completion, beyond the normal end time.

• Difficulty (DFm) represents task m’s difficulty associated
with an amount of required workload. This determines a
minimum number of members; correspondingly it affects
a maximum possible workload per time unit to be assigned
to each member. A higher value refers to a more challeng-
ing task.

The concepts of urgency and difficulty are considered in
estimating the risk level of executing a particular task while
the concept of importance is used in calibrating the mission
completion ratio. The level of an acceptable risk influences
the degree of mission completion; thus, the three task prop-
erties naturally influences mission performance.

F. RISK BEHAVIOR MODEL
A node’s risk propensity may affect its decision making
particularly when the decision significantly affects its utility.
We model three types of risk behaviors: risk-seeking, risk-
neutral, and risk-averse [35]. We designate a node’s risk
behavior type based on its choice when multiple tasks are
offered where a task with high importance brings high-
payoff upon success but high-penalty upon failure. A node
can choose a task with high importance as the TL will give
the node highly positive trust recommendations if the node
successfully completes the task, resulting in maximizing the
mission completion ratio. However, when the node fails a
high importance task, it may face risk as the TL will dissem-
inate highly negative trust recommendations to other nodes.

Therefore, we use an increase or decrease of a node’s trust
value as the reward (payoff) or penalty.
• Risk-seeking: A node tends to make a decision by taking a

high risk in order to gain a high payoff. However, the node
may face a high penalty upon task failure.

• Risk-neutral: A node tends to make a decision by taking
a moderate risk in order to gain a moderate payoff.

• Risk-averse: A node tends to make a safe decision even if
there is a low payoff.

We consider a node’s risk behavior type in the decision
making process during bidding, winner selection, and com-
mitment. This is detailed in Section V.

IV. COMPOSITE TRUST METRIC
We define our proposed trust metric with two dimensions:
social trust and QoS (Quality-of-Service) trust. Social trust
means trust based on relationships between people such
as ‘friendship, familiarity, intimacy, honesty, or centrality
(betweenness)’ which are popularly used to enhance produc-
tivity based on those social relationships [2]. In the context
of asset-task assignment, we leverage the concept of social
trust to measure social connectedness and reciprocity, which
are measured by:
• Social Connectedness (SC): Is a measure of social con-

nections in a node’s social circle [36]. A node’s mobility
pattern and a node’s sociability effects social connected-
ness of a node over a measured period of time.

• Reciprocity (R): This is the degree of mutual giving and
receiving [37]. When a node receives a favor from a giving
node it is more likely to return the favor to the giving node.
The degree of the reciprocity [37] can be estimated by
the duration an entity returns for the past favor it received
from another entity and the amount of net gain it returned.
A node’s reciprocity is dependent on its willingness to
reciprocate (e.g., emotional status) and its expected future
gain when returning the favor.

QoS trust is a measure of trust based on quality of service
characteristics such as competence, availability, and relia-
bility. We measure QoS trust in terms of competence and
integrity which are captured by:
• Competence (C): This refers to an entity’s capability to

serve the received request, and is often called service avail-
ability. Competence may be affected by: (a) unintentional
unavailability due to network or node conditions (e.g.,
node failure and disconnections); and (b) intentional nature
of an entity (e.g., cooperativeness or willingness).

• Integrity (I): considers the selfishness and maliciousness
behaviors of a node as an indication of a system attack
which can be observed in both humans and machines.

A. OBJECTIVE TRUST
In this work, we model a node’s ground truth trust (i.e.,
“objective trust”) using a behavioral seed to represent its
inherent, natural behavior. We use the objective trust to
validate the accuracy of measured trust.
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Objective trust of social connectedness in node j is based
on node j’s inherent sociability (PSCj ) in the range of [0, 1],
and the number of nodes encountered by it. Objective social
connectedness trust of node j is defined by:

TSCj =

{
PSCj Nenc

j c if node j is a member;
0 otherwise,

(1)

whereNenc
j is the number of nodes node j encounters during

a trust update interval and c is a normalizing parameter.
Objective trust of reciprocity in node j is modeled with

a given initial seed behavioral relationship (PRj ) as a real
number in [0, 1]. We assume that node j’ reciprocity trust in
node i is based on node i’s reciprocity trust in node j due to
its nature of mutual interactions [32]. We assume the mutual
favors between node i and node j in that if node i returns a
favor to node j based on what node i received from node j.
Objective trust of node j in reciprocity is estimated by:

TRj =

{
PRj if node j is a member;
0 otherwise.

(2)

Objective trust of node j in competence is estimated by
node j’s inherent cooperativeness (PCj ) as a real number
in [GBmin, 1] and the link reliability based on network
conditions (Pr) as:

TCj =

{
PCj Pr if node j is a member;
0 otherwise.

(3)

Objective integrity trust of node j is based on whether a
node is compromised (i.e., 0 or 1) as:

T Ij =

{
1 if node j is not compromised;
0 otherwise. (4)

B. SUBJECTIVE TRUST
Each node performs peer-to-peer trust evaluation periodi-
cally, which is called “subjective trust” [38], using either
direct evidence (i.e., direct observations) or indirect evidence.
Nodes within the vicinity of one another (i.e., within wireless
radio range) collect evidence which serves as a means for
direct evaluation. This is done using installed monitoring
mechanisms, where evidence is an indicator for the changes
in trust (i.e., increasing or decreasing). The peer-to-peer trust
evaluation is performed between nodes except the HL. Only
the HL receives trust evaluation information about all TLs
and regular nodes from TLs, and uses the average trust values
to evaluate all nodes. The HL will use them for the selection
of a new TL when the current TL is detected as untrustwor-
thy. The HL will revoke the trust of an untrustworthy node
(i.e., drop to zero) if the average trust value falls below a
system tolerance level, denoted by Tminth .

