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Abstract—A temporary coalition is often formed to pursue a 
common goal based on the collaboration of multiple partners who 
may have their own objectives. The coalition network must attain 
multiple objectives, under resource constraints and time 
deadlines. We propose a task assignment algorithm for a scenario 
where tasks are dynamic, with different arrival times and 
deadlines. We propose a heuristic coalition formation technique 
that uses multiple dimensions of trust (i.e., integrity, competence, 
social connectedness, and reciprocity) to assess trust of each 
entity. The proposed scheme enables task leaders to make critical 
assignment decisions based on assessed trustworthiness of 
entities. We consider three different objectives, namely, 
maximizing resilience and resource utilization while minimizing 
delay to task completion. We devise a ranking-based heuristic 
with linear runtime complexity to select members based on risk 
derived from trust assessment of nodes. We validate the 
performance of our proposed scheme by comparing our scheme 
with a non-trust-based baseline scheme as well as a global 
optimal solution implemented with the Integer Linear 
Programming technique. 

Keywords—multi-objective optimization, task assignment, trust, risk 

I.  INTRODUCTION 
Tactical networks deployed to support military missions, 
disaster management, and/or emergency situations, often 
require forming a temporary coalition in order to execute a 
given mission where effective and efficient asset-task 
assignment is critical to mission success. Under a global 
objective of completing the mission successfully, the network 
or system may have multiple objectives to achieve, with 
participating parties seeking to maximize their own utilities. 
The multiple objectives in coalition network environments 
commonly involve high mission performance under resource 
constraints and required quality-of-service (QoS). 

Multi-objective optimization (MOO) problems have been 
studied extensively in various domains [16]. A common 
technique is to represent multiple objectives by a single utility 
(or payoff) function. Since very often multiple objectives tend 
to be conflicting, the optimal solutions may not be unique. As 
a result, MOO problems often have a set of Pareto optimal 
solutions referred to as the Pareto frontier [8].   

Trust is defined differently based on the application domain 
[2], [4]. However, we find a common definition of trust 
applicable across domains: willingness to take a risk. Cho et 
al. [6] discussed the key characteristics of a desirable trust 
metric in tactical networks in terms of potential risk, context-
dependency, dynamicity, and reliability.  

In this work, as an extension of [4] which mainly focused 
on identifying an acceptable risk level to maximize mission 
completion ratio, we propose a task assignment technique that 
aims to meet multiple objectives. In [4], the processes of 
bidding and winner determination may involve nodes’ risk 
behaviors. In this work, the proposed task assignment protocol 
enables a task leader (TL) to select its members based on risk 
derived from assessed trustworthiness of nodes with the goal 
of optimizing multiple objectives. It takes a ranking-based 
heuristic approach for member selection with linear runtime 
complexity compared to exhaustive search, without 
compromising performance. In this work, we consider three 
system objectives: (1) maximizing mission completion ratio in 
the presence of hostile or faulty entities (i.e., high resilience to 
hostility/failure); (2) maximizing utilization of entities in the 
network, such that each node attempts to maximize its busy 
time to increase its privileges to access network resources; and 
(3) minimizing the delay to complete time-sensitive tasks for 
QoS. Our work aims to identify an optimal solution of 
multiple task assignments to entities with diverse 
capabilities/characteristics to meet the multiple objectives. 
Identifying the optimal set of members for each task team (i.e., 
the optimal coalition structure in dynamic coalition formation) 
is the key to solving this problem.  

The contributions of this work are summarized as follows. 
First, to the best of our knowledge, this work is the first to 
solve a MOO problem dealing with multiple, concurrent and 
dynamic coalition formations (task assignments) using a 
composite trust metric based on multiple trust dimensions (i.e., 
integrity, competence, reciprocity, social connectedness). 
Second, this work proposes and analyzes a new design concept 
of trust-based MOO by computing risk based on assessed trust 
levels to screen task team members for node-to-task 
assignment. Third, the three objectives considered in the paper 
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preserve both individual welfare in terms of maximizing 
utilization, and global welfare in terms of maximizing mission 
completion ratio and minimizing extra delay to task 
completion. Last, we perform a comparative analysis of our 
proposed heuristic ranking-based member selection strategy 
with both a non-trust baseline scheme through simulation 
study as well as an optimal solution implemented with the 
Integer Linear Programming (ILP) technique, to demonstrate 
the effectiveness of our approach.  

