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Behavior-Rule Based Intrusion Detection Systems for
Safety Critical Smart Grid Applications
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Abstract—In this paper, a behavior-rule based intrusion detec-
tion system (BRIDS) is proposed for securing head-ends (HEs), dis-
tribution access points/data aggregation points (DAPs) and sub-
scriber energy meters (SEMs) of a modern electrical grid in which
continuity of operation is of the utmost importance. The impact
of attacker behaviors on the effectiveness of a behavior-rule intru-
sion detection design is investigated. Using HEs, DAPs and SEMs
as examples, it is demonstrated that a behavior-rule based intru-
sion detection technique can effectively trade false positives for a
high detection probability to cope with sophisticated and hidden
attackers to support ultra safe and secure applications. It is shown
that BRIDS outperforms contemporary anomaly-based IDSs via
comparative analysis.

Index Terms—Cyber physical systems, data aggregation point,
distribution access point, head-end, intrusion detection, safety, se-
curity, subscriber energy meter.

I. INTRODUCTION

T HE most prominent characteristic of a smart grid such
as a modern electrical grid or electricity infrastructure

is the feedback loop that acts on the physical environment.
In other words, the physical environment provides data to the
sensors attached to the Wide Area Networks (WANs), Neigh-
borhood Area Networks (NANs) and Home Area Networks
(HANs) whose data feed the control units in the production,
transmission, distribution and consumption segments that drive
the actuators which change the physical environment. Modern
electricity infrastructure is often characterized by sophisticated
reliability, efficiency, sustainability and utility control units
interacting with the physical environment including subscriber
appliances. This paper concerns intrusion detection mecha-
nisms for detecting compromised devices embedded in WANs,
NANs and HANs for supporting safe and secure applications
that subscribers can depend on with confidence.
Intrusion detection system (IDS) techniques for this domain

are still in their infancy with very little work reported in the liter-
ature. Only [2], [3], [6], [10], [13], [14], [16], [19]–[23] reported
related intrusion detection. However, nine of these had no nu-
merical data regarding the false negative probability (i.e.,
missing a bad node) and the false positive probability (i.e.,
misidentifying a good node as a bad node). The other three had
minimal numerical data: one or two data points characterizing
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instead of a dataset that could be transformed into a Re-
ceiver Operating Characteristic (ROC) plot, i.e., a versus

curve that describes the relationship between and
obtained as a result of applying IDS techniques.
Specifically, Zhang et al. [22], [23] studied two detection al-

gorithms called CLONALG and AIRS2Parallel. CLONALG is
unsupervised. AIRS2Parallel is semi-supervised. They reported
that CLONALG had a detection accuracy between 80.1% and
99.7% and AIRS2Parallel had an accuracy between 82.1% and
98.7%, where the detection accuracy is the likelihood that a
node is classified correctly, calculated by . He
and Blum [10] investigated a series of anomaly-based IDSs in-
cluding Locally Optimum Unknown Direction (LOUD), Lo-
cally Optimum Estimated Direction (LOED), LOUD-General-
ized Likelihood Ratio (LOUD-GLR) and LOED-Generalized
Likelihood Ratio (LOED-GLR). He and Blum’s LOUD-GLR
approach performed the best: The maximum detection rate (i.e.,

) is reportedly 95%. However, no ROC data were given
in [10], [22], [23].
Intrusion detection techniques in general can be classified

into three types: signature-based, anomaly-based and specifica-
tion-based techniques. In this paper, specification-based detec-
tion is considered rather than signature-based detection to deal
with unknown attacker patterns. Specification-based techniques
are considered rather than anomaly-based ones (such as those by
Zhang et al. [22], [23] and He and Blum [10]) to avoid using re-
source constrained sensors or actuators in a WAN for profiling
anomaly patterns (for example, through learning) and to avoid
high false positives (treating good nodes as bad nodes).
To accommodate resource constrained devices, this paper de-

velops the design notion of behavior rules for specifying accept-
able behaviors of physical devices in a WAN, NAN or HAN.
Rule-based intrusion detection thus far has been applied only in
the context of communication networks which have no concern
of physical environments and the closed-loop control structure
as in a head-end (HE), distribution access point/data aggrega-
tion point (DAP) or subscriber energy meter (SEM).
In the literature, specification-based IDS techniques have