Node i’s trust in node j for trust property X at time t,
TXi,j(t), is represented as a real number in [0, 1] where 1
indicates complete trust, 0.5 ignorance, and 0 distrust. The
initial trust value is set to the ignorance value 0.5 as we do
not assume trust is predefined in the network. When a trustor

(node i) evaluates a trustee (node j) at time t in each trust
property X , it updates TXi,j(t) as follows:

TXi,j(t) = αTD−Xi,j (t) + (1− α)T ID−Xi,j (t) (5)

TXi,j(t) is based on both direct trust evidence, TD−Xi,j (t) (i.e.,
node i’s direct observations or experiences), and indirect trust
evidence, T ID−Xi,j (t), collected based on recommendations
from third parties. α is a weight for direct evidence while
(1 − α) is a weight for indirect evidence where 1 < α ≤ 1.
The recommendations will be received from node i’s 1-hop
neighbors. Thus increasing the α increases the reliance on
direct observations. In this work we follow [38] to find the
best α yielding subjective trust values closest to the ground
truth.

Direct trust of node i in node j on trust propertyX at time
t, TD−Xi,j (t), is computed as:

TD−Xi,j (t) =

{
PD−Xi,j (t) if HD(i, j) == 1;
γTD−Xi,j (t−∆t) otherwise,

(6)

Where the direct trust is based on observations collected in
period ∆t, the periodic trust interval, when node i and node
j are within a single hop distance. When HD(i, j) is greater
than a single hop, past trust experience (with applied decay
γ) is used to derive the direct trust.

Below we show how to evaluate the direct trust value for
each trust property when trustor node i encounters trustee
node j. Note that a node may imperfectly observe evidence
to derive trust values in each property.

Direct competence PD−Ci,j (t) is derived based on the
number of replies received, Nrep

i,j , over the total number of
requests, Nreq

i,j sent and is computed by:

PD−Ci,j (t) =

{
Nrep

i,j

Nreq
i,j

for Nreq
i,j > 0;

0 otherwise.
(7)

Direct integrity PD−Ii,j (t) is the ratio of number of messages
received correctly,Nmsg−crt

i,j to the total number of messages
received, Nmsg−rcv

i,j , as:

PD−Ii,j (t) =

{
Nmsg−crt

i,j

Nmsg−rcv
i,j

for Nmsg−rcv
i,j > 0

0 otherwise
(8)

Note that detection error is taken into account.
Direct social connectedness PD−SCi,j (t) is based on prior

information about node j’s sociability (PSCj ) and the number
of encounters with node j:

PD−SCi,j (t) = PSCj Nenc
j c (9)

Notice that PD−SCi,j (t) is computed in the same manner as
the objective trust in Equation (1), but takes into account
detection errors.

Direct reciprocity PD−Ri,j (t) is on the ratio of the number
of services received by node j, Nsvc

i,j , to the number of
services provided by node i, Nsvc

j,i , as:

PD−Ri,j (t) =
Nsvc
j,i

Nsvc
i,j

(10)

7
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We also considered detection error in computing PD−Ri,j (t).
For example, a node may mistakenly detect a positive ex-
perience as negative or a negative experience as positive
with false positive or negative probability of a monitoring
mechanism used by each node.

Indirect trust of node i in node j on trust property X at
time t, T ID−Xi,j (t), is obtained by:

T ID−Xi,j (t) =

{ ∑
k∈Ri

TD−X
k,j (t)

|Ri| if |Ri| > 0;
γTXi,j(t−∆t) otherwise.

(11)

Ri is the set of 1-hop neighbors (whose trust is not revoked)
of node i providing trustworthy recommendations towards
node j. It calculates T ID−Xi,j (t) as the average of trustworthy
recommendations. TD−Xk,j (t) is the direct trust evaluated by
recommender node k towards node j. If Ri is an empty set,
node i will use its past experience γTXi,j(t−∆t) with a decay
factor, γ.

V. COSTA
The proposed COSTA is designed based on “a single item
auction with multiple preferences” [39]. This auction type
considers each bidder bidding on multiple items to select one
in the end. This technique leads to the final assignment of
a task to a node based on the mutual agreement between an
auctioneer and a bidder, and is more likely to reduce potential
rounds of auction processes. As seen in Figure 2, we have two
layers of the auction process: between the HL and TLs and
between TLs and members. The first auction is used to select
TLs (with the HL being the auctioneer) while the second one
enables the TL to recruit task members (with the TL being the
auctioneer). In Sections V-B through V-H below, we describe
the auction process for member selection between TLs and
members in detail (see Figure 3). The auction process for
TL selection between the HL and TLs can be conducted in
a similar way with the HL being the auctioneer; it is briefly
summarized in Section V-A.

A. TASK LEADER SELECTION
In the auction process between the HL and TLs, the HL, act-
ing as an auctioneer advertises the specification (discussed in
Section V-B) of all tasks to all nodes acting as bidders. Each
node bids on tasks for which it meets the task requirements.
A node can participate only in one task at a particular time
t (no concurrent task execution at time t, but can execute
multiple tasks during its entire lifetime) but can apply for
multiple tasks; this can ultimately reduce communication
overhead in the process of task assignment. The HL selects
winners based on the required node type and the degree of
trustworthiness. The HL sends out winner notifications to
all qualified candidates. Each candidate if receiving multiple
winner notifications will select one based on its risk behavior
type. If a task is not assigned, it will be auctioned in the next
round until all tasks are assigned. Upon success or failure of
a task, the TL will receive a reward or penalty proportional
to the importance level of the task. A risk seeking node

FIGURE 2: The two layers of the auction process.

selects a task with high importance while a risk-averse node
selects a task with low importance. We will give details on
the computation of reward/penalty in Section V-F.

FIGURE 3: TL-Entities auction resulting in entity task as-
signment: (1) advertisement of a task specification; (2) an
interested entity bidding on a task; (3) winner determination
and notification by the TL; and (4) node commitment to the
task assigned with the notification to the TL.

