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Abstract — In this paper we develop an intrusion detection 

attack-defense game for IoT systems for which autonomous 

IoT devices collaboratively solve a problem. We develop an 

analytical model to determine the conditions under which mali-

cious nodes have no incentives to perform attack in the intru-

sion detection attack-defense game. We also develop a stochas-

tic Petri net model to analyze the effect of attack-defense be-

haviors on system reliability, given a definition of system fail-

ure conditions as input. The performance evaluation results 

demonstrate that our IDS attack-defense game design greatly 

improves system reliability over existing autonomous IoT sys-

tems without gaming design consideration when attacks are 

reckless and intensive. 

Keywords— Intrusion detection; attack-defense games; Internet 

of Things; autonomous systems; reliability. 

I. INTRODUCTION 

the proliferation of Internet of Things (IoT) devic-

es, we have witnessed the era of autonomous IoT-

based applications, including parking space find-

ing [1], participatory sensing of air quality [2], smart ser-

vice community [3, 4], crowdsensing for cooperative 

problem solving [5, 6], smart Internet of vehicles (IoV) 

information systems [7], IoT-embedded cyber physical 

systems (CPS) [8, 9, 10, 11], etc. All these applications in-

volve autonomous IoT devices collaborating with each 

other for problem solving or decision making.  

The most important requirement of such autonomous 

IoT systems is that information supplied from collaborat-

ing IoT devices must be trustworthy based on which data 

analysis may be performed to solve a problem or make a 

correct decision. Consequently, a central issue is whether 

certain IoT devices are malicious in supplying false in-

formation for own benefits or whether a group of mali-

cious nodes collude with each other for group benefits. 

Since potentially there will be a huge number of IoT de-

vices, it is highly impractical to use a centralized entity 

(say sitting in the cloud) to perform intrusion detection to 

filter out untrustworthy information, since the centralized 

entity cannot physically perform misbehavior detection 

itself and needs to collect misbehavior reports/logs from 

IoT devices. This will not only introduce a large amount 

of traffic between IoT devices and the centralized entity 

thus crippling the IoT communication network, but also 

consume energy of resource constrained IoT devices. 

Hence, distributed misbehavior detection is the only fea-

sible way for autonomous IoT systems, with the central-

ized entity performing auditing when necessary. 

In this paper we develop a lightweight intrusion de-

tection system (IDS) attack-defense game for detecting 

malicious IoT devices in autonomous IoT systems. The 

basic idea of our lightweight IDS game design is that the 

system does auditing only occasionally controlled by an 

auditing probability, while leaving intrusion detection to 

IoT devices themselves in a distributed manner. The 

game’s outcome is the system reliability measured by the 

system’s mean time to failure (MTTF), when given a defi-

nition of system failure conditions as input. 

We design our IDS attack-defense game following the 

design principle of mechanism design theory (also called 

reverse game theory) [12] such that every node in the sys-

tem must participate in game playing so that nodes are 

provided with incentives and act in such a way to further 

the interest of the designer, despite the fact that nodes are 

strategic and self-interested, and possess private infor-

mation [13]. Designing a game to motivate users to follow 

the prescribed rules has been widely applied to commu-

nication system design including cognitive radio net-

works [14] and vehicular networks [5]. To the best of our 

knowledge, this is the first work for IoT IDS design. 

The basic idea for our lightweight distributed IDS 

game is that a target node is periodically being voted on 

by a group of neighbor nodes to determine if the target 

node is good or bad (i.e., malicious). The defense system 

(presumably sitting in the cloud) can optionally audit the 

voting outcome to detect if IDS voting is performed faith-

fully and correctly. A node, if invited to determine if a 

target node is good or bad, uses its basic host-level IDS 

functions characterized by a host-level false positive rate 

and a host-level false negative rate, to cast a “yes” (mean-

ing the target node is good) or “no” (meaning the target 

node is bad) vote. The outcome of IDS voting, gathered 

by the group of voting members, shall determine if the 

target node should be evicted or retained in the system, 

and is reported to the defense system. Since there may be 

several attackers (i.e., insiders) during an IDS voting pro-

cess, they can collude with each other such that if the tar-

get node is a good node, they vote “no” against the good 

target node so as to evict the good target node from the 

system, and, conversely, when the target node is a bad 

node, they vote “yes” for the bad target node so as to 

keep the bad target node from being evicted. To punish 
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such misbehavior, the defense system can perform audit-

ing (controlled by an auditing probability parameter) af-

ter each IDS voting event to obtain the true outcome and 

penalize nodes who cast a different vote from the audit-

ing outcome. This forces every malicious node to decide 

whether it should attack or not attack in an IDS voting 

cycle, especially if the penalty is severe at the designer’s 

choice. The analytical model developed in this paper shall 

allow a designer to determine the best penalty and the 

best auditing probability for maximizing the system reli-

ability based on the performance and reliability character-

istics of the autonomous IoT system in hand. 

Our analytical model aims to determine the condition 

under which malicious nodes have no incentives to per-

form attack during IDS voting in our intrusion detection 

attack-defense game.  The condition, characterized by a 

set of loss and gain payoff functions as well as the attack-

er’s attack probability and the defender’s auditing proba-

bility, is analytically derived in the paper. We illustrate 

how our IDS attack-defense game can be applied to an 

autonomous mobile cyber physical system (CPS) wherein 

each node is given a “life quota” by parameterizing (i.e., 

giving value to) the loss and payoff functions such that 

there exists a minimum auditing probability after which 

an attacker would be discouraged to attack during IDS 

voting so as to maximize its own payoff. We further de-

velop a performance model to analyze the effect of attack-

defense behaviors as well as the attacker’s attack proba-

bility and the defender’s auditing probability on system 

reliability. 
Our work has the following unique contributions: 

1. We develop IDS attack-defense games that must be 

played by every node of an autonomous IoT system. 