been proposed for intrusion detection of communication pro-
tocol misbehaving patterns [7]–[9], [12]. Da Silva et al. [8]
propose an IDS that applies seven types of traffic-based rules
to detect intruders: interval, retransmission, integrity, delay,
repetition, radio transmission range and jamming. Ioannis et
al. [12] propose a multitrust IDS with traffic-based collec-
tion that audits the forwarding behavior of suspects to detect
blackhole and greyhole attacks launched by captured devices
based on the the rate (versus the count) of specification vio-
lations. [7], [9] also only considered specification-based state
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machines for intrusion detection of misbehaving patterns in
communication networks. The specification-based technique
in this paper distinguishes itself from [7]–[9], [12] cited above
by addressing the unique requirements of the domain. First,
modern electricity infrastructure has control loops that tie
the physical environment to the CPS. Second, components
are stationary which eliminates IDSs based on instantaneous
motion or movement profiles. Third, they are federated sys-
tems; bulk power generators, energy markets, transmission
providers, distribution providers and subscribers own, host and
operate different segments of the CPS. Fourth, their scale is
substantial; for example, the count of SEMs could be in the
millions. Fifth, these CPSs are heterogeneous. In this work,
specification-based behavior rules are derived from control
loops which tie the intrusion detection to the critical business
rules of the CPS while not relying on motion or track data
used in other approaches. Also, the goals of each interest in
the CPS are considered in forming behavior rules: bulk power
generators want full utilization, energy markets want to match
supply and demand, micro grids want to optimize sustainability
or reliability and customers want to minimize cost. To address
scalability, the state machines are pruned and tunable audit
frequencies are provided. Three node types are considered to
account for heterogeneity in the CPS.
The contribution of our work relative to prior work cited is

that behavior rules for WAN, NAN and HAN devices control-
ling actuators and sensors embedded in the physical environ-
ment are specifically considered. Further, a method to transform
behavior rules to a state machine is proposed, so that a device
that is being monitored for its behavior can be checked against
the transformed state machine for deviation from its behavior
specification. Untreated in the literature [17], in this paper the
impact of attacker behaviors on the effectiveness of intrusion
detection in the production, transmission, distribution and con-
sumption segments is also investigated. Using HEs, DAPs and
SEMs as examples, it is demonstrated that an intrusion detec-
tion technique can effectively trade false positives for a high de-
tection probability to cope with more sophisticated and hidden
attackers to support ultra safe and secure applications. More-
over, it is shown that a behavior-rule based intrusion detection
system (BRIDS) design outperforms contemporary anomaly-
based IDSs [10], [22], [23] via comparative analysis.

II. MODEL AND DESIGN

A. System Model

1) Reference System: A modern electrical grid cyber phys-
ical system (CPS) embedding physical components is consid-
ered as the reference model as illustrated in Fig. 1. For ease
of disposition, this paper is particularly concerned with three
types of physical devices: HEs, DAPs and SEMs. Many ex-
amples exist with these three devices. Fig. 1 shows their hi-
erarchical relationship: The scope of an HE, which is oper-
ated by a bulk power generator or energy market, encompasses
many DAPs, which are operated by the transmission or distribu-
tion providers. The scope of a DAP encompasses many SEMs,
which are hosted by subscribers (residential, commercial or in-
dustrial). This figure also shows the control modules running

at each node: Host and system IDS modules run on every HE,
DAP and SEM. Host IDS modules are loaded with the state
machines pertaining to the relevant trustees. For example, HE
host IDSs include HE and DAP state machines while SEM host
IDSs include SEM and DAP state machines. Fig. 1 illustrates
the control modules, actuators and sensors that relate to the IDS
design and how it integrates with the existing communications
infrastructure. Power Line Communication links HEs to DAPs,
IEEE 802.11s Wireless Mesh Networking links DAPs to SEMs
and IEEE 802.15.4 Wireless Personal Area Networking links
SEMs to smart appliances and customer distributed energy re-
sources (DERs). DERs are alternatives to the bulk power gen-
erators. Including capital investment, fuel and consumables for
both, the cost per Watt for DERs is typically higher. However,
DERs (e.g., wind generators, geothermal units or solar cells)
surpass bulk power generators (e.g., coal or nuclear-powered)
in sustainability. While they are not advantageous in terms of
sustainability, hydrocarbon-based (in addition to the renewable)
DERs provide redundancy in case of breakage in the transmis-
sion network. Members of a micro grid can pool resources to
buy and operate a community DER or individual subscribers
can go it alone. A database collects, stores and distributes data
from sensors. A human machine interface (HMI) allows an op-
erator to control the system and view its status using sensor data
in the colocated database. Fig. 1 shows two actuators for the
HE: a bulk generator and isolation switches. The bulk generator
may come in the form of a large-capacity power station con-
suming hydrocarbon or fissile fuel. Isolation switches open and
close circuits in the transmission network due to faults or main-
tenance. Fig. 1 shows two actuators for the DAP: an islanding
switch and a community DER. The islanding switch separates
and joins a micro grid with the transmission network due to
faults or maintenance. A community DERmay come in the form
of a medium-scale wind generator, geothermal unit or solar cell
array. Fig. 1 shows two actuators for the SEM: a smart appli-
ance and a subscriber DER. A smart appliance tailors its duty
cycle (e.g., compressor active/idle ratio for an HVAC unit) or
scheduling (e.g., start time for a dishwasher) based onmicro grid
demand and billing rate. A community DER may come in the
form of a small-scale wind generator, geothermal unit or solar
cell array. Fig. 1 shows two sensors for each of the HE, DAP
and SEM which detect demand (Watts) and faults (derived from
phase of the AC waveform) at the system, micro grid and sub-
scriber levels, respectively.
2) Behavior Monitoring: Our IDS approach is based on be-