B. ADVERTISEMENT OF TASK SPECIFICATION
The task specification disseminated during the auction pro-
cess includes a set of requirements for task execution by:[

IDm, Lm, Im, NT
min
m , Nmin

m , Nmax
m , ETm,Wm

]
(12)

IDm is the identifier (ID) of task m, Lm is the location of
the task leader, Im is the importance level, NTminm is the
minimum required node type, Nmin

m and Nmax
m are the min-

imum and maximum numbers of member nodes, ETm refers
to the start and end time of task m, and Wm is a maximum
workload required per time unit for each member to perform
task m (e.g., a number of packets to process). To obtain Wm,
each TL estimates the maximum workload possible per time
unit based on Nmin

m to complete task m. Thus, a TL may
want to issue more winner notifications than Nmin

m so it
will not burden members with the maximum workload and

8
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some members may have the contract terminated due to their
misbehavior or unavailability.

C. BIDDING
Upon each node receiving TLs’ task specifications, it can bid
on multiple tasks relevant for its availability (i.e., schedule),
qualification (i.e., node type), and preference (i.e., score de-
scribed below). Since each node can perform multiple tasks
during its lifetime, it needs to resolve any schedule conflict
impacting the performance of another task execution. After
the node finds right task(s), it decides a task to bid based on
its score in task m (si,m), which is obtained by:

si,m = vi,m − pi,m (13)

where vm =
DTm
DTmax

and pi,m =
Wm

wi

where vi,m is the “valuation” node i will gain from being se-
lected to execute taskm; pi,m is the “price” node iwill pay to
execute task m; DTm is the task duration; and DTmax is the
maximum duration among all tasks. Here vi,m is estimated
by the relative degree of task duration. A node is more likely
to choose tasks with longer duration due to its high benefit of
having privileges to access resources and chances to obtain a
high trust level by continuous active interactions with other
nodes. pi,m is based on node i’s maximum capability to
handle workload per time unit wi vs. the required workload
per time unit by task m (Wm). wi is affected by the inherent
capability and cooperative attitude of node i. Thus, si,m may
be negative when the workload exceeds the node’s capability.
Recall that a node only bids on positive net gains in score
sj,m and may apply for bids on multiple tasks (i.e., multiple
preferences). A bidder’s message to a TL is:

[IDn, NTn, Cn] (14)

where IDn is the identifier of bidder n,NTn is its node type,
and Cn is the workload capacity of the bidder.

D. WINNER DETERMINATION
Since a TL can receive bids from multiple entities, it needs
to determine winners based on qualification criteria to select
right entities while meeting an acceptable risk level. Each TL
needs to check a selected entity to keep a certain level of trust
per trust property X during task execution and makes sure
that the exposed risk level with current members selected for
task execution does not exceed a given acceptable risk level.

The risk level rXm,j(t) perceived by the TL (i.e., trustor) of
task m when node j is selected to execute task m at time t, is
calculated by:

rXm,j(t) = e
−ρ1

TX
i(m),j

(t)

T
X−th
m

Um
Umaxm

Dm

Dmax
m

(15)

where TX−thm is the minimum trust threshold in trust prop-
erty X without increasing the risk level above the task’s
acceptable risk threshold P riskm (discussed below). Each trust
property X may have a different trust threshold TX−thm to

TABLE 2: Acceptable Risk Level per Risk Behavior Type.

Behavior Type Risk-Seeking Risk-Neutral Risk-Averse

P riskm e−ρ2Im (1 + ε) e−ρ2Im e−ρ2Im (1− ε)

reflect the nature of the unique task property. ρ1 is a constant
parameter chosen based on P riskm to guarantee that the ac-
ceptable risk level is less than P riskm . Umaxm is the maximum
task urgency among all tasks and Dmax

m is the maximum
difficulty among all tasks. Equation (15) indicates that while
the risk of selecting a member to join a task increases only
linearly with the task’s urgency and difficulty, it increases
exponentially with the member’s distrust expressed as the
ratio

TX
i(m),j(t)

TX−th
m

which critically endangers successful task
execution. Lund et al. [40] suggested that the computation
of the risk level R can be expressed as a function of the
consequential loss L of a harmful event and the probability
P of its occurrence, i.e., R = L × P where P corresponds
to the distrust level and L represents an impact upon failure.
We adopt the exponential form in Equation (15) to reflect
the risk of distrust. Based on rXm,j(t) for each trust property
X , the TL of task m computes the risk level when node j is
selected as its member, as the average risk level among all
trust properties:

rm,j(t) =
∑
X∈T

rXm,j(t)

|T |
(16)

where T is the set of trust propertiesX’s. Since the weight of
each risk per trust property X is implicitly based on TX−thm ,
we simply use the average risk.

A TL has a goal to maximize task completion ratio while
meeting an acceptable risk level to the task. The TL’s objec-
tive function on task m is formulated by:

Maximize Pm(t), given
∑
j∈M

rm,j(t) ≤ P riskm (17)

where Pm(t) is the completion ratio of task m at time t, M
is the set of task members assigned to task m, and P riskm is
the acceptable risk threshold for task m modeled as:

P riskm = e−ρ2Im (18)

Im is the task importance of task m, and ρ2 is a constant
parameter to normalize P riskm . Equation (18) indicates that
a task’s acceptable risk threshold is exponentially related to
the task importance to reflect the consequential loss of an
important task [40]. A more stringent risk threshold allows
less vulnerability for a task with high importance [41]. Here
we note that Pm(t) can be either 0 or 1 based on if task m is
completed within the mission time.

Table 2 lists the would-be “adjusted” acceptable risk level
based on the TL’s risk behavior type. Here ε is a design pa-
rameter specifying the adjustment increment. A risk-seeking
TL takes a high risk by relaxing the acceptable risk level
threshold for taskm, P riskm , by εwhile a risk-averse TL takes
a low risk by tightening P riskm by ε. In the winner selection

9
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process, a TL checks if an applicant node is qualified for the
required node type, and then estimates the risk level exposed
by the applicant. When both conditions are met, the TL
gives preference to an applicant with the minimum eligible
node type. This may give other TLs better chances to recruit
qualified members if they require members with a high node
type.