The rest of this paper is organized as follows. Section II 
gives an overview of existing MOO research. Section III 
describes our system model including the network, node/task 
models, trust metrics, and our MOO problem definition. 
Section IV describes the proposed MOO task assignment 
protocol. Section V formulates the task assignment problem as 
an ILP problem, and proposes a low-complexity rank-based 
heuristic scheme. Section VI presents a comparative analysis 
of the ILP-based optimal solution against those generated from 
our proposed ranking-based member selection heuristic 
scheme and a non-trust baseline scheme, with physical 
interpretations given for the general trends observed. Section 
VII concludes the paper.  

II. RELATED WORK  
In this section, we discuss related work in terms of coalition 
formations, task assignment, or team formation. In particular, 
we focus on how trust is used to solve MOO problems. We 
categorize existing work on MOO into three classes based on 
global welfare (system objectives) vs. individual welfare 
(individual objectives): (1) global welfare only; (2) both global 
welfare and individual welfare are considered and the 
individual payoff function is the same for all agents in the 
system; and (3) both global welfare and individual welfare are 
considered and agents have different individual payoff 
functions. The MOO problem considered in this work belongs 
to Class 2 (C2). 

Class 1 (C1) MOO problems deal with only multiple 
system/network objectives for global welfare [9], [10], [11].  

A dynamic trust computation model was proposed in [9] to 
detect malicious nodes while achieving load balance among 
agents. A MOO problem was investigated in [10] with the 
objectives of minimizing energy consumption and data 
volume while maximizing QoS in a large wireless sensor 
network. A team formation problem with the objectives of 
maximum skill coverage and high team connectivity was 
studied in [11].    

Class 2 (C2) MOO problems are for applications with both 
global welfare and individual welfare where the individual 
payoff function is the same for all agents [4], [13], [18].  

A trust-based task assignment protocol was proposed in [4] 
to select team members to maximize the mission completion 
ratio while meeting an acceptable risk level. A trust and 
motivation based clan formation method was studied in [13]. 
Here, self-interested agents want to maximize their payoff by 
joining, maintaining, or dissolving a clan while a coalition 
aims to maximize its payoff with minimum overhead. An 
agent-to-task allocation for coalition formation in wireless 
networks was investigated in [18] using hedonic game theory 
in order to maximize throughput while minimizing the mean 

delay for task execution. In C2 MOO research, we observe 
that the goal of an individual entity and that of a coalition are 
well aligned and mutually beneficial to maximize their 
payoffs. 

Class 3 (C3) MOO problems are for applications with both 
global welfare and individual welfare, but the individual 
payoff functions are different, distinct from Class 2. A long-
term vendor-customer coalition formation problem was 
studied in [1]. This work measured trust based on positive 
experience in transactions and similarity in preferences. A 
mathematical approach to modeling MOO problems using 
game theory was presented in [17].  

Among the literature cited above, [1], [4], [9], [11], [13] 
studied coalition (or team, clan, alliance) formation or task 
assignment using trust to solve the MOO problem. However, 
except our prior work [4], these prior works assume that trust 
is already in place and can be used as a metric to help achieve 
MOO. Different from the existing work, this work proposes a 
trust-based task assignment protocol to solve a C2 MOO 
problem in tactical coalition networks. In our model, trust 
assessment is dynamically performed by each node in a 
distributed manner, operating in a hostile network 
environment. 

III. SYSTEM MODEL 

A. Node Model 
Nodes may be heterogeneous with vastly different 
functionalities and natures. For example, the entities may be 
sensors, robots, unmanned vehicles or other devices, 
dismounted soldiers or first response personnel carrying 
sensors or handheld devices, and manned vehicles with 
various types of equipment. We consider M node types, NT1, 
…, NTM, ordered such that a higher node type has more 
capability than a lower node type. A node with a higher node 
type involving human also has more trust dimensions than a 
node with a lower type node. When nodes are not involved in 
a task, they follow a random mobility model, characterized by 
node-specific speed vi. Each node can monitor its neighboring 
nodes, with detection error specified by false positive and false 
negative probabilities (i.e.,������ ����). Nodes may be malicious, 
i.e., exhibit behaviors such as message modification or 
forgery, and dissemination of fake information via bad 
mouthing to destroy a node’s reputation or good mouthing for 
ballot stuffing. Nodes that always exhibit such behaviors will 
be easily detected through the trust assessment; hence we 
model the behavior probabilistically. Our trust metric, 
discussed next, captures various behavioral aspects of a node. 