havior monitoring. A neighbor HE, DAP or SEM is used to
monitor (specifically, measure the compliance degree of) one
or more trustees of different types. DAPs are less resource rich
than an HE due to high volume and tight size, weight and power
constraints. However, they are plentiful which results in signifi-
cant aggregate time and space that can be accumulated to mon-
itor other DAPs or SEMs. An SEM monitors other neighboring
SEMs only due to a high degree of resource constraints.
3) Threat Model: The threat model explains possible attacks

performed by a compromised device (HE, DAP or SEM),
which will cause its behavior to deviate from good behaviors
specified by a set of behavior rules used by the IDS. Two
attacker archetypes are differentiated: reckless and random. A
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reckless attacker performs attacks whenever it has a chance.
The main objective is to impair the functionality at the earliest
possible time. A random attacker, on the other hand, performs
attacks only randomly to avoid detection. It is thus insidious
and deceptive with the objective to cripple the functionality.
The attacker behavior is modeled by a random attack proba-
bility . When the attacker is a reckless adversary.
Imperfect monitoring is modeled by an error parameter, ,
representing the probability of a monitor node misidentifying
the status of the trustee node due to ambient noise, temporary
system faults, and/or wireless communication faults in the
environment. In general a node may deduce at runtime
by sensing the amount of ambient noise, system errors, and/or
wireless communication errors around it.

B. Problem Definition

We define the problem to be solved in the context of Fig. 1.
Broadly, the problem we are trying to solve is the vulnerability
to infrastructure damage, service interruption and revenue loss
caused by malicious actors. We aim to provide a solution to this
problem by detecting malicious devices that exploit the vulner-
ability through known or unknown attacks. The solution we are
offering is a behavior-rule based design with whichmisbehavior
of a device manifested as a result of attacks exploiting the vul-
nerability exposed may be detected, regardless of whether the
attack is known or unknown. In the context of the electrical
power grid in Fig. 1, we aim to solve this problem by detecting
malicious devices, including HE, DAP and SEM devices. For
example, an opportunistic vandal could completely unfurl the
blades of a wind DER during high wind conditions to damage
the apparatus. A state sponsored attacker could open the isola-
tion switches at a bulk energy provider to disrupt the service
to the utilitys customers. A disgruntled insider at a bulk energy
provider could lower the billing rate to cause the enterprise to
lose money on all power it sold at the artificially depressed rate.
A frugal subscriber could modify the usage reporting module
of their subscriber energy meter to reduce their financial obliga-
tion to the energy provider. Regardless of the form of attacks,
we aim to provide a solution for malicious device detection that
is accurate in detection rate (close to 100%) while limiting the
false positive probability to a minimum (e.g., less than 10%).

C. Behavior Rules

Our IDS design for the reference model relies on the use of
lightweight specification-based behavior rules for each device.
They are oriented toward detecting an inside attacker attached
to a specific physical device, providing a continuous output be-
tween 0 and 1 (while accounting for transient faults and human
errors) and allowing a monitor to perform intrusion detection on
a neighbor trustee through monitoring. Here a monitor is itself
a physical device with capability to do intrusion detection on
trustee nodes assigned to it. For example, an SEM may monitor
another SEM within radio range. An HE may monitor other HE
or DAP trustee devices within radio range. Therefore, an HE
might have several sets of behavior rules (and thus several state
machines), one for each trustee.

Fig. 1. Modern electrical grid CPS.