E. WINNER NOTIFICATION AND NODE COMMITMENT
After reviewing the qualifications of bidding nodes and ana-
lyzing the potential risk level, a TL determines winners and
notifies them of the acceptance as task members (step 3 in
Fig. 3). If a node receives multiple winner notifications, it
chooses the task based on its risk behavior type and the task’s
importance (Im) as follows:
• Risk-seeking: A node chooses a task with the highest

importance among all winner notifications received.
• Risk-neutral: A node chooses a task with the medium

importance among all winner notifications received.
• Risk-averse: A node chooses a task with the lowest impor-

tance among all winner notifications received.
After a node decides to commit to a task, it notifies the tasks
issuer (TL) of the commitment (step 4 in Fig. 3), after which
the TL issues a contract between itself and the committed
node. In the case where multiple TLs issued multiple ad-
vertisements at the same time, then these tasks would have
been checked a priori for their ability to be run concurrently.
Furthermore, each node can choose only one task so as not to
cause scheduling conflict.

F. COMPUTATION OF REWARD OR PENALTY
The reward or penalty received depends on whether or not
a node as a member completes a task successfully. When a
member successfully completes a given task, it will gain trust
based on the reward. Similarly, when a member fails the task,
it will lose trust based on the penalty.

Task leaders: The HL gives a reward or penalty to a TL
based on the completion or failure of task m assigned to the
TL:

TLImreward = TLImpenalty = τIm (19)

where Im is the importance of task m and τ is a constant to
normalize TLImreward or TLImpenalty. The reward or penalty is
based on the importance level of the task because a TL makes
a decision based on its risk behavior type, which is related to
the importance level of the task.

Members: A TL also gives a reward or penalty to a
member node depending on whether the member node suc-
cessfully completes the given task or not. A member node’s
decision on which task to choose depends on its behavior
type. Thus, a TL gives a reward or penalty based on member
j’s risk behavior type. Specifically, the TL gives a higher
reward (payoff) or penalty to risk-seeking members while
giving a smaller reward or penalty to risk-averse members.
The reward or penalty given to member j is computed by:

Mm,j
reward = Mm,j

penalty = τrdecj (20)

where rdecj is the reward/penalty factor with 1 for risk averse,
2 for risk neutral, and 3 for risk seeking members, and τ is a
normalization constant to normalize Mm,j

reward and Mm,j
penalty.

G. DYNAMIC TASK REASSIGNMENT
Lack of members: In the case where the available members
to execute a task are insufficient (at time of task advertise-
ment) a reassignment protocol will be run where the TL
first attempts to extend the task completion time of the task
based on its knowledge of the tasks urgency and member
availability. If it decides that an extension can be made, it
notifies all members regarding the extension request. If it
decides that an extension cannot be made, then it looks for
other members to fill the deficiency, and if acquired, they take
on the responsibility of task execution. If these options fail,
the TL simply marks the task as incomplete.

Termination of contract: The TL-member task contract
can be terminated in the case when the member is dis-
connected or unreachable. A decrease in a member’s trust
level could further trigger an overall increase in the tasks
risk, which results in the TL terminating the contract with
the member having the maximum risk. Termination of high
risk nodes continues until the sum of risk levels is below
the threshold , P riskm , after which the TL again runs the
reassignment protocol, as described above.

H. TASK FAILURE
The main reasons of failing a task are: (a) lack of members
in the initial task assignment period (i.e., a TL cannot find a
sufficient number of members); (b) lack of qualified members
successfully leading to task completion (i.e., a TL cannot find
a qualified member when a member leaves the group); and
(c) some of current members have their trust level below the
minimum trust threshold. The third failure condition in (c) is
defined as: ∑

j∈M
Fj(t) > Nth (21)

where Fj(t) =

{
1 if TXj (t) ≤ TX−thm for any X
0 otherwise

M refers to a set of members for task m, Fj(t) is 1 when
any objective trust value on property X of node j does
not satisfy the threshold for X; 0 otherwise. Since it is
impossible to reach a consensus when there are more than
1/3 untrustworthy/compromised nodes, we set Nth to 1/3,
representing the maximum tolerable threshold after which
the task can no longer be executed reliably.

VI. ILP-BASED OPTIMAL TASK ASSIGNMENT
In this section, we formulate the task assignment optimiza-
tion problem with trust and risk management as an ILP
problem [4]. The reformulated ILP optimization problem
is known to be NP-complete [4], [42] and can only be
used to yield optimal solutions for networks of a moderate
size. However, it provides a theoretical basis to evaluate the
performance of our trust-based task assignment protocol.
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TABLE 3: Binary Variable Definitions for ILP.
Variable Definition
aj,m 1 if node j is available (is a member); 0 otherwise
bj,m 1 if (aj,m × tj,m × ntj,m × vj,m) > 0
btj,m 1 if node j’s behavior type matches the importance level of task m; 0 otherwise
Cp,q 1 if tasks p and q ask for members (task assignment) concurrently; 0 otherwise
dj,m 1 if (wj,m × btj,m) > 0 (node j selects task m to commit); 0 otherwise
ntj,m 1 if node j’s node type satisfies the minimum node type of task m; 0 otherwise
Op,q 1 if at the time of task assignment to task p, task q is still in execution; 0 otherwise
Sm The set of m tasks in a mission
SCm A set holding concurrent tasks for which Cp,q = 1 for any two tasks p, q in the set
SOm A subset of Sm holding two tasks p, q for which Op,q = 1
Sn The set of n nodes for task assignment
TAm 1 if

∑
j∈m dj,m ≥ Nmin

m (task m recruits sufficient members during task assignment); 0 otherwise
TEm 1 if

∑
j∈m(1− t∗j,m) ≤ TH; 0 otherwise

tj,m 1 if TXj ≥ TXm for any trust property X; 0 otherwise 0
t∗j,m 1 if TXj ≥ TXm for any trust property X over the task execution period; 0 otherwise
vj,m 1 if sj,m > 0; 0 otherwise
wj,m 1 if bj,m × (

∑
j∈m rj,m < P riskm )× (Nmin

m ≤
∑
j∈m 1 ≤ Nmax

m ) > 0 (node j is a winner for task m); 0 otherwise

TABLE 4: Parameters Used in the Performance Analysis.
Parameter Meaning Type Default Value
|M | Total number of tasks given to a mission group Input 20