B. Trust Metric 
We use a composite trust metric proposed in our prior work 
[7]. We consider four trust dimensions in this work: social 
connectedness, reciprocity, competence, and integrity. We 
select these four dimensions with the following reasons: (1) 
social connectedness enhances connectivity and productivity 
by sharing information and resources; (2) reciprocity ensures 
reliable and consistent service provision based on past trust 
relationships; (3) competence guarantees a certain level of 
availability and willingness to respond to received requests; 
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and (4) integrity protects the task from misbehaving nodes that 
do not comply with network protocols. In our work, nodes of 
type NT1 and NT2 are evaluated based on only competence 
and integrity assuming that nodes are machines; nodes of type 
NT3 and NT4 are evaluated on all four trust dimensions. Other 
trust dimensions can be considered depending on task 
characteristics. Our trust protocol is generic and can 
incorporate other trust dimensions easily. We discuss each 
trust component in the following: 
• Social Connectedness (SC): We compute this as the number 

of nodes each entity encounters during a certain time period, 
being affected by mobility and inherent sociability. We 
assume that each node sends out an encounter history 
certified by encounter tickets [5], [6], [14] to its 1-hop 
neighbors. This enables each node to know the level of 
social connectedness of its 1-hop neighbors (i.e., 	
��). 

• Reciprocity (R): This is the degree of mutual giving and 
receiving based on the inherent willingness to reciprocate. 
Each node counts a target node’s reciprocity based on the 
frequency of receiving events (e.g., receiving the result of a 
query) from a target node over the total number of giving 
actions (e.g., providing requested services) to the target node 
(i.e., 	
).  

• Competence (C): This refers to an entity’s capability to 
serve the received request, being affected by: (a) 
unintentional unavailability due to network conditions (i.e., 
link unreliability); and (b) intentional nature of an entity 
such as willingness to serve. This is modeled 
probabilistically by the probability of competence (	
�). Each 
node measures its 1-hop neighbors’ behaviors based on the 
frequency of positive behaviors over total experiences in 
packet forwarding behavior. 

• Integrity (I): This is the degree of honesty of an entity based 
on the number of positive experiences over the total number 
of experiences in terms of network behaviors. We compute 
this as 	��  the frequency of positive behaviors (i.e., not 
performing any network attacks considered in this work) 
over total experiences in complying with a given network 
protocol. 

For this paper to be self-contained, we briefly describe the 
trust metric used in this work. Let 	����� denote the objective 
trustworthiness of node j on component X at time t. 	������� is 
node i’s evaluation of 	������� Trust values lie in [0, 1] where 1 
indicates complete trust, 0.5 ignorance, and 0 distrust. Trust 
estimates are updated every Δt seconds as a combination of 
direct and indirect evidences as: 

	������� � �	��������� � �� � ��	���������� (1) 

where α is a weight factor that lies in [0,1] and X=SC, R, C, or 
I. 	
��������, is the direct trust of node i toward node j on X 
based on node i’s direct observations of node j during that 
time interval. 	��������� is to be assessed by node i toward node 
j as described earlier. The direct observations are subject to 
detection errors (i.e., false positive/negative probabilities). 
	
���������  is the indirect trust which is computed by the 

average of valid recommendations (trust values) received in 
that interval. If no fresh evidence is available, the trust 
component is merely the discounted prior estimate, �	
��� �� �
 ��� where the decay factor γ lies in [0, 1]. In this trust metric, 
we fine-tune the experimental setting to maximize trust 
accuracy by using a set of optimal parameters including the 
range of hops (i.e., called the “trust chain length” denoted 
by�!"#��to receive recommendations (indirect evidence), trust 
decay (�), and the weights for direct/indirect evidences (� and 
1- �). Refer to [7] for more details on the trust metric used in 
this work. In this paper, we use the assessed trust values to 
derive risk. Specifically, risk derived from trust is used as the 
basis of member selection for task execution. Since accurate 
trust assessment is critical to correctly measuring risk which 
significantly impacts member selection decisions, we apply 
the optimal trust parameter setting (i.e., α, γ, and LTC) 
identified in [7] to minimize the discrepancy between 
measured trust (i.e., 	�������� and actual trust (i.e., 	�����). 
C. Network Model 

We consider a mission-oriented tactical network where 
stationary (i.e., sensors) and/or mobile nodes communicate 
through multiple hops. We adopt a hierarchical structure to 
execute a mission consisting of multiple tasks (described in 
Section II.D). A commander node (CN) governs the mission 
team. Under the CN, multiple task leaders (TLs) lead task 
teams. The CN selects TLs at the beginning of network 
deployment based on the trustworthiness of nodes known to 
CN a priori and the TLs recruit regular members (RMs) for 
task execution based on periodic dynamic trust assessment. A 
group key is used for communications among members to 
prevent outside attackers.  