Tables I, II and III list the behavior rules for the HE, DAPs
and SEMs. These tables specify the trustee and monitor devices
for applying the IDS technique.
The networking concepts used in the behavior rules include:

Packets received are the inbound protocol data units handled
by the communications subsystem or application on a node;
they are measured with frequency (Hz) with a domain of 0 to
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TABLE I
HE BEHAVIOR RULES

TABLE II
DAP BEHAVIOR RULES

TABLE III
SEM BEHAVIOR RULES

10 packets per second. A node receives packets for which it
is not the intended receiver, but possibly is a waypoint on the

path to the destination. The communications subsystem drops
these packets or relays them. Packets forwarded counts these
packets the communications subsystem passes along using fre-
quency (Hz) over the same domain as packets received. Packet
sourcing is when an application generates a protocol data unit
and passes it down to the communications subsystem for trans-
mission. A good node populates these packets with legitimate
sensor or status data, but a bad node populates these packets with
corrupt sensor or status data or replays of previously received
packets. is a threshold for the difference between packets re-
ceived and packets forwarded. The networking condition is an
abbreviation of packets received and forwarded used to manage
the size of the behavior rule state machine. is the nominal
power demand. is a distance from beyond which a con-
trol algorithm should take action to match power supply with
demand. is the nominal billing rate. is a distance from
beyond which a control algorithm should take action to capi-
talize on a low billing rate or avoid consuming at a high one.
Our behavior-rule specification-based technique approaches

the intrusion detection problem from the behavior/evidence
domain compared with signature-based techniques that ap-
proach the problem from the attacker domain. Hence, the
patterns by which an attacker performs attacks and “how” an
attacker performs attacks do not need to be known. Rather, a
monitor device simply checks the behavior of a trustee device
manifested from evidence of compliance/deviation against
“good” and “bad” behaviors specified by a set of behavior rules
for that device. Our approach thus can address all potential
attacks, known or unknown. We claim behavior rule-based
detection is able to cope with unknown attacks because all
attacks lead to behavior anomaly. This capability is similar to
anomaly detection which, unlike signature-based detection,
can cope with zero-day attacks. Nevertheless, if the rule set is
incomplete, that is, if the specification of anticipated behavior is
incomplete, it is possible misbehavior manifested as a result of
known or unknown attacks will be missed, and, consequently,
the attacker will be undetected.

D. Transforming Rules to State Machines

Each behavior rule does not specify just one attack state, but a
number of states, some of which are good states in which good
behavior (obedience of this behavior rule) is observed, while
others are bad states in which bad behavior (violation of this
behavior rule) is observed. A behavior rule thus has a number
of state variables, each with a range of values, together indi-
cating whether the node is in good or bad behavior status (with
respect to this rule). A device (HE, DAP or SEM), on the other
hand, has a number of behavior rules; thus, it is possible that the
state variables for one rule have intersections with those in an-
other rule if they have the same logical clause. For example, the
“system demand” state variable appears in HE rules 1–5 and 7.
In this case, only one state variable will be used in these six rules
to represent the “system demand” status. At the end, the under-
lying state machine for the behavior rule set of a device (e.g.,
Table I for HE) will consist of a set of unique state variables
common to all behavior rules (e.g., system demand in HE rules
1–5 and 7) together indicating whether a device is in a good or
bad behavior state (reflecting all behavior rules).
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The following procedure transforms a behavior specification
into a state machine: First, the “bad behavior indicator” as a re-
sult of a behavior rule being violated is identified. Then, this
bad behavior indicator is transformed into a conjunctive normal
form predicate and the involved state components in the under-
lying state machine are identified. Next, for each device (that is,
an HE, DAP or SEM), the bad behavior indicators are combined
into a Boolean expression in disjunctive normal form. Then,
the union of all predicate variables is transformed into the state
components of a state machine and their corresponding ranges
are established. Finally, the number of states is managed by state
collapsing and identifying combinations of values that are not
legitimate. How a state machine is derived from the behavior
specification in terms of behavior rules for the reference model
is exemplified below.
1) Identify Bad Behavior Indicators: Attacks performed by

a compromised sensor/actuator will drive the HE, DAP or SEM
into certain bad behavior indicators identifiable through ana-
lyzing the specification-based behavior rules.
For the HE device, there are nine bad behavior indicators as