1/λ, 1/µ Mean inter-arrival time for a node’s group join/leave event Input 1 hr, 4 hrs
LT Total mission time Input 18 hrs
DTm Duration of task m Input [1, 6] hrs
Im Importance of task m Input 1-5
DFm Difficulty level of task m Input 1-3
Um Urgency of task m Input 1-3

P fpi , P fni False positive and negative probabilities of detection error of node i uniformly selected from the
given range

Input (0, 0, 05]

TSCi , TRi Initial trust value given for trust property X of node i uniformly selected from the given range
where X = social connectedness or reciprocity

Input [0.5, 0.9]

PCi Initial trust value given for cooperativeness of node i uniformly selected from the given range Input [0.8, 1.0]
Pcp Percentage of the number of nodes becoming compromised over time over all nodes Input 25%
N Total number of nodes in the network; each of the four types has N/4 nodes Input 120
Nth Maximum number of untrustworthy nodes tolerable for mission execution Input dN/3e
ITR Initial trust value range Input [0.5, 1.0]
CT Compromise time Input [0, 18] hrs

RBR Risk behavior ratio, i.e., percentage breakup of risk-averse, risk-neutral, and risk-seeking nodes in
the mission group

Input (30%, 30%, 40%)

Tu Trust update interval Input 20 min.
TR−thm , TSC−thm Trust threshold of task m for trust property X = R,SC Input [0.5, 0.9]

T I−thm Trust threshold of task m for trust property X = I Input 0.9
si,m Score of a received bid Derived
TXi,j(t) Subjective trust of node j evaluated by node i for trust property X at time t Derived
TXj (t) Objective trust of node j for trust property X at time t Derived
rm,j(t) Average exposed risk level by employing node j for task m in terms of trust property X at time t Derived
P riskm Acceptable risk level of task m, e−ρ2Im Design
α Weight of direct evidence for trust evaluation where 0 < α < 1 Design
γ Trust decay factor in Equations (6) and 11 Design
ε Risk adjustment increment based on TL’s risk behavior type Design

We note that ILP is not to be used at runtime to solve the
task assignment problem. It is a solution technique applied
at design time to find the optimal solution, given knowledge
of task properties and node trust/risk behaviors as input.
Unlike COSTA which is to be executed by every node at
runtime, ILP is to be performed at static time to generate an
optimal solution against which our COSTA is compared for
performance evaluation.

In Table 3, we summarize knowledge of tasks and nodes
in the system in the form of ILP binary variables as input to
ILP. For example, Op,q is 1 if p and q are concurrent tasks;
0 otherwise. The only decision variables are wj,m which
decides if node j is selected to execute task m, and dj,m
which decides if node j commits to task m.

The objective of our trust-based task assignment problem
is to find the best bidding (i.e., which node should bid on
which task), winner selection, and task selection (i.e., which
task is selected when multiple winner announcements are
received by a node) to maximize mission completion ratio
PMC . The task assignment optimization problem thus is
formulated as an ILP problem as follows:

Given: Sm, Sn, Op,q, S
O
m, Cp,q, (22)

SCm, tj,m, t
∗
j,m, ntj,m, vj,m, aj,m

Find: wj,m, dj,m

11
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Maximize:
∑
m∈SM

TAm × TEm ×
Im∑
allm Im

Subject to:
∑

m∈SC
m,wj,m=1

dj,m = 1;
∑
m∈SO

m

dj,m = 1

The objective function (under Maximize) is the the mission
completion ratio as defined in Equation (24). The first con-
straint (under Subject to) specifies that a node can only select
one task among concurrent tasks (in a set SCm) to join at a
time. The second constraint (under Subject to) specifies that
a node can only execute one task at a time. We note that
this ILP formulation optimally assigns nodes to tasks once
without considering task reassignment.

VII. RESULTS AND ANALYSIS
In this section, we first describe the performance metrics
and experimental settings used for performance evaluation of
COSTA. Then, we report comparative performance analysis
results of COSTA against the baseline counterparts.

A. PERFORMANCE METRICS
We consider three performance metrics: trust bias, mission
completion ratio, and communication overhead.

Trust Bias (Bi,j) is the time-averaged difference between
measured trust, Ti,j(t), and objective trust, OTj(t). Given a
mission lifetime LT, Bi,j is obtained by:

Bi,j =

∫ LT

0

Bi,j(t)

LT
dt (23)

where Bi,j(t) =
|Ti,j(t)−OTj(t)|

OTj(t)

Mission Completion Ratio (PMC) refers to the ratio of a
mission being successfully completed during a given entire
mission time. This metric is estimated by summing the task
completion ratio, Pm, up where each task completion ratio is
weighted by its relative importance during the mission time.
PMC is estimated by:

PMC =
∑
m∈L

Pm
Im∑
all Im

(24)

L is a set of tasks belonging to the mission.
Communication Overhead (Ctotal) is the number of hop

messages per time unit for a node to perform trust evaluation
(CTE(t)) and run the task assignment protocol during the
entire mission lifetime (LT). It is computed by:

Ctotal =

∫ LT
0

Ctask + CTE(t)dt

LT
(25)

where Ctask consists of Cadv(t), Cbid(t), Cw(t), Cm(t), and
Cra(t) corresponding to the costs of advertisement of tasks
by auctioneers, bidding by members, winner notifications by
auctioneers, commitment by members, and task reassignment
by auctioneers upon the failure of task assignment, respec-
tively.