D. Task Model 
Tasks arrive asynchronously and may start and end at different 
times. We denote the start time, end time and duration of task 
m by 	$%&'(&, 	$)�* and �	$. Each task has unique properties:  
• Required node type +	$ indicates the required functionality 

of nodes for executing task m. A node with a higher node 
type has a higher capability and, because of human 
involvement, also has more trust dimensions.  

• Required number of nodes Nm refers to the number of nodes 
needed for execution of task m. 

• Minimum trust threshold 	$��&, is a threshold for each trust 
property X of task m. 

• Importance (Im) refers to the impact of task failure on 
mission completion with higher values indicating more 
importance. 

• Urgency (URm) indicates how urgently a given task should 
be completed where higher is more urgent. Less urgent tasks 
may be allowed extra time for completion, beyond the 
nominal end time. A task is regarded as successful if it is 
completed within its deadline, defined by: 

	$*)'*-��) � 	$)�* � .�	$�%%�/� � 	$)�*0 12$'3 � 2$
2$'3

4 (2)  

�	$�%%�/�  is the mission duration and 2$'3  is the 
maximum urgency level.  
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• Difficulty (�5$) represents the degree of a task’s difficulty 
that is modeled associated with the competence trust 
threshold per task as shown in Table III (Section VI).  

E. System Objectives 

A CN aims to achieve the system goal in terms of three 
objectives: mission completion ratio, resource utilization, and 
delay of task completion. 

• Mission Completion Ratio (678�: This is the fraction of the 
sum of completed tasks weighted by respective importance 
over the sum of all tasks’ importance values, and is computed 
by:  

�9# � : � �;
: �;<==

�$>?@        (3)

L is the set of mission tasks, and !A is the set of completed 
tasks. Higher PMC is desirable. 

• Resource Utilization (U): This measures the average 
utilization of nodes and is defined by: 

2 � : BCC>D
EFE   where 2� � : 2��$$>?       (4)

N is the set of legitimate member nodes. 2��$� equals 
�	$G�	H
II
JK  if node i executes task m, and is zero 
otherwise. Higher 2 is desirable (minimizing idle time).  

• Delay to Task Completion (D): This is the average extra 
fractional delay for task completion, defined by:  

� � �: �;;>L
E?E �� where �$ � M";@N;O=PQP�";PRST

�";  (5)

	$A/$�-)&) is the actual completion time of task m which must 
happen before 	$*)'*-��) . If a task is not completed by 
	$*)'*-��)� (i.e., task m fails), 	$A/$�-)&)  is set to 	$*)'*-��) . 
Lower D is desirable. 

The MOO problem we are solving here is to maximize �9# 
and U and to minimize D via node-to-task assignment, given 
node and task characteristics as input. A well-accepted way of 
dealing with multiple objectives is to optimize a linear 
combination, such as: 

�9UU � �9# � 2 � � (6)

Each node may participate only in one task at a given time. In 
practice, all tasks will not be known in advance, and the task 
allocation process must proceed, taking into account currently 
available resources.  

IV. TASK ASSIGNMENT PROTOCOL 
We have two layers of task assignment: by CN to TLs and by 
TLs to RMs. For simplicity of exposition and due to space 
limitations, we assume that the CN-to-TL assignment has 
already been done based on prior trust profiles of the nodes. A 
TL is involved in only one task at a time, and a node can 
participate in only one task at a time, although it may 
participate in multiple tasks during its lifetime. TLs advertise 
tasks and free nodes respond as described next.  

A. Advertisement of Task Specification  
The task specification disseminated during the auction process 
includes a set of requirements for task execution specified by: 

V��$� �$� +	H� �	$%&'(&� 	$)�*�W (7)  

��$ is the identifier of task m. A node meeting the node type 
requirement +	$  is considered capable of handling the 
required work elements imposed by task m and will respond to 
the request with its node ID if it is free. A node may respond 
to only one task advertisement at a time. 