We derive the exact condition under which malicious 

nodes have no incentives to perform attack in the IDS 

attack-defense game as well as the best defender set-

ting to maximize the system reliability, when given a 

definition of system failure conditions as input. 

2. We develop an analytical model based on Stochastic 

Petri Net (SPN) modeling techniques (e.g., [15-19]) to 

describe the IDS attack-defense game dynamics. The 

SPN model allows one to analyze the effect the attack 

probability (by an attacker), the auditing probability 

(by the defense system), and the penalty (to apply to 

nodes whose vote mismatches with the auditing out-

come) on system reliability.  

3. We put our IDS attack-defense game into practical 

use by applying it to an autonomous mobile CPS [11] 

wherein each node is given a “life quota” for it to re-

main in the system. We compare the performance of 

our IDS game with that of baseline the mobile CPS 

[11] without game design. 

The rest of the paper is organized as follows: Section II 

discusses the system model for IDS voting game playing. 

Section III describes in detail of our IDS voting game de-

sign and analytically derives the condition under which 

malicious nodes have no incentives to perform attack as 

well as the best defender setting to prolong the system 

lifetime. Section IV applies our IDS attack-defense game 

to a baseline CPS application wherein each node is given 

a “life quota” for it to remain in the system and develops 

an SPN model based on SPNP [15] to analyze the effect of 

attack-defense strategies played by attackers/defenders 

on system reliability. Section V provides numerical results 

including a comparative analysis of our IDS game against 

the baseline IoT system without game design. Finally, 

Section VI summarizes the paper and outlines future re-

search areas. 

 

II. SYSTEM MODEL 

We first discuss system failure conditions for an au-
tonomous IoT system based on which the system MTTF is 
derived. Then, we discuss the system model for the at-
tack-defense IDS game.  

A. System Failure Conditions 

The following failure conditions can cause an auton-

omous IoT system to fail: 

• Byzantine failure [20] occurs when one-third or more 

of the nodes are compromised. The reason is that 

once an autonomous system contains at least 1/3 

compromised nodes, it is impossible to reach a 

consensus, hence inducing a system failure. 

• Energy depletion failure occurs when energy is too 

depleted to be able to accomplish the mission. This is 

especially critical for an autonomous collaborative 

IoT system that must complete the mission within a 

deadline without energy replenishment. 

B. IDS Attack-Defense Game 

The attacker behavior comes in two forms. The first 

form of attacker behavior derives from “capture” attacks 

to compromise nodes, i.e., to turn a good node into a bad 

node. This is especially true for sensor/actuator IoT de-

vices that do not have proper physical protection and can 

be easily physically captured by intruders and converted 

into malicious nodes (i.e., inside attackers). It is possible 

that viruses can also invade good nodes and turn them 

into malicious nodes. We assume a per-node capture rate 

of λ. The second form of attacker behavior derives from 

insider attacks during IDS voting. An insider may only 

attack probabilistically to evade detection. That is, a mali-

cious node decides to attack with probability 𝑃𝑎 and not 

to attack with probability 1 − 𝑃𝑎  during IDS voting. A 

goal of our IDS game design is to discourage malicious 

nodes from performing attacks such that 𝑃𝑎 = 0 at which 

the system can obtain the maximum lifetime. 
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The defense behavior also comes in two forms. The 

first form of defense is at the host level. At the host IDS 

level, node i monitors positive and negative experiences it 

has toward node j when it encounters with node j (for 

immobile IoT devices node i and node j would be neigh-

bors within detection range) to judge if node j complies 

with prescribed protocol execution. Anomaly detection 

techniques including discrepancy of voting results during 

IDS voting may be used for this purpose. Node i can use 

Beta (a, b) distribution [9] to model the compliance degree 

of node j in the range of (0, 1) as a random variable where 

a and b represent the numbers of positive and negative 

experiences respectively, such that the estimated mean 

compliance degree is a/(a+b). If node j’s compliance de-

gree is less than a minimum compliance degree 𝐶𝑇, node i 

considers node j as bad; otherwise node i considers node j 

as good. The minimum compliance degree 𝐶𝑇 therefore 
decides the host-level false negative probability 𝐻𝑝𝑓𝑛 and 

the host-level false positive probability 𝐻𝑝𝑓𝑝 . We assume 

that each node is thoroughly tested for its host-level in-

trusion capability before it is released to operational use. 
Hence, 𝐻𝑝𝑓𝑛 and 𝐻𝑝𝑓𝑝 are provided as input.   

The second form of defense behavior is at the system-

level via IDS voting for which the detection strength is 

controlled by the number of voters (m) and how often 

intrusion detection is performed (in every 𝑇𝐼𝐷𝑆 interval). 

In each IDS voting cycle, m nodes which are neighbors of 

a target node will participate in IDS voting to vote for or 

against the target node, based on host-level IDS out-

comes. If the majority voting outcome is “no” then the 

target node is evicted; otherwise, the target node is re-

tained. To preserve energy of IoT nodes, the defense sys-

tem will audit the voting outcome with probability 𝑃𝑐 and 

will not audit with probability1 − 𝑃𝑐 . To punish misbe-

havior during IDS voting, the defense system penalizes 

nodes who cast a different vote from the auditing out-

come, the severity of which is to be determined by the 

system designer when the IDS attack-defense game is 

setup. 