Below we provide a detailed description of Ctotal compu-
tation. We define G as the set of current group members in

the mission group, and L as the set of auctioneers. That is, L
is a single-member set containing the HL only for the auction
process for TL selection between the HL and TLs, and is
the set of TLs for the auction process for member selection
between TLs and members.
Cadv(t) is the cost for an auctioneer (i.e., HN or TL) to

disseminate their advertisement messages on available tasks
at time t given by:

Cadv(t) =
∑
l∈L

∑
k∈G

Nadv
l,k (t) (26)

Nadv
l,k (t) is the number of hops that an advertisement message

travels from auctioneer l to entity k at time t.
Cbid(t) is the cost for group members to send bidding

messages to auctioneers (i.e., HN or TL) of the bidding tasks
at time t obtained by:

Cbid(t) =
∑
k∈G

∑
l∈L

BlkN
bid
l,k (t) (27)

N bid
l,k (t) is the number of hops a bidding message travels from

entity k to auctioneer l at time t, Blk is 1 when entity k bids
on the task led by auctioneer l; 0 otherwise.
Cw(t) is the cost for auctioneers (HN or TLs) to notify

winners at time t estimated by:

Cw(t) =
∑
l∈L

∑
k∈G

W l
kN

w
l,k(t) (28)

Nw
l,k(t) is the number of hops a winner notification message

travels from auctioneer l to entity k at time t and W l
k is 1

when auctioneer l selects entity k as a winner; 0 otherwise.
Cm(t) is the cost for members to send commitment mes-

sages to auctioneers at time t given by:

Cm(t) =
∑
k∈G

∑
l∈L

ClkN
m
k,l(t) (29)

Nm
k,l(t) is the number of hops that a commitment message

travels from entity k to auctioneer l at time t andClk is 1 when
entity k decided to commit itself to the task led by auctioneer
l; 0 otherwise.
Cra(t) is the cost for running a dynamic reassignment

protocol at time t, obtained by:

Cra(t) =
∑
l∈L

∑
k∈G

FkC
ra
k,l(t) (30)

Fk is 1 when entity k is not able to execute a given task;
0 otherwise. The cost for auctioneer l to run a dynamic
reassignment protocol to replace entity k at time t, Crak,l(t),
can be obtained by considering the following two cases. First,
if l is a HN, Crak,l(t) is:

Crak,l(t) = Cadvk,l (t) + Cbidk,l (t) + Cwk,l(t) + Cmk,l(t) (31)

If the auctioneer is HN, Cadvk,l (t) is the cost for HN to
advertise the task in order to replace TL k at time t. Cbidk,l (t)
is the cost for available members to bid on the task led by
HN in order to replace TL k. Cwk,l(t) is the cost for HN
to disseminate a winner notification in order to replace TL

12
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k. Cmk,l(t) is the cost for a member to send a commitment
message to HN in order to replace TL k. If l is a TL, Crak,l(t)
is:

Crak,l(t) = ClD(t)+El

[
Cadvk,l (t)+Cbidk,l (t)+Cwk,l(t)+Cmk,l(t)

]
(32)

If the auctioneer is TL l, ClD(t) is the cost for TL l to adjust
the deadline of its task at time t. El is 1 when the deadline of
the task led by TL l is not extensible; 0 otherwise. Cadvk,l (t)
is the cost for TL l to advertise the available task in order to
replace entity k. Cbidk,l (t) is the cost for available members to
bid on the task led by TL l in order to replace entity k.Cwk,l(t)
is the cost for TL l to disseminate a winner notification in
order to replace entity k. Cmk,l(t) is the cost for a member to
send a commitment message to TL l in order to replace entity
k . ClD(t) is obtained by:

ClD(t) =
∑
j∈S

(
NE
l,j(t) +NE

j,l(t)
)

(33)

where S is a set of members belonging to a task led by l,
NE
l,j is the number of hops that the deadline extension request

message travels from TL l to entity j at time t. NE
j,l(t) is the

number of hops that the deadline extension reply message
travels from entity j to TL l.
Cadvk,l (t) is computed as:

Cadvk,l (t) =
∑
a∈GI

Nadv
l,k,a(t) (34)

where Nadv
l,k,a(t) is the number of hops that the advertisement

message to replace entity k travels from auctioneer (i.e., HN
or TLs) l to entity a at time t; GI is the set of members in the
network but idle (available) at the time of request.
Cbidk,l (t) is obtained by:

Cbidk,l (t) =
∑
a∈GI

BlaN
bid
l,k,a(t) (35)

where N bid
l,k,a(t) is the number of hops the bidding message

to replace entity k travels from entity a to auctioneer l. Bla
is 1 when entity a bids on the task led by auctioneer l; 0
otherwise. Cwk,l(t) is measured by:

Cwk,l(t) =
∑
a∈GI

W l
aN

w
l,k,a(t) (36)

whereNw
l,k,a(t) is the number of hops the winner notification

message to replace entity k travels from auctioneer l to entity
a at time t. W l

a is 1 when entity a is a winner of the task led
by auctioneer l; 0 otherwise.
Cmk,l(t) is calculated as:

Cmk,l(t) =
∑
a∈GI

ClaN
m
l,k,a(t) (37)

where Nm
l,k,a(t) is the number of hops the commitment

message to replace entity k travels from entity a to auctioneer
l at time t, and Cla is 1 when entity a decided to commit itself
to the task led by auctioneer l; 0 otherwise.

CTE(t) is the cost for evaluating trust value at time t,
obtained by:

Cji,TEID
(t) =

∑
i∈N

∑
j∈R(i)

(
NR
i,j(t) +NR

j,i(t)
)

(38)

where NR
i,j(t) and NR

j,i(t) are the number of hops that the
recommendation request and reply messages travels from
entity i (or j) to entity j (or i) at time t. Note that we consider
the evaluation of the indirect trust value because direct trust
evaluation can be evaluated by monitoring or piggybacking
with other communication messages.

B. EXPERIMENTAL SETUP
The ILP formulation in Section VI is implemented and
solved with MS Office Excel Solver. Our proposed COSTA
protocol described in Section V is simulated using an event-
driven simulator in C, SMPL [43] with which we simulate
task arrival, TL selection, node bidding, node selection, task
execution, task abort, and trust update events. We report both
analytical solutions obtained from solving the ILP problem
and numerical results from simulation.

Table 4 lists model parameters used in the performance
analysis. We have three parameter sets: input, derived, and
design. Input parameters characterize the operational and
MANET environments. Unless otherwise specified, input
parameters will take on their default values shown in the 4th
column for the experiment results as the default values are
shown in Table 4. Derived parameters are calculated from
input parameters. Design parameters are protocol parame-
ters for which we aim to identify their optimal settings to
maximize the task assignment performance. Input parameters
characterize the operational and MANET environments.