An individual node aims to maximize its privilege to access 
network resources by maintaining its trusted status as a 
member of the mission team. The payoff considers not only 
the busy time for executing a task (i.e., utilization), but also 
the task importance and the role of a node (i.e., a TL role gives 
a higher role score than a RM). Specifically, the payoff to 
node i for executing task m is calculated as: 

�X��$ � �� Y �$ Y �	H
�	H
II
JK  (8)

where ���is the Role-based Reward Score. �X��$ is used in 
computing a trust reward or penalty as discussed Equation 11. 
If multiple task requests are pending, a node would respond to 
the task that offers the highest immediate payoff.  

B. Member Selection  
The inclusion of node j in task m involves a risk which we 
model, following Lund et al. [15], as  

Z$����� � 2$
: Z$��� ����>"

E	E [\]Z]�Z$��� ��� � ]�^
"C�;��_` �&�
";̀aQb  (9)  

Here i(m), the evaluator of node i’s trustworthiness, is the task 
leader of task m. The lower the estimated trust, relative to the 
task’s threshold trust, the larger is the risk. Note that even with 
perfect trust (=1), risk is non-zero, reflecting that risk cannot 
be removed perfectly even under very high trust [15]. ρ is a 
positive-valued design parameter.  We model that risk is linear 
in urgency but exponential in the trust factor.  

TLs implicitly seek to optimize the MOO function. 
However, TLs work independent of one another. As such they 
can only adopt heuristics. The TL of task m ranks all 
responding nodes based on the risk level, ZH�
���, that node i 
exposes in executing task m. TL selects the +H�nodes with the 
lowest rank of the risk level for task execution. The idea is to 
select members with low risk so as to have a chance to 
maximize the MOO function defined in Equation 6. Among all 
objectives, the mission completion ratio is highly sensitive to 
exposed risk; it also dominates the other two objectives 
(utilization and delay) in the MOO function, thereby affecting 
the performance of utilization and delay. A selected node 
commits itself to the assigned task.  

If sufficient members are not found, TL can re-advertise the 
task at the next trust update interval when the node’s trust 
values are updated, assuming that the task can be scheduled to 
execute to completion before 	$*)'*-��). Otherwise, the task is 
assumed to have failed.  
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C. Task Failure  
A task fails if it cannot be successfully completed by its 
deadline. As indicated earlier, a task may fail simply because 
an appropriate team could not be formed. A task may also fail 
if the team has too many untrustworthy nodes, i.e., with trust 
levels below the required trust thresholds: Failure occurs if 

: 5�����>$
+$

c 	d$ 

[\]Z]���5���� � e�����
f�	����� g 	$��&,�fJZ�hKi��
j����������������J�\]Z[
I]�������������  

(10)

Here 	d$  indicates the tolerance level of task m to 
untrustworthy nodes, and 	����� denotes the objective trust.  If 
a TL detects task failure, then it re-advertises the task and 
triggers task reassignment following the procedure described 
in Section IV.B, with the task being rescheduled as a new task 
to be completed within 	$*)'*-��). 

D. Trust Reward and Penalty   
Since an individual node aims to maximize its privilege to 
access network resources by maintaining a sufficiently high 
trust level in the network, receiving or deducting a trust value 
can be an effective reward or penalty to the individual node.  
A node will receive a trust reward or penalty based on the 
result of task completion or failure via positive or negative 
recommendations as trust is being updated. The reward or 
penalty function is:  

k()l'(*
$�� ��� � k�)�'-&m

$�� ��� � �X��$
	������ (11)

where node i is the TL of task m, �X��$  is the individual 
payoff of node j when it executes task m as given in Equation 
7. Notice that less trusted nodes get higher penalties and 
rewards compared with more trusted nodes.  

V. THE TASK ASSIGNMENT  PROBLEM  
The node-task optimization problem to maximize PMOO is 

combinatorial and NP-complete [12]. This means that the 
optimization problem is not polynomially solvable in runtime 
with respect to the number of bidders (+n ), resulting in a 
lower bound approximation of ��oFp�. 

Suppose that all tasks are known a priori – what is the best 
possible performance? We can formulate this as ILP problem 
[1] which searches for the best solution that satisfies the 
constraints and maximizes �9UU�for node-to-task assignment. 
Different from Section IV, this section gives theoretical 
validation of identifying optimal solutions against which the 
proposed trust-based and non-trust-based protocols (shown in 
the end of this section) are compared. Here we note that the 
solutions by the non-trust-based and ranking-based schemes 
reflect network/trust dynamics, but ILP-based optimal 
solutions may not. However, the ILP-based optimal solution is 
a benchmark to prove the benefit of the trust-based heuristic 
approach with much less complexity.  