III. IDS ATTACK-DEFENSE GAME 

 In this section, we formulate the IDS attack-defense 

game based on mechanism design theory (also called re-

verse game theory) [12] to model decision making be-

tween the attacker and the defense system and then pre-

sent a theoretical analysis. The game models the relation-

ship between the defense system and a malicious node i 

who has two options: attack or not attack during IDS vot-

ing. On the other side, from the defense system's perspec-

tive, it decides to audit the voting result with probability 

𝑃𝑐  or not to audit with probability 1 − 𝑃𝑐. 

The payoff matrix for the defense system and a mali-

cious node i in the game model is shown in Table I. The 

table entry is in the format of (defense system payoff, ma-

licious node i payoff). For example, if the defense system 

checks the voting result while malicious node i dishonest-

ly reports a fake report the payoff to the defense system is 

𝐿𝑎
𝑐 − 𝐶 and the payoff to malicious node i is −𝐿𝑎

𝑐 .  

We explain the payoff matrix Table I below. 

According to the described game model, during IDS 

voting (to determine if a target node is malicious), a mali-

cious node i can attack with probability 𝑃𝑎 and not attack 

with probability 1 − 𝑃𝑎 .  If it decides to attack, it will cast a 

“no” vote against a good target node and a “yes” node for 

a bad target node, with the “no” vote meaning that the 

target node is a bad node and the “yes” vote meaning that 

the target node is a good node. If it decides not to attack, 

it will behave like a good node so it will cast a vote as 

what a good node would do based on its basic host-level 

IDS function. On the other hand, the defense system de-

cides to audit the voting outcome with probability 𝑃𝑐 and 

not to audit the voting outcome with probability 1 − 𝑃𝑐 . 

Auditing is an expensive operation. We denote the cost 

by C. The system will have to collect relevant information 

from all nodes who have had experiences with the target 

node. If the target node is relatively immobile, the set of 

relevant nodes may be small but for a highly mobile 

node, the system may have to probe all nodes in the sys-

tem who have had experiences with the target node. The 

high cost is unavoidable in order to ensure that “the au-

diting outcome” reflects “the true outcome” of whether 

the target node is malicious or not.  

There are 4 cases, as described in Table I: 

• Case 1: The defense system decides to audit the vot-

ing outcome with probability 𝑃𝑐  and a malicious node 

i decides to attack with probability 𝑃𝑎 . The defense 

system can detect the true outcome (that is if the tar-

get node is good or bad) by collecting reports from all 

relevant nodes in the system and then punish the 

nodes who cast a different vote with a penalty denot-

ed by 𝐿𝑎
𝑐 ≥ 0 with the superscript “c” meaning that 

the system “checks” the voting outcome, and the sub-

script “a” meaning that the malicious node “attacks” 

during IDS voting. The loss to the malicious node is 

treated as a gain to the defense system. Therefore, the 

payoffs to the defense system and malicious node i 

are 𝐿𝑎
𝑐 − 𝐶 and −𝐿𝑎

𝑐  respectively.  

• Case 2: The defense system decides to audit the vot-

ing outcome with probability 𝑃𝑐  and a malicious node 

i decides not to attack with probability 1 − 𝑃𝑎 . Again 

Table I: IDS Attack-Defense Game Payoff. 

Defender 
Strategies  

Attacker Strategies 

Attack with probability 𝑃𝑎 Not attack with probability 1 − 𝑃𝑎 

Audit with probability 𝑃𝑐  𝐿𝑎
𝑐 − 𝐶, −𝐿𝑎

𝑐  𝐿𝑛𝑎
𝑐 − 𝐶, −𝐿𝑛𝑎

𝑐  

Not audit with probability 1 − 𝑃𝑐 −𝐺𝑎
𝑛𝑐 , 𝐺𝑎

𝑛𝑐  −𝐺𝑛𝑎
𝑛𝑐 , 𝐺𝑛𝑎

𝑛𝑐  
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the defense system can detect the true outcome (that 

is if the target node is good or bad) and then punish 

the nodes who cast a different vote. Since malicious 

node i acts as if it is a good node and it casts the right 

vote as a normal node would do, it would not receive 

a penalty. Because the defense system performs a 

thorough audit of the voting outcome and follows the 

true voting outcome, the defense system gains some-

thing positive in reliability denoted by 𝐿𝑛𝑎
𝑐 ≥ 0 with 

the superscript “c” meaning that the system “checks” 

the voting outcome, and the subscript “na” meaning 

that the malicious node does “not attack” during IDS 

voting. In practice the gain may be small. Neverthe-

less, the gain to the defense system is a loss to the ma-

licious node. Therefore, the payoffs to the defense 

system and malicious node i are 𝐿𝑛𝑎
𝑐 − 𝐶 and −𝐿𝑛𝑎

𝑐  re-

spectively.  

• Case 3: The defense system decides not to audit the 

voting outcome with probability 1 − 𝑃𝑐  and a mali-

cious node i decides to attack with probability 𝑃𝑎 . 

Since the defense system does not audit the voting 

outcome, the voting outcome will be accepted as is 

which may impact the system reliability. Let the im-

pact be represented by 𝐺𝑎
𝑛𝑐≥ 0 (with the superscript 

“nc” meaning that the system does “not check” the 

voting outcome, and the subscript “a” meaning that 

the malicious node “attacks” during IDS voting) 

which can be considered as a gain to malicious node 

i. The gain to malicious node i is treated as a loss to 

the defense system. Therefore, the payoffs to the de-

fense system and malicious node i are −𝐺𝑎
𝑛𝑐 and 𝐺𝑎

𝑛𝑐 

respectively.  