All results reported are based on 100 simulation runs with
the standard deviation (SD) less than 5%. We allow 2 hours
of warm-up time for the network to establish acceptable trust
levels among participating nodes. We use (α, γ) = (0:9, 0:95)
to obtain 3% average trust bias at each trust update.

We conduct a comparative performance analysis in terms
of mission completion ratio and communication overhead for
the following three trust assignment schemes:
• COSTA-Risk is the scheme described in Section V. The

original COSTA protocol considers risk behavior as de-
scribed in Section III-F.

• COSTA-No-Risk is the scheme that is exactly as the
COSTA in Section V except that it does not consider
decision making based on risk behavior during bidding,
winner selection, and commitment.

• NT is a non-trust based task assignment protocol. It strictly
follows the procedure of the proposed auction protocol ex-
cept that there is no trust-risk analysis in member selection,
so a TL just randomly picks nodes with matching node
types for the task.

C. EFFECT OF NODE TRUST AND HOSTILITY
Figure 4 shows the effects of node initial trust range (ITR)
and node compromise time (CT) on the mission completion

13
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(a) Optimal ILP solutions (b) COSTA-Risk simulation results (c) Effect of probability distribution on performance
with ITR [0.8, 1.0] and CT [3, 18] hrs

FIGURE 4: Effect of node initial trust range (ITR) and node compromising time (CT) on mission completion ratio with respect
to average acceptable risk level

ratio (PMC) with RBR=(30%, 30%, 40%) and P riskm varying
over the range of [17, 25]. Figure 4 (a) shows analytical solu-
tions generated from ILP, while Figure 4 (b) shows COSTA-
Risk solutions generated from simulation. We observe that
ILP results are remarkably similar to simulation results in
terms of the effect of P riskm on PMC under a wide range
of ITR and CT values. Furthermore, there exists an optimal
P riskm under which PMC is maximized and both solutions
identify the same optimal P riskm for maximizing PMC with
varying ITR and CT values. We observe that ILP solutions
consistently generate a slightly higher PMC value than those
by COSTA-Risk solutions, with less than 3% discrepancy
between them. The reason is that task information, including
arrival sequence, importance, etc. are given as input to ILP,
so ILP in searching for an optimal solution will tend to
assign nodes to more important tasks as well as to pick the
optimal member combination for each task while satisfying
the constraints.

The optimal solutions from ILP are not achievable in
practice as task information is not known a priori and the
system must do dynamic task assignment as tasks arrive.
Nevertheless, by comparing optimal solutions obtained from
ILP with our COSTA-Risk solutions, we gain confidence in
the accuracy and the ability of COSTA-Risk in approaching
characteristics of optimal task assignment. The most striking
result is that the same optimal acceptable risk level is identi-
fied in both ILP and simulation experiments. Henceforth, we
report results based on simulation.

Figures 4 (a)-(b) are the cases when trust values are se-
lected based on uniform distribution for ITR. In Figure 4
(c), we analyze the sensitivity of COSTA-Risk results to the
probability distribution. The results support the hypothesis
that the trend identified is insensitive to the probability distri-
bution function used. The reason that an optimal P riskm exists
is due to the inherent trade-off between trust and risk. As we
see from Figures 4 (a)-(c), a higher optimalP riskm is identified
with more untrustworthy nodes while a lower optimal P riskm

is identified with more trustworthy nodes. With a stringent

FIGURE 5: Effect of RBR on task completion ratio

P riskm , a task is more likely to fail due to not being able to
recruit sufficient members for task execution in the initial task
assignment period. On the other hand, with a relaxed P riskm ,
task leaders may be able to recruit sufficient members for
task execution, but the task may fail due to recruiting more
untrustworthy nodes.

D. EFFECT OF NODE RISK BEHAVIOR RATIO (RBR)
Risk Behavior Ratio (RBR) is the percentage breakup of risk-
averse, risk-neutral, and risk-seeking nodes in the mission
group. In Table 4, RBR = (30%, 30%, 40%) refers to 30% of
the nodes are risk-averse, 30% of the nodes are risk-neutral,
and 40% of the nodes are risk-seeking. Figure 5 shows the
effect of RBR on the average task completion ratio in y-axis
over all tasks having a particular importance level in x-axis.

Figure 5 indicates that COSTA performance is sensitive
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(a) Mission completion ratio (PMC ) vs. acceptable
task risk level (P riskm ) under varying RBR

(b) Average trust value for group members vs. ac-
ceptable task risk level (P riskm ) under varying RBR

(c) Task failure ratio in COSTA-Risk vs. acceptable
task risk level (P riskm ) under ITR = [0.7,1] and trust
bias = 3%

FIGURE 6: Effect of acceptable task risk level (P riskm )

to RBR. When the node risk behavior is evenly distributed,
e.g., RBR =(30%, 30%, 40%), COSTA-Risk performs the
best in terms of the average task completion ratio for all
task importance levels. This is so because COSTA-Risk is
able to leverage risk behavior information to assign risk-
averse nodes to low-importance tasks, risk-neutral nodes to
medium-importance tasks, and risk-seeking nodes to high-
importance tasks. Since the node population is evenly dis-
tributed among these three risk behavior types, every task
regardless of its importance level will recruit enough nodes
for task execution. We attribute the superior performance of
COSTA-Risk (30%, 30%, 40%) over COSTA-No-Risk and
NT to its ability to exploit the trade-off between trust and risk
to maximize the average task completion ratio for all tasks in
distinct importance levels.