a result of violating the nine behavior rules for HEs listed in
Table I. The first HE bad behavior indicator is that the HE ac-
tivates a block of appliances but the system demand is above
some threshold. The second HE bad behavior indicator is that
the HE increases the duty cycle for a block of appliances but the
system demand is above some threshold. The third HE bad be-
havior indicator is that the HE deactivates a block of appliances
but the system demand is below some threshold. The fourth HE
bad behavior indicator is that the HE decreases the duty cycle
for a block of appliances but the system demand is below some
threshold. The fifth HE bad behavior indicator is that the HE
decreases the billing rate but the system demand is above some
threshold. The sixth HE bad behavior indicator is that the HE
increases the billing rate but the system demand is below some
threshold. The seventh HE bad behavior indicator is that the HE
opens the switch for a micro grid but there is no associated fault
or maintenance. The eighth HE bad behavior indicator is that
DERs are disconnected but the system demand is above some
threshold. The ninth HE bad behavior indicator is that an inter-
ruption is present but the HE has not generated an alert. For all
of these HE bad behavior indicators, the HE is the trustee and
all DAPs are monitors.
For the DAP device, there are eight bad behavior indicators

as a result of violating the nine behavior rules for DAPs listed
in Table II. The first DAP bad behavior indicator is that the HE
requests a load increase, but micro grid demand is above some
threshold. The secondDAP bad behavior indicator is that the HE
requests a load decrease, but micro grid demand is below some
threshold. For these first two DAP bad behavior indicators, the
HE is the trustee, and a DAP is the monitor. The third DAP bad
behavior indicator is that the micro grid is islanded, but there
is no interruption. For the third DAP bad behavior indicator, a
DAP is the trustee, and the HE is the monitor. The fourth DAP
bad behavior indicator is that the number of packets forwarded
by the DAP does not equal the number of packets received by
the DAP. This rule corresponds with the two behavior rules con-
cerning packet handling. For the fourth DAP bad behavior in-
dicator, a DAP is the trustee, and the HE and SEMs are moni-

TABLE IV
HE BAD BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

tors. The fifth DAP bad behavior indicator is that the community
DER is not connected, but it is available. The sixth DAP bad be-
havior indicator is that an interruption is present, but the DAP
has not generated an alert. The seventh DAP bad behavior indi-
cator is that the DAP decreases the pitch of wind DER generator
blades, but the micro grid demand is above some threshold. The
eighth DAP bad behavior indicator is that the DAP increases the
pitch of wind DER generator blades, but the micro grid demand
is below some threshold. For the fifth through eighth DAP bad
behavior indicators, a DAP is the trustee, and the HE is the mon-
itor.
For the SEM device, there are nine bad behavior indicators as

a result of violating the nine behavior rules for SEMs listed in
Table III. The first SEM bad behavior indicator is that the SEM
is not generating usage data. The second SEM bad behavior in-
dicator is that time-independent smart appliances are active, but
the billing rate is above some threshold. The third SEM bad be-
havior indicator is that the subscriber is not banking electricity,
but the billing rate is below some threshold. The fourth SEMbad
behavior indicator is that time-independent smart appliances are
active, but the demand is above some threshold. The fifth SEM
bad behavior indicator is that the subscriber is not banking elec-
tricity, but the demand rate is below some threshold. The sixth
SEM bad behavior indicator is that the subscriber DER is not
connected, but it is available. The seventh SEM bad behavior
indicator is that an interruption is present, but the SEM has not
generated an alert. The eighth SEM bad behavior indicator is
that the SEM decreases the pitch of wind DER generator blades,
but the subscriber demand is above some threshold. The ninth
SEM bad behavior indicator is that the SEM increases the pitch
of wind DER generator blades, but the subscriber demand is
below some threshold. For all of these SEM bad behavior indi-
cators, an SEM is the trustee, and the DAP is the monitor.
2) Express Bad Behavior Indicators in Conjunctive Normal

Form: Tables IV, V and VI list the bad behavior indicators in
Conjunctive Normal Form for HE, DAP and SEM nodes, re-
spectively.
3) Consolidate Predicates in Disjunctive Normal Form:

Each type of device (HE, DAP or SEM) has a distinct behavior
rule set based on its specific control modules, actuators and
sensors. Construct the DNF predicate for each device type
by joining the corresponding Tables IV, V or VI expressions
with a disjunction. For clarity, the DNF predicate was left
unreduced; clauses in the DNF predicate are traced to behavior
rules easily. This makes it evident that attacks interact through
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TABLE V
DAP BAD BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