• Case 4: The defense system decides not to audit the 

voting outcome with probability 1 − 𝑃𝑐  and a mali-

cious node i also decides not to attack with probabil-

ity 1 − 𝑃𝑎 . In this case the defense system again does 

not audit the voting outcome, the voting outcome 

will be accepted as is which may adversely impact 

the system reliability. Let the impact be represented 

by 𝐺𝑛𝑎
𝑛𝑐≥ 0 (with the superscript “nc” meaning that the 

system does “not check” the voting outcome, and the 

subscript “na” meaning that the malicious node does 

“not attack” during IDS voting) which can be consid-

ered as a gain to malicious node i. The gain to mali-

cious node i is treated as a loss to the defense system. 

Therefore, the payoffs to the defense system and ma-

licious node i are −𝐺𝑛𝑎
𝑛𝑐 and 𝐺𝑛𝑎

𝑛𝑐 respectively. 

 

Theorem 1: To discourage malicious node i from per-

forming attacks during IDS voting, the following condi-

tion must satisfy: 𝑃𝑐(𝐿𝑎
𝑐 −𝐿𝑛𝑎

𝑐 ) ≥ (1 − 𝑃𝑐)(𝐺𝑎
𝑛𝑐 − 𝐺𝑛𝑎

𝑛𝑐). 

 

Proof: According to our game model and the payoff 

matrix shown in Table I, if a malicious node does not per-

form attacks during IDS voting, then its payoff is given 

by:  

 

𝑃𝐴𝑌𝑂𝐹𝐹𝑛𝑎 = −𝑃𝑐𝐿𝑛𝑎
𝑐 + (1 − 𝑃𝑐) 𝐺𝑛𝑎

𝑛𝑐 (1 ) 

 

On the other hand, if a malicious node performs at-

tacks, then its payoff is given by: 

  

𝑃𝐴𝑌𝑂𝐹𝐹𝑎 = −𝑃𝑐𝐿𝑎
𝑐 + (1 − 𝑃𝑐) 𝐺𝑎

𝑛𝑐 ( 2 ) 

 

To guarantee a malicious node i does not have the in-

centives to perform attacks during IDS voting, we have 

𝑃𝐴𝑌𝑂𝐹𝐹𝑛𝑎 ≥ 𝑃𝐴𝑌𝑂𝐹𝐹𝑎 , i.e., 

  

−𝑃𝑐𝐿𝑛𝑎
𝑐 + (1 − 𝑃𝑐)𝐺𝑛𝑎

𝑛𝑐 ≥ −𝑃𝑐𝐿𝑎
𝑐 + (1 − 𝑃𝑐) 𝐺𝑎

𝑛𝑐 ( 3 ) 

 

Or 

 

𝑃𝑐(𝐿𝑎
𝑐 −𝐿𝑛𝑎

𝑐 ) ≥ (1 − 𝑃𝑐)(𝐺𝑎
𝑛𝑐 − 𝐺𝑛𝑎

𝑛𝑐) (4) 

■ 

Theorem 1 above provides a general rule for the de-

sign of the loss and gain payoff functions such that a ma-

licious node will not have incentives to perform attacks in 

our game setting. By rearranging Equation (4), we have: 

 

𝑃𝑐 ≥ 
(𝐺𝑎

𝑛𝑐 − 𝐺𝑛𝑎
𝑛𝑐)

(𝐺𝑎
𝑛𝑐 − 𝐺𝑛𝑎

𝑛𝑐) + (𝐿𝑎
𝑐 −𝐿𝑛𝑎

𝑐 ) 
 (5) 

 

Condition (5) dictates that the defense system auditing 

probability 𝑃𝑐  must be at least greater than the outcome of 

the right-hand side expression to discourage malicious 

nodes from performing attacks during IDS voting. The 

right-hand side expression outcome depends on the L and 

G payoff functions which can be publicize to all nodes 

such that a malicious node will have no incentive of per-

forming attacks during IDS voting. In this paper we in-

vestigate a simple “life quota” system to parameterize the 

L and G payoff functions and the minimum system audit-

ing probability for satisfying Condition (5).  

 

IV. MODELING AND ANALYSIS 

We apply our IDS attack-defense game to an autono-

mous IoT system wherein each node is given a “life quo-

ta” for it to retain as a member in the system. We also 

develop an SPN model to analyze the effect of attack-

defense strategies played by attackers/defenders on sys-

tem reliability.  

A. Life Payoffs in the IDS Attack-Defense Game 

Our life quota system initially allocates a life quota of 1 

to every node. When the life quota is reduced to zero be-

cause of penalties being applied by the defense system, a 

node is identified as malicious and is removed from the 

system. The speed at which a node’s life quota is reduced 

is driven by a life quota decay parameter 𝛽 which is the 

fraction of life quota taken away from a node should a 
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penalty is being assessed by the defense system. For ex-

ample, if 𝛽 is 1/2 then a node’s life quota is reduced to 

zero after 2 penalties are being applied to the node. This 

parameter allows the system designer to adjust the severi-

ty of penalty depending on the system requirement. For 

the most secure system, 𝛽 can be set to 1, so a single pen-

alty will evict a malicious node. 