However, when the node risk behavior population dis-
tribution is extremely skewed, e.g., RBR =(10%, 10%,
80%), COSTA-Risk does not necessarily perform better than
COSTA-No-Risk. We see from Figure 5 when RBR =(10%,
10%, 80%) only high-importance tasks will have a high task
completion ratio, whereas low-importance tasks will have a
low task completion ratio because of a lack of risk-averse
nodes (only 10% population) to execute low-importance
tasks. We also see from Figure 5 that when RBR =(10%,
10%, 80%), even NT has a higher task completion ratio than
that of COSTA-Risk for low-importance tasks with impor-
tance level equal to 1. Consequently, when RBR =(10%,
10%, 80%), COSTA-Risk may perform worse than COSTA-
No-Risk or even NT in terms of the mission completion ratio
PMC since low-importance tasks do not have a high task
completion ratio. A similar argument can be applied to other
skewed risk behavior population distributions such as RBR
=(0%, 0%, 100%) for which only high-importance tasks will
have a high task completion ratio, or RBR =(50%, 50%, 0%)
for which only low- and medium-importance tasks will have
a high task completion ratio.

Figure 5 reveals that when given knowledge of RBR, one
can decide the best COSTA protocol to maximize protocol
performance in terms of the task completion ratio. Then

given knowledge of mission composition (how many tasks
and their importance levels) one can deduce the best COSTA
protocol to maximize the mission completion ratio PMC .

E. EFFECT OF ACCEPTABLE TASK RISK LEVEL
(PRISKM )
Figures 6 (a)-(c) analyze the sensitivity of the results with
respect to the acceptable task risk level P riskm . Figure 6 (a)
shows that there exists an optimal P riskm under which the
mission completion ratio PMC is maximized. This optimal
P riskm value increases as there are fewer risk-seeking nodes.
Specifically, the optimal P riskm values are 17, 19 and 21 when
the percentages of risk-seeking nodes are 60-100%, 20-40%,
and 0%, respectively. When there are many risk-seeking
nodes accounting for 60-100% of node population, these risk-
seeking nodes tend to select important tasks and this risk-
seeking behavior leaves medium and low-importance tasks
unfulfilled. The system is better off by allowing a smaller task
risk level to discourage nodes to select only high-importance
tasks. On the other hand, when risk-seeking nodes accounting
for only 0-10% node population, high-importance tasks will
be unfulfilled. In this case it is better off to allow a higher task
risk level to encourage nodes to select high-importance tasks.
Figure 6 (a) clearly indicates that the mission completion
ratio PMC is sensitive to the task risk level P riskm . Figure 6
(b) shows the average trust value of legitimate members in
the network as the task acceptable risk threshold varies. We
observe that the trend matches well with that in Figure 6 (a).
That is, there exists an optimal P riskm that can maximize the
mission completion ratio and, as a result, also maximize the
average trust value of all legitimate nodes in the system.

Figure 6 (c) illustrates the inherent trade-off leading to the
existence of an optimal acceptable risk level based on the two
main failure types: task failure caused by the lack of members
in task assignment (denoted as “failure of task assignment”)
vs. task failure caused by low trust levels of selected members
(denoted as “failure of task execution”). We observe that a
task tends to fail due to a lack of members for task assignment
under a more stringent (lower) P riskm because a stringent
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P riskm decreases the chance of recruiting sufficient members
for task execution. However, a more stringent P riskm is less
likely to cause the failure of task execution because selected
members tend to be more trustworthy (qualified). On the
other hand, a higher P riskm relaxes the member selection
criteria, so a task may fail due to low trustworthiness of
selected members.

F. COMPARISON OF COMMUNICATION OVERHEAD

FIGURE 7: Comparison of communication overhead (Ctotal)

Figure 7 breaks up the communication overhead incurred
per event and also shows the total communication overhead
(Ctotal) in the four schemes. Note that NT with intrusion de-
tection system (IDS), denoted as NT-IDS, refers to NT that is
capable of detecting compromised nodes using a distributed
IDS [44] installed at each node. Thus, NT-IDS does not send
any messages to compromised nodes. We denote NT without
IDS as NT-No-IDS.

Figure 7 shows that non-trust based schemes, NT-IDS and
NT-No-IDS, incur a higher overhead because they need to re-
run the task assignment protocol more frequently than trust-
based schemes (i.e., COSTA-Risk and COSTA-No-Risk).
Notice that the reassignment cost in NT is high because
unqualified members often need to be replaced in the middle
of task execution. Trust-based task assignment schemes (i.e.,
COSTA-Risk and COSTA-No-Risk), on the other hand, incur
a high overhead for running trust evaluation periodically.
In Figure 7, COSTA-Risk and COSTA-No-Risk compare
favorably in Ctotal with NT-IDS and NT-No-IDS because
they reduce the reassignment cost by selecting well qualified
members in the initial task assignment. COSTA-Risk has
the lowest Ctotal among all because of its ability to exploit
the trust-risk trade-off in member selection to maximize the
mission completion ratio and minimize the reassignment
cost.

VIII. CONCLUSIONS
In this work, we proposed task assignment protocol using
the concept of multidimensional trust in choosing qualified
member nodes that can maximize mission completion ratio
while meeting an acceptable risk level. The composite trust
metric takes into account the attributes of communication, in-
formation, and social networks. We considered a node’s risk
behavior and investigate its effect on the task completion ra-
tio, and the optimal acceptable task risk level. Our simulation

results validated with ILP solutions demonstrated that the
COSTA-Risk (i.e., our proposed trust-based task assignment
protocol with risk behavior) outperforms the non-trust based
schemes (NT) as well as the counterpart trust-based proto-
col that does not consider risk behavior (COSTA-No-Risk),
while incurring relatively low communication overhead. We
identified the optimal acceptable risk level to best balance
trust and risk to maximize mission completion ratio. Given
knowledge of node risk behavior and node/task characteris-
tics as input, a system designer can apply the optimal task
risk level identified to maximize the mission completion ratio
and the payoff in terms of trust to all legitimate nodes in the
system.

In the future, we plan to investigate more sophisticated
risk and payoff models for human based tasks where human
psychology and crowd behaviors play very important roles.
We also plan to investigate solution techniques to multiple-
objective optimization problems based on the trade-off be-
tween trust and risk for task assignment in MANETs in
which a system may have multiple conflicting objectives
while nodes may have different objectives to maximize their
own payoffs.
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