TABLE VI
SEM BAD BEHAVIOR INDICATORS IN CONJUNCTIVE NORMAL FORM

TABLE VII
MODERN ELECTRICITY INFRASTRUCTURE STATE COMPONENTS

common state variables with the same logical clause. While it
will yield a more elegant expression and maybe a more efficient
implementation, reducing the DNF predicate would obscure
the traceability of the logical clauses and interdependence of
the behavior rules.
4) Identify State Components and Component Ranges: Con-

tinuous components are quantized at integer scale in permis-
sible ranges. For example, system demand is in the range of [0,
1000 GW] and duty cycle is in the range of [0, 100%]. Table VII
shows a complete list of the permissible ranges of state compo-
nents. The resulting HE automation has

states. The resulting DAP
automation has

states. The resulting SEM automaton has

states. All of these automata are too large; this state explosion
is dealt with in the next step.
5) Manage State Space: To manage the number of states, the

size of the state machine is reduced by abbreviating the values
for some components. Only three values are relevant for system,
micro grid and subscriber demand: below threshold, normal and
above threshold. Therefore, the domains for these components
are collapsed to three values for the HE, DAP and SEM, respec-
tively. This treatment yields a modest HE state machine with

states, out
of which 1008 are identified as safe states and 2448 are unsafe
states. Only two values are relevant for networking: whether or
not packets forwarded and packets received differ by more than
some threshold. Therefore, the domain for this component is
collapsed to two values. This treatment yields a modest DAP
state machine with
states, out of which 255 are identified as safe states and 1473
are unsafe states. Only three values are relevant for rate: below
threshold, normal and above threshold. Also, only two values
are relevant for usage reporting: current or missing. Therefore,
the domains for these components are collapsed to three and two
values, respectively. This treatment yields a modest SEM state
machine with
states, out of which 396 are identified as safe states and 3060
are unsafe states.

E. Collect Compliance Degree Data

BRIDS relies on the use of monitor nodes, e.g., an SEM or
a DAP is a monitor node of another SEM. The monitor node
knows the state machine of the trustee node assigned to it.
The monitor node periodically measures the amount of time
the trustee node stays in safe and unsafe states as the trustee
node migrates from one state to another triggered by events
causing state transitions. A binary grading policy, i.e., assigning
a compliance degree of 1 to a safe state and 0 to an unsafe
state, is considered. Let be the compliance degree of a device.
The compliance degree of a device essentially is equal to the
proportion of the time the device is in safe states. Let be the
set of safe states the trustee node traverses over a period of time
. Let be the sojourn time that the trustee node stays in a
safe state , as measured by the monitor node. Then the monitor
node collects an instance of by:

(1)

If a node stays only in safe states during , then by (1), its com-
pliance degree is one. On the other hand, if a node stays only
in unsafe states only during , then its compliance degree is
zero. The monitor node monitors and collects the trustee node’s
compliance degree history for monitoring pe-
riods, where is sufficiently large, based on which it concludes
whether or not the trustee node is compromised.
The state machines generated are leveraged to collect compli-

ance degree data of a good and a bad node. With (1), the com-
pliance degree is essentially equal to the sum of the probabil-
ities of safe states i.e., , where is the limiting
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probability that the node is in state of the state machine and
is the set of safe states in the state machine. Compliance de-

gree history of a node is then collected by means
of Monte Carlo simulation. That is, given a good (or a bad)
node’s state machine, start from state 0 and then follow the sto-
chastic process of this node as it goes from one state to another.
This is continued until at least one state is reentered sufficiently
often (say 100 times). Then is calculated using the ratio of
the number of transitions leading to state to the total number
of state transitions. Then one instance of compliance degree is
collected. A sufficiently large test runs was repeated to col-
lect needed for computing the distribution of the
compliance degree of a good or a bad node performing reckless
or random attacks.

F. Compliance Degree Distribution

The measurement of compliance degree of a device fre-
quently is not perfect and can be affected by noise and unre-
liable wireless communication in the WAN, NAN and HAN
segments. The compliance degree is modeled by a random
variable with distribution [18], with the
value 0 indicating that the output is totally unacceptable (zero
compliance) and 1 indicating the output is totally acceptable
(perfect compliance), such that , , is given by

(2)

and the expected value of is given by

(3)

The and parameters are to be estimated based on the method
of maximum likelihood by using the compliance degree history
collected during the system’s testing phase. The
maximum likelihood estimates of and are obtained by nu-
merically solving the following equations:

(4)

where

A less general, though simpler model, is to consider a single
parameter distribution with equal to 1. In this case,
the density is for and 0 otherwise. The
maximum likelihood estimate of is

(5)

The reason the distribution is chosen is that the domain
of the distribution can be viewed as a probability, so it can
be used to describe the prior distribution over the probability
(of a distribution) which models the node compliance degree.
By applying Bayesian inference, the distribution then can
be used as the posterior distribution of the probability after ob-
serving sufficient instances.