Based on our proposed life quota scheme, we can pa-

rameterize (i.e., give values to) the L and G payoff func-

tions as follows: 

• 𝐺𝑎
𝑛𝑐: This payoff is applied to a malicious node that 

performs attack (so it votes no against a good node or 

yes for a bad node during IDS voting) without being 

detected because the system does not perform audit-

ing. This payoff is set to 1 because the highest impact 

achievable by a malicious node is that a good node is 

voted down and is therefore evicted (so a loss of life 

quota of 1), or a bad node is voted up and is therefore 

kept in the system (so a gain of life quota of 1). 

• 𝐿𝑎
𝑐 : This payoff is applied when a malicious node is 

detected as having cast a vote that is different from 

the auditing outcome. It is set to be equivalent to the 

life quota decay parameter 𝛽.  

• 𝐿𝑛𝑎
𝑐 : The payoff is applied when a malicious node 

decides not to attack while the system decides to per-

form auditing. This payoff is set to zero because a 

malicious node who decides not to attack will not be 

penalized with a reduction of life quota. 

• 𝐺𝑛𝑎
𝑛𝑐: This payoff is applied to a malicious node that 

decides not to attack (so it acts like a good node to 

vote yes for a good node, or no against a bad node 

during IDS voting) while the system decides not to 

perform auditing of the IDS voting outcome. This 

payoff is set to zero as well because the malicious 

nodes does not gain anything as it does not contrib-

ute to misdetection, which happens due to intrinsic 
imperfect host-level false negative probability 𝐻𝑝𝑓𝑛 

and host-level false positive probability 𝐻𝑝𝑓𝑝 . 

 

 

 
 

Figure 1: SPN Model for β=1. 

 

With the L and G payoff functions defined as above, 

from Condition (5), we can set the minimum system au-

diting probability (denoted by𝑃𝑐
𝑚𝑖𝑛) as 1/(1 + 𝛽) for satis-

fying Condition (5).  

B. Analyzing the Attack-Defense Game Design 

To analyze the effect of attack-defense strategies 

played by attackers/defenders on system reliability, we 

develop an analytical model based on SPNP [15] to cap-

ture IDS game dynamics. Figure 1 shows the SPN model 

for the case in which 𝛽 = 1 such that a single mismatch of 

the vote cast by a node during IDS voting against the au-

diting vote outcome will drain the life quota of the node 

and evict it from the system. 

The SPN model is constructed as follows: 

• We use places to hold tokens each representing a 

node. Initially, all N nodes are good nodes and put in 
place 𝑁𝑔 as tokens. 

• Good nodes may become compromised with per-

node compromising rate λ. This is modeled by asso-
ciating transition 𝑇𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒 with an aggregate rate 

𝑁𝑔 × λ.  Firing 𝑇𝑐𝑜𝑚𝑝𝑟𝑜𝑚𝑖𝑠𝑒  will move tokens one at a 

time (if it exists) from place 𝑁𝑔 to place 𝑁𝑏. Tokens in 

place 𝑁𝑏  represent compromised but undetected 

nodes. The superscript of “1” on 𝑁𝑏  means that it 

holds bad nodes with a life quota of 1.  

• Good nodes can be misidentified as bad nodes during 

IDS voting especially if auditing is not performed. 

This is modeled by moving a good node in place 
𝑁𝑔 to place 𝑁𝑒 after firing transition 𝑇𝑓𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  with 

a rate of 𝑁𝑔 × 𝑃𝑓𝑝
𝐼𝐷𝑆/𝑇𝐼𝐷𝑆 where 𝑃𝑓𝑝

𝐼𝐷𝑆is the system-level 

false positive probability as a result of IDS voting (as 

given in Equation (6)) and 𝑇𝐼𝐷𝑆 is the intrusion detec-

tion interval. The transition rate is set in this way be-

cause 1/𝑇𝐼𝐷𝑆  is the rate at which IDS voting is per-
formed and each good node has a probability of 𝑃𝑓𝑝

𝐼𝐷𝑆 

to be misidentified as a bad node. Since we have a to-
tal of 𝑁𝑔 good nodes, we multiply the per-node false 

positive rate with 𝑁𝑔  to get the aggregate rate for 

transition  𝑇𝑓𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 .   

• When a bad node is being evaluated by IDS voting, if 

the voting outcome is negative (that is, the majority 

vote is no) then the bad node is evicted from the sys-

tem. This corresponds to the case in which the system 

correctly detects the bad node with probability 1 −

𝑃𝑓𝑛
𝐼𝐷𝑆  where 𝑃𝑓𝑛

𝐼𝐷𝑆 is the system-level false negative 

probability (as given in Equation (6)). We create a 

timed transition 𝑇𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  to model this “true posi-

tive” case, with the transition rate assigned to 

𝑇𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  being  𝑁𝑏 × (1 − 𝑃𝑓𝑛
𝐼𝐷𝑆) 𝑇𝐼𝐷𝑆⁄ .  The transition 

rate is set in this way because 1/𝑇𝐼𝐷𝑆  is the rate at 

which IDS voting is performed and each bad node 
has a probability of 1 − 𝑃𝑓𝑛

𝐼𝐷𝑆 to be correctly identified 

as a bad node. Since we have a total of 𝑁𝑏 bad nodes, 

we multiply the per-node true positive rate with 𝑁𝑏 

to get the aggregate rate for transition 𝑇𝑡𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 .  
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• If the system misidentifies a bad node as a good 

node, then the bad node will remain in the system. 
We create a timed transition 𝑇𝑓𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  to model 

this “false negative” case, with the aggregate transi-
tion rate assigned to 𝑇𝑓𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  being 

𝑁𝑏 × 𝑃𝑓𝑛
𝐼𝐷𝑆 𝑇𝐼𝐷𝑆.  ⁄  The transition rate is set in this way 

because 1/𝑇𝐼𝐷𝑆 is the rate at which IDS voting is per-
formed and each bad node has a probability of 𝑃𝑓𝑛

𝐼𝐷𝑆 to 

be misidentified as a good node. Since we have a total 

of 𝑁𝑏 bad nodes, we multiply the per-node false neg-

ative rate with 𝑁𝑏 to get the aggregate rate for transi-
tion 𝑇𝑓𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 . All such “false negative” bad nodes 

flow to a temporary place holder (the place that does 

not have a label in Figure 1) waiting to be distributed 

depending on the attack-defense conditions during 

IDS voting.  