Table I defines the variables used in the ILP formulation. 
There are three types of variables. The input variables 

summarize the task/node specifications given as input to the 
ILP. There is only one decision variable, namely, [��$ to be 
determined by the ILP, specifying if node j should be assigned 
to task m. The ILP will search for an optimal solution of 
[��$� for all j, m’s to maximize �9UU � �9# � 2 � �� The 
objective variables �9#� 2� hKq�� have the same meanings as 
discussed before, each now being defined in Table I as a linear 
function of [��$ (the only decision variable to be decided by 
the ILP). 

TABLE I. VARIABLE DEFINITIONS FOR ILP 

Type Variable Definition 
input J��r  1 if task p and task q are overlapping in 

time; 0 otherwise 
input X Union of set {p, q} for which X��r =1 
input ���$  1 if 	�� s 	$� �for every trust property X over 

the task execution period; 0 otherwise 
input K���$  1 if node j’s node type satisfies the required 

node type of task m; 0 otherwise 
decision [��$  1 if node j is assigned to task m;  0 

otherwise 
objective �$A/$�-)&) : � ���$� Y [��$��� G�+$  
objective �9# �9# � : �;

: �;<==
�$>?@   

objective 2 : . : ���$� Y [��$�� 0 �Y 2$$ GE+E  
objective �$ �� � �$A/$�-)&)� Y .	$*)'*-��) � 	$)�*0G �	$ 
objective � : �;;>L

E?E     

objective �9UU �9# � 2 � � 

The task assignment optimization problem is formulated as 
follows: 

Given: !�+� X� J��r� ���$� K���$ 

Find: [��$ > {0, 1}  

Maximize: �9UU � �9# � 2 � �  

Subject to: t� tuv� wx > X� [���� � �[��r� g �y : [��$�� � +$y  
[��$ g K���$�  

The task/node specifications including the task requirement 
and arrival sequence, as well as the node trust and risk 
behaviors are summarized by the set of variables defined 
under “given: !�+� X� J��r� ���$� K���$�” Specifically, L is the set 
of tasks; N is the set of nodes; O is the set of pairs of 
concurrent tasks for which J��r  =1;  ���$�hKq�K���$  are input 
specifying if node j satisfies task m’s trustworthiness 
requirement and node type requirement, respectively. The ILP 
will try all possible combinations of [��$�for all j, m’s such 
that �9UU � �9# � 2 � �  is maximized. Under “subject to” 
we list the constraints that must be satisfied by a solution 
found by the ILP. The first constraint specifies that for any 
two concurrent tasks, a node can only be assigned to one of 
them for execution. However, a node needs not at all be 
assigned to either task. The second constraint specifies that the 
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required number of qualified nodes must be assigned to task m. 
The third constraint specifies that a node assigned to task m 
must be of the required type or higher (more capable).  

We propose two member selection strategies to cope with 
the complexity of ILP and the asynchronous task arrival 
pattern:  
• Non-trust-based selection: TLs do not use any trust/risk 
analysis to select members. The TL of task m selects 
+H�members randomly among all bidders with qualified node 
type. 

• Ranking-based selection: TLs select members based on 
trust-based risk analysis discussed in Section IV.B. Top +H 
nodes with the lowest risk are selected as members. 

These two schemes will be compared against the ILP 
solution to demonstrate the ranking-based member selection 
strategy approaches the optimal solution achieved by the ILP 
without high complexity.   

VI. NUMERICAL RESULTS AND ANALYSIS 
In this section, we compare the performance of the three team 
member selection strategies by a TL. Our case study is for a 
small size problem with 5 tasks and 40 nodes where �	$�%%�/� 
is 12 hrs and the square-shaped operational area is 
1000m×1000m. Nodes communicate within wireless radio 
range of 250 m. Table II summarizes other key default values 
used for this case study. The trust thresholds for�	$��&,, 	$z�&,, 
and 	${#�&,  and detection error probabilities (i.e., ���� and ����) 
are randomly selected based on uniform distribution from the 
ranges shown in Table II. Table III summarizes the ranges of 
the competence trust threshold,�	$#�&,� according to the level of 
task difficulty (DFm), as  discussed earlier in Section III.D. 