G. False Negative and Positive Probabilities

Our intrusion detection technique is characterized by false
negative and false positive probabilities, denoted by and ,
respectively. A false negative occurs when a bad node is missed
as a good device, while a false positive occurs when a good node
is misdiagnosed as a bad device. While neither is desirable, a
false negative is especially impactful to the system’s continuity
of operation. In this paper, a threshold criterion is considered.
That is, if a bad node’s compliance degree denoted by with
a probability distribution obtained by (2) is higher than a system
minimum compliance threshold , then there is a false nega-
tive. Suppose that the compliance degree of a bad node is
modeled by a distribution. Then the host
IDS false negative probability is given by

(6)

On the other hand, if a good node’s compliance degree denoted
by is less than , then there is a false positive. Again sup-
pose that the compliance degree of a good node is modeled
by a distribution. Then the host false posi-
tive probability is given by

(7)

III. NUMERICAL DATA

Numerical data is reported in this section. A sequence of
compliance degree values is first collected for
a good or bad device based on Monte Carlo simulation. Equa-
tion (5) is then applied to compute the parameter value of

for the probability distribution of the com-
pliance degree for a good device or a bad device performing
random attacks. and are then calculated by (6) and (7),
respectively. The minimum compliance threshold is then
adjusted to control and obtainable. With a monitor
node can misidentify the status the trustee node is in. is
set to 0.010, 0.015 and 0.020 for HE, DAP and SEM nodes,
respectively. This is because 1–2% mis-monitoring due to am-
bient noise and wireless communication faults in these envi-
ronments is reasonable. This is based on Lin and Latchman re-
porting a 0.11–2.04% Power Line Communication packet error
rate [15] and Hong et al. reporting a 0.02–4% failure rate [11].
The mis-monitoring error probability of an SEM toward another
SEM is higher than that of a DAP toward another DAP, or an
HE toward another HE because of limited range and capability
of an SEM device.
Tables VIII, IX and X show the values and the resulting
and values when is 0.9 ( is a design parameter
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TABLE VIII
IN AND RESULTING AND VALUES UNDER VARIOUS

ATTACK MODELS FOR HE

TABLE IX
IN AND RESULTING AND VALUES UNDER VARIOUS

ATTACK MODELS FOR DAP

TABLE X
IN AND RESULTING AND VALUES UNDER VARIOUS

ATTACK MODELS FOR SEM

to be fine-tuned to trade high false positives for low false neg-
atives). Because the expected compliance degree following a

distribution is as given by (3), it is seen
that is close to 0 for a good node or a hidden bad node with a
low attack probability (e.g., ) since such a node will
have the average compliance degree close to 1. On the other
hand, is much larger than 0 for a bad node with a high attack
probability (e.g., ) since such a node will have the av-
erage compliance degree much lower than 1.
It is observed that when the random attack probability is

high, the attacker can be easily detected as evidenced by a low
false negative probability. Especially when , a reckless
attacker can hardly be missed. On the other hand, as de-
creases, the attacker becomes more hidden and insidious, and
the false negative probability increases. The false positive prob-
ability remains the same regardless of the random attack prob-
ability because it is not related to the attacker behavior.
By adjusting , the specification-based IDS technique can

effectively trade higher false positives for lower false negatives
to cope with more sophisticated and hidden random attackers.
This is especially desirable for ultra safe and secure applica-
tions for which a false negative may have a dire consequence.
Fig. 2 shows a Receiver Operating Characteristic (ROC) graph
of intrusion detection rate (i.e., ) versus false positive
probability obtained as a result of adjusting . In Fig. 2
there are several curves for each node type, one for each random
attacker case with a different attack probability . As is in-
creased, the detection rate increases (vertically up on a ROC
graph) while the false probability increases (toward the right of

Fig. 2. HE receiver operating characteristic graph.

a ROC graph). It is seen that with the specification-based IDS
technique, the detection rate of the node can approach 100% for
detecting attackers, that is, an attacker is always detected with
probability 1 without false negatives, while bounding the false
positive probability to below 0.2% for reckless attackers and
below 6% for random attackers.