• The joint probability that a bad node attacks and the 

defense system audits during IDS voting is 𝑃𝑎𝑃𝑐 . If a 

system auditing is performed, the defense system 

will discover that there is a mismatch between the 

vote cast by the bad node and the auditing outcome. 

Consequently, a reduction of β life quota will be ap-

plied to the bad node to penalize this detected attack 

behavior during IDS voting. Since β=1 in Figure 1, a 

bad node in this case will lose its entire life quota and 

will be evicted, i.e., a bad node will flow to place 

𝑁𝑒 . We model this behavior by creating two “imme-

diate” transitions (represented by two solid bars in 

Figure 1) with probabilities 𝑃𝑎𝑃𝑐  and 1 − 𝑃𝑎𝑃𝑐 , allow-

ing a “false negative” bad node held in the temporary 

place holder to flow to 𝑁𝑒  and 𝑁𝑏 , respectively. In the 

underlying Markov model generated from the SPN 

model, a bad node will go directly from 𝑁𝑏  to 𝑁𝑒 if it 

decides to attack during an IDS cycle and the defense 

system also decides to audit in the same IDS cycle, 

and will remain in 𝑁𝑏 in all other conditions.  

The intrusion detection capability of our proposed IDS 

voting game is measured by the system-level false posi-
tive probability 𝑃𝑓𝑝

𝐼𝐷𝑆and the system-level false negative 

probability 𝑃𝑓𝑛
𝐼𝐷𝑆 which in turn depend on the intrusion 

detection capability of individual nodes measured by the 
host-level false negative probability 𝐻𝑝𝑓𝑛  and false posi-

tive probability 𝐻𝑝𝑓𝑝 as well as the number of bad nodes 

performing attacks during IDS voting.   Note that the sys-
tem-level false positive probability 𝑃𝑓𝑝

𝐼𝐷𝑆 is different from 

the host-level false positive probability 𝐻𝑝𝑓𝑝  with the 

former being the result of IDS voting and the latter being 

the basic per-host detection capability of each individual 

node when a node is manufactured and put into opera-

tional use after a testing phase. Equation (6) derives the 
false positive probability (𝑃𝑓𝑝

𝐼𝐷𝑆) and false negative proba-

bility (𝑃𝑓𝑛
𝐼𝐷𝑆)  when there are 𝑁𝑔 good nodes and 𝑁𝑏 bad 

nodes in the system. Equation (6) gives a closed-form so-
lution for 𝑃𝑓𝑝

𝐼𝐷𝑆 and 𝑃𝑓𝑛
𝐼𝐷𝑆 under random attack behavior 

where 𝑁𝑏𝑎𝑑
𝑎  = 𝑃𝑎𝑁𝑏 and 𝑁𝑏𝑎𝑑

𝑖  = (1 − 𝑃𝑎)𝑁𝑏 are the numbers 
of “active” and “inactive” bad nodes, respectively; 𝑚𝑚𝑎𝑗 is 

the minimum majority of the number of voting nodes (m), 
e.g., 3 is the minimum majority of 5; ⍵ is 𝐻𝑝𝑓𝑝 for calculat-

ing 𝑃𝑓𝑝
𝐼𝐷𝑆 and is 𝐻𝑝𝑓𝑛 for calculating 𝑃𝑓𝑛

𝐼𝐷𝑆. 

We explain Equation (6) for the system-level false pos-
itive probability 𝑃𝑓𝑝

𝐼𝐷𝑆 below. The explanation to the sys-

tem-level false negative probability 𝑃𝑓𝑛
𝐼𝐷𝑆 is similar. A false 

positive will result when the majority vote is “no” against 

the target node (which is a good node). The first term in 

Equation (6) accounts for the case in which more than 1/2 

of the voters selected from the target node’s neighbors are 

“active” bad nodes who, as a result of actively performing 

attacks, will always vote against a good node as a bad 

node. Since more than 1/2 of the m voters vote no, the 

target node (which is a good node) is diagnosed as a bad 

node in this case, resulting in a false positive. Here the 

denominator is the total number of combinations to select 

m voters out of all neighbor nodes, and the numerator is 

the total number of combinations to select at least 
𝑚𝑚𝑎𝑗 bad voters out of 𝑁𝑏𝑎𝑑

𝑎  nodes and the remaining 

good voters out of 𝑁𝑔 + 𝑁𝑏𝑎𝑑
𝑖  nodes.  