TABLE II. KEY PARAMETERS AND DEFAULT VALUES 

Parameter Value Parameter Value Parameter Value 
	d$ �G| E!E�G+$ 5 / 4 !"# 4 
�	$ 2 hrs � / � 0.1 / 0.95 	$z�&, [0.5, 0.9] 
} 1.3  � 5 min. 	${#�&, 
�  7  ����� ���� (0, 0.01] 	$��&, [0.8, 0.9] 

TABLE III. TASK DIFFICULTY AND COMPETENCE THRESHOLD PER TASK 	9#�"~ 

�5$ 1 2 3 4 5 
	$#�&, [0.4, 0.5] [0.5, 0.6] [0.6-0.7] [0.7, 0.8] [0.8, 0.9] 

In the results shown in this section, each result point indicates 
the average value of the metric based on 100 simulation runs; 
error bars depict the standard deviations. We maintain less 
than 3~8% difference between measured trust (i.e., 	���� ) and 
actual trust (i.e., 	��), given a wide range of original trust seeds 
(i.e., [0.5, 1] to [0.8, 1]), to avoid prediction inaccuracy. This 
is achieved by using the optimal setting identified (i.e., the 
trust chain length LTC = 4, � = 0.1, and � = 0.95) to minimize 
trust bias as discussed in Section IV.A. PMOO is calculated 
based on Equation 6 but is scaled such that PMOO > 0 (i.e.,  
�9UU � �). 

We first report numerical results (in Figs. 1-4) for a small 
size problem solvable by optimal selection through ILP so we 
can compare performance of ranking-based selection and non-
trust-based selection (random selection) against optimal 

solution. Then with a large size problem (i.e., more 
tasks/nodes), we report performance comparison results (in 
Figs. 5-7) of ranking-based selection against non-trust-based 
selection, and perform sensitivity analysis of the results with 
respect to trust bias, the number of tasks, and the number of 
nodes in the system.  

Figs. 1-4 show performance comparison results of mission 
completion ratio (�9#), utilization (U), delay (D), and �9UU 
(Equations 3-6), respectively. The X-coordinate indicates the 
range of trust in terms of [��n, 1] where ��n is the lower trust 
bound, with a larger ��n  close to 1 representing a more 
trustworthy environment. 

Fig. 1 compares the three team member selection strategies 
in mission completion factor (PMC). As expected, the optimal 
selection by the ILP performs the best at the expense of high 
computational complexity. 

Fig. 1: Comparison of three schemes in mission completion ratio (PMC) 

Ranking-based selection clearly outperforms non-trust-based 
selection because it can use trust to heuristically select 
trustworthy nodes with low risk. The main reason for the 
discrepancy between optimal selection and ranking-based 
selection is that optimal selection exhaustively considers all 
possible combinations of task teams that can maximize the 
overall MOO performance. Nevertheless, we observe that 
ranking based selection performs comparably over all trust 
ranges and approaches the optimal ILP solution as the 
environment becomes more trustworthy (toward right) because 
of a lower task failure probability. 

Fig. 2: Comparison of three schemes in utilization (U) 

Fig. 2 compares the performance of the three member 
selection schemes in node utilization (U). Fig. 2 is well 
matched with Fig. 1, showing that the scheme with higher 
mission completion ratio also reaches higher utilization. Again, 
whereas the optimal solution by ILP gives the best 
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performance, ranking-based selection clearly outperforms non-
trust-based selection, and, with only linear complexity, 
performs comparably to the optimal ILP solution.  

 

Fig. 3: Comparison of three schemes in delay (D) 

Fig. 3 depicts the delay metric. Low delay is desirable. In Fig. 
3, the ILP optimal selection has the smallest delay (The 
optimal solution under [0.8, 1] is not shown because the delay 
was zero), followed by ranking-based selection and then by 
non-trust-based selection. The trend correlates well with that 
of Fig. 1, as delay is inversely correlated to mission 
completion ratio. However, delay is also affected by deadline 
extension based on task urgency. Therefore, it is possible that 
there may be a longer delay when more tasks with extended 
deadlines are successfully completed. For example, when a 
task with no deadline extension fails, the delay is zero; when a 
task with a deadline extension is completed, delay is 
introduced due to the task reassignment procedure. Therefore, 
the non-trust-based scheme under the trust range of [0.7, 1] 
(more trustworthy) shows a slightly higher delay, compared to 
the delay under the trust range of [0.6, 1] (in a less trustworthy 
environment). 