IV. COMPARATIVE ANALYSIS

The performance of BRIDS is compared with contemporary
anomaly-based IDSs for HEs, DAPs and SEMs, including
CLONALG and AIRS2Parallel [22], [23], LOUD, LOED,
LOUD-GLR and LOED-GLR [10]. Zhang et al. [23] reported
that CLONALG had a false positive rate of 0.7% and a false
negative rate of 21.02% and AIRS2Parallel had a false positive
rate of 1.3% and a false negative rate of 26.32%. Zhang et al.
[22] further compared the effectiveness of audit data from three
sources: home IDS (HIDS), neighborhood IDS (NIDS) and
wide-area IDS (WIDS). These three approaches correspond
with the SEM, DAP and HE nodes identified in Fig. 1. Here the
authors reported that CLONALG had an accuracy of 99.70%
for HEs, 80.10–97.00% for DAPs and 93.90–99.30% for
SEMs. They reported that AIRS2Parallel had an accuracy of
91.50% for HEs, 82.10–96.10% for DAPs and 95.10–98.70%
for SEMs. The authors provided no or information, but
presumably the worst detection accuracy is obtained when
is very low. He and Blum [10] investigated LOUD, LOED,
LOUD-GLR and LOED-GLR approaches to anomaly-based
IDS. They fixed the false positive probability (i.e., ) at 0.1%
and showed that the detection rate (i.e., ) for each ap-
proach varies over a wide range based on the parameterization.
The LOUD-GLR approach reportedly performs the best with
the detection accuracy of .
Tables XI, XII and XIII summarize the comparative perfor-

mances among contemporary IDSs for HE, DAP and SEM de-
vices, respectively. The performance metric is detection accu-
racy defined as . For cases where and are
reported [10], [23], the detection accuracy value is shown fol-
lowing the format. For cases where and
are not reported [22], the detection accuracy value or a range of
detection accuracy values is shown only. For comparison, the
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TABLE XI
COMPARISON RESULTS FOR HE

TABLE XII
COMPARISON RESULTS FOR DAP

TABLE XIII
COMPARISON RESULTS FOR SEM

adversary is configured with (reckless attacks). BRIDS
performance is shown for for HE, for
DAP and for SEM to approximate the CLONALG
of 0.7% [23]. BRIDS performance is shown for

for HE, for DAP and for SEM to ap-
proximate the AIRS2Parallel of 1.3% [23]. BRIDS perfor-
mance is shown for for HE, for DAP
and for SEM to approximate the LOUD, LOED,
LOUD-GLR and LOED-GLR of 0.1% [10].
Tables XI, XII and XIII support the claim that by effectively

adjusting to trade false positives for low false negatives,
BRIDS outperforms existing anomaly-based IDS approaches,
especially for HE and DAP devices.

V. CONCLUSIONS

For a modern electrical grid, being able to detect attackers
while limiting the false positive probability to protect the conti-
nuity of operation is of utmost importance. In this paper, a be-
havior-rule specification-based IDS technique for intrusion de-
tection of physical devices was proposed. The utility by head-
ends, distribution access points/data aggregation points and sub-
scriber energy meters was exemplified. This study also demon-
strated that the detection probability approaches one (that is, the
attacker can always be caught without false negatives) while
bounding the false positive probability to below 0.2% for reck-
lers attackers and below 6% for random attackers (that is, the
probability of misidentifying a good node as a bad node can

always be bounded to a very low level). Through a compar-
ative analysis, it was demonstrated a behavior-rule specifica-
tion-based IDS technique outperforms existing anomaly-based
IDS approaches for detecting intruders.
Two future research directions extending from this study are

(a) investigating and analyzing intrusion response and repair
strategies [17]; and (b) implementing behavior rules on applica-
tions. Possible intrusion responses include evicting individual
compromised nodes, isolating compromised segments (micro
grid or larger scope) and adjusting IDS parameters (e.g., ,
and ) to increase detection strength. Possible repair strate-

gies are to identify compromised segments and for each one:
stop operating, revert all nodes to certified software loads and
configurations, rekey/reset passwords and progressively resume
operation from the production side of the network towards the
subscribers. Possible implementation strategies are to encode
the state machine, host IDS software and system IDS software
in a high-level language, cross-compile for the targets of in-
terest, deploy and tune the parameterization (e.g., , and
) based on desired versus actual false negative and positive

rates. Another future research direction is to investigate other
intrusion detection criteria [1], [4], [5] based on accumulation
of deviation from good states in addition to the current binary
criterion used in the paper based on a minimum compliance
threshold to further improve the detection rate without compro-
mising the false positive probability.
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