The second term accounts for the case in which more 

than 1/2 of the voters selected from the neighbors are 

good nodes but unfortunately some of these good nodes 

mistakenly misidentify the target nodes as a bad node 
with host IDS false positive probability 𝐻𝑝𝑓𝑝, resulting in 

more than 1/2 of the voters (although some of those are 

good nodes) voting to evict the good target node. Since 

more than 1/2 of the m voters vote to evict, the target 

node (which is a good node) is also diagnosed as a bad 

node in this case, again resulting in a false positive. Here 

the denominator is again the total number of combina-

tions to select m voters out of all neighbor nodes, and the 

numerator is the total number of combinations to select i 
“active” bad voters not exceeding the majority 𝑚𝑚𝑎𝑗,   j 

good or “inactive” bad voters who diagnose incorrectly 
with i + j  ≥ 𝑚𝑚𝑎𝑗 , and the remaining m – i – j good or “in-

𝑃𝑓𝑝
𝐼𝐷𝑆 𝑜𝑟 𝑃𝑓𝑛

𝐼𝐷𝑆 = 

∑

[
 
 
 
 𝐶 (

𝑁𝑏𝑎𝑑
𝑎

𝑚𝑚𝑎𝑗 + 𝑖
) ×  𝐶 (

𝑁𝑔 + 𝑁𝑏𝑎𝑑
𝑖

𝑚 − (𝑚𝑚𝑎𝑗 + 𝑖)
)

𝐶 (𝑁𝑏𝑎𝑑
𝑎 + 𝑁𝑏𝑎𝑑

𝑖 + 𝑁𝑔

𝑚
)

]
 
 
 
 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

+ ∑

[
 
 
 
 𝐶 (

𝑁𝑏𝑎𝑑
𝑎

𝑖
) ×  ∑ [𝐶 (

𝑁𝑔 + 𝑁𝑏𝑎𝑑
𝑖

𝑗
) × ⍵𝑗 × 𝐶 (

𝑁𝑔 + 𝑁𝑏𝑎𝑑
𝑖 − 𝑗

𝑚 − 𝑖 − 𝑗
) × (1 − ⍵)𝑚−𝑖−𝑗]𝑚−𝑖

𝑗=𝑚𝑚𝑎𝑗−𝑖

𝐶 (𝑁𝑏𝑎𝑑
𝑎 + 𝑁𝑏𝑎𝑑

𝑖 + 𝑁𝑔

𝑚
)

]
 
 
 
 𝑚−𝑚𝑚𝑎𝑗

𝑖=0

 

( 6 ) 
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active” voters who diagnose correctly. Here we note that 

an “inactive” bad node acts as if it is a good node based 

on our IDS attack-defense game setting. 

 

 
 

Figure 2: SPN Model for β=1/2. 
 

The SPN model shown in Figure 1 models the case in 

which β=1 meaning that a single offense by a bad node 

during an IDS voting cycle will result in the bad node 

being evicted because it will lose its entire life quota. The 

SPN model can be easily extended to other cases. Figure 2 

shows another SPN model for modeling the case in which 

β=1/2 meaning that on the first offense, a bad node will 

lose 1/2 of its life quota but is still allowed to remain in 

the system. However, on the second offense, a bad node 

will lose its entire life quota and will be evicted from the 

system. The SPN model in Figure 2 looks similar in struc-

ture to the SPN model in Figure 1. The upper layer is ex-

actly the same except that the output place for the right 

immediate transition (with probability 𝑃𝑎𝑃𝑐) is 𝑁𝑏
2 which 

is a new place created to hold bad nodes with a life quota 

of 1/2 (hence a superscript of “2” on 𝑁𝑏), because when 

β=1/2, a bad node will not lose all its entire life quota 

upon the first offense and instead will remain in the sys-

tem with 1/2 life quota. The lower layer is a mirror image 

of the SPN model in Figure 1, except that a superscript of 

2 is being used to denote that all bad nodes in the lower 

layer have only 1/2 life quota left.  

The SPN model development can be generalized as 

follows: If β=1/n then there will be n layers in the SPN 

model, i.e., layers 1, 2, …, n, modeling the behaviors of 

bad nodes with life quota of n/n, (n-1)/n, (n-2)/n, …, 1/n, 

respectively. For example, Figure 1 for β=1/1 only has one 

layer for modeling bad nodes with life quota of 1/1, and 

Figure 2 for β=1/2 has two layers for modeling bad nodes 

with life quota of 2/2, and 1/2, respectively. 

V. RESULTS 

We apply our IDS attack-defense game design to an 

autonomous mobile CPS [11] comprising various types of 

IoT devices, including sensor-carried human actors, vehi-

cles, and robots, assembled together for executing a mis-

sion in battlefield or emergency response situations. We 

setup the testing environment conditions and IDS attack-

defense strategies as follows: 

• The team consists of N=128 nodes moving randomly 

in 5×5 operational locations, with each location cover-

ing R=250m radio range based on 802.11n. Nodes 

that are in the same location at time t are considered 

neighbors at time t.   

• All nodes have an equal chance to be captured by 

outside attackers or virus attacks and then will be 

compromised into malicious nodes. The per-node 

capture rate is 𝜆. Once a node is compromised, it be-

comes an inside attacker and performs attacks with 

probability 𝑃𝑎 whenever participating in IDS voting. 

In the experiment, we vary 𝑃𝑎 to test its effect on per-

formance. 

• IDS voting is performed periodically in every 𝑇𝐼𝐷𝑆 

interval with m being the number of neighboring 

nodes to perform majority voting (toward a target 

node).  

• We follow the energy model of [11] to consider the 

cost of each IDS voting cycle as well as the cost of 

each defense system audit (the C term in Table I). We 

consider that every node in the system is being voted 

on by m other nodes during an IDS voting cycle. This 

leads to an estimate of the overall energy consump-

tion in each IDS voting cycle. The cost of each audit 

depends on the number of nodes being contacted to 

provide evidence to the defense system to audit the 

voting outcome. For the baseline mobile CPS [11], we 

assume that one half of all nodes are being contacted 

to provide evidence. This leads to an estimate of the 

overall energy consumption in each audit operation 

performed by the defense system. Due to the high 

cost of auditing, the defense system only performs it 

occasionally with probability 𝑃𝑐. 