 

Fig. 4: Comparison of three schemes in MOO function value (�9UU) 

In Fig. 4, we compare performance in terms of the MOO 
function value (PMOO). As expected, while optimal selection 
performs the best, ranking-based selection performs 
comparably and it significantly outperforms non-trust-based 
selection particularly when the environment is less trustworthy. 
This result makes it a feasible runtime solution as the 
computational complexity is only linear.  

Fig. 5 shows how trust bias (expressed in terms of the TC 
length used) affects PMOO. For ranking-based selection, we see 
that when the TC is shorter and thus trust bias is higher [7], a 
lower PMOO is observed. This is because when trust bias is 

high, ranking based selection may mistakenly take 
untrustworthy nodes as trustworthy, thus causing tasks to be 
aborted. 

 

Fig. 5: PMOO of non-trust-based selection vs. ranking-based selection with 
respect to the length of a trust chain (TC) 

This is especially the case when the environment is relatively 
trustworthy (e.g., when the hostility is in [0.7, 1]) so that the 
trust value of an untrustworthy node j is just below the 
minimum trust threshold value (thus satisfying �5����  in 
Equation 10) but because of high trust bias, the trust value of 
node j is mistakenly considered to be higher than the minimum 
trust threshold. We see that in this rare condition (TC=1 and 
hostility is in [0.7, 1]), non-trust-based selection (random 
selection) can perform comparable to ranking-based selection. 
In all other cases, ranking-based selection outperforms non-
trust-based selection. The robustness of ranking-based 
selection with respect to trust bias is evidenced by the result 
that it outperforms non-trust-based selection when trust bias is 
high (TC=1) and the environment is not trustworthy (e.g., 
when the hostility is in [0.5, 1]). 

 

Fig. 6: PMOO of non-trust-based selection vs. ranking-based selection with 
respect to a different number of tasks (Nm) 

Fig. 6 compares MOO performance (PMOO) of ranking-based 
selection against non-trust-based selection as the number of 
tasks (Nm) varies in the range of [5, 15] under four different 
network hostilities. In this experiment, 60 nodes are used 
given that we have up to 15 tasks each requiring 4 nodes. We 
observe that ranking-based selection is less effective than non-
trust-based selection, when there are more tasks (e.g., 10-15), 
particularly if the environment is relatively trustworthy (e.g., 
hostility is in the range of [0.7/0.8, 1]). In ranking-based 
selection, a TL selects the best nodes based on low risk and 
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low utilization criteria among all the nodes available in the 
network. Due to this reason, the order a task arrives is critical 
for the TL to select best qualified nodes particularly where 
there are more than one task that require the same node type. 
In this competing situation, if a task arrives earlier than the 
other competing task(s), it will have a higher chance to obtain 
qualified nodes regardless of the importance given to the task. 
Therefore, in ranking-based selection, overly qualified nodes 
may be assigned to less important tasks which do not 
necessary require highly trustworthy nodes. However, in less 
competing situations with fewer tasks and less trustworthy 
environments, ranking-based selection significantly 
outperforms non-trust-based selection. 

 

Fig. 7: PMOO of non-trust-based selection vs. ranking-based selection with 
respect to a different number of nodes (N) 

Fig. 7 compares MOO performance (PMOO) of ranking-based 
selection against non-trust-based selection as the number of 
nodes (N) varies in the range of [40, 80] under four different 
network hostilities. We use 10 tasks to create a competing 
situation in which more than one task may recruit nodes of the 
same node type. As shown in Fig. 7, compared to non-trust-
based selection, ranking-based selection can greatly benefit 
from having more available nodes in a relatively trustworthy 
environment (e.g., when the hostility is in the range of 
[0.7/0.8, 1]). The reason is that ranking-based selection can 
better exploit abundance of trustworthy nodes to match the 
required node trust level for task execution, ultimately leading 
to high mission success rate, low task delay and high 
utilization, and, consequently, high MOO performance. 

VII. CONCLUSION 
We proposed a trust-based task assignment protocol for a 
tactical coalition network where we are concerned with multi-
objective optimization (MOO). We developed a ranking-based 
member selection scheme which trades off complexity for 
performance. The results demonstrate that our scheme has low 
complexity and yet can achieve performance comparable to 
that of the optimal solution by ILP and can significantly 
outperform random selection. In the future, we plan to refine 
our heuristic design for member bidding and selection 
strategies to further enhance MOO performance. We also plan 
to explore other forms of MOO formulation applicable to 
other tactical mission scenarios.  
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