• In the experiment, we vary the defense system audit-

ing probability 𝑃𝑐  to test its effect on performance. 

The minimum auditing probability 𝑃𝑐
𝑚𝑖𝑛 is set to be 

1/(1+ 𝛽) for satisfying Condition (5).   

• Each node is equipped with a host-level anomaly-

based intrusion detection system characterized by a 
false negative probability 𝐻𝑝𝑓𝑛  and a false positive 
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probability 𝐻𝑝𝑓𝑝.  

• Byzantine failure [20] or energy depletion failure (as 

discussed in Section II.A) will cause the autonomous 

IoT system to fail.  

 

Table II: Attack-Defense Parameters for a Baseline 

IoT System. 

Parameter Meaning Default Value/Range 

N Number of nodes 128 

𝐻𝑝𝑓𝑛 False negative probability 5% 

𝐻𝑝𝑓𝑝 False positive probability 5% 

λ Per-node capture rate 1/7200 – 1/600 

m Number of voters 3, 5, 7 

𝑇𝐼𝐷𝑆 IDS interval 0 – 1400 time units 

β Life quota decay parameter 1/3, 1/2, 1 

𝑃𝑐
𝑚𝑖𝑛 Minimum 𝑃𝑐 = 1/(1 + 𝛽) 3/4, 2/3, 1/2 

𝑃𝑐 Auditing probability 0, 0.25, 0.5, 0.75, 1 

𝑃𝑎 Attack probability 0, 0.25, 0.5, 0.75, 1 

 

Table II lists the attack-defense strategy parameters for 

this autonomous collaborative IoT system. The perfor-

mance metric is the system reliability expressed in terms 

of MTTF (mean time to failure). We obtain numerical re-

sults by parameterizing model parameters of the SPN 

model in Figure 1 (when 𝛽 = 1) and Figure 2 (when 𝛽 =

1/2) and running the SPN model through the SPNP tool 

[15] to obtain MTTF as the output. 

Figure 3 shows the effect of 𝑇𝐼𝐷𝑆  (X coordinate) on 

MTTF (Y coordinate) with varying attack probability 𝑃𝑎 

for the case in which β=1 and consequently the minimum 

auditing probability 𝑃𝑐
𝑚𝑖𝑛 = 1/(1 + 𝛽) = 0.5  in our IDS 

attack-defense game.   

We first observe that an optimal 𝑇𝐼𝐷𝑆 (the IDS detection 

interval) exists at which the MTTF is maximized to best 

trade energy consumption for defense strength. When 

𝑇𝐼𝐷𝑆 is too small, the system performs intrusion detection 

too frequently and quickly exhausts its energy, thus re-

sulting in a small lifetime. As 𝑇𝐼𝐷𝑆 increases, the system 

saves more energy and its lifetime increases. On the other 

hand, when 𝑇𝐼𝐷𝑆  is too large, even although the system 

can save more energy, it fails to catch bad nodes often 

enough, resulting in the system having many bad nodes. 

When the system has 1/3 or more bad nodes out of the 

total population, a Byzantine failure occurs. We also no-

tice that optimal 𝑇𝐼𝐷𝑆 value decreases as the attack proba-

bility 𝑃𝑎 increases. The reason is that as the attack proba-

bility 𝑃𝑎  increases, the system must perform IDS voting 

more often to more quickly remove malicious nodes to 

prevent them from attacking during IDS voting and evict-

ing good target nodes, thus preventing Byzantine failures 

from occurring. 

Here we also note that based on our IDS game design, 

since we set the defense system’s auditing probability 

𝑃𝑐 = 𝑃𝑐
𝑚𝑖𝑛 = 1/(1 + 𝛽) = 0.5, malicious nodes will not 

have incentives to attack because otherwise the payoff is 

less than zero. This corresponds to the case 𝑃𝑎 = 0  at 

which the system has the highest MTTF, as shown in Fig-

ure 3. The reason is that when bad nodes do not attack 

during IDS voting, the system is less likely to experience 

Byzantine failures since good nodes would be preserved 

and bad nodes would be evicted based on the host-level 

intrusion detection capability as prescribed by Equation 

(6). Our IDS attack-defense game effectively discourages 

bad nodes from attacking and greatly improves the sys-

tem MTTF. 

Figure 4 shows the effect of 𝑃𝑐 (X coordinate) on MTTF 

(Y coordinate) with varying attack probability 𝑃𝑎  again for 

the case in which β=1 and consequently the minimum 

auditing probability 𝑃𝑐
𝑚𝑖𝑛 = 1/(1 + 𝛽) = 0.5  in our IDS 

attack-defense game.  

Two special cases are especially of interest: 

• 𝑃𝑐 = 0.5: The MTTF value represents the MTTF ob-

tainable by our IDS game because following our 

game design, the defense system sets the auditing 

probability as 𝑃𝑐
𝑚𝑖𝑛 = 1/(1 + 𝛽) = 0.5  to satisfy Con-

dition (5). Particularly, when bad nodes are discour-

aged from performing attack during IDS voting, i.e., 

𝑃𝑎 = 0, the MTTF value is the highest MTTF value 

one can best hope for.  

• 𝑃𝑐 = 0: This is the “no auditing” case in which the 

defense system does not audit at all. The MTTF value 

represents the MTTF value obtainable by the baseline 

mobile CPS [11], which we will use for performance 

comparison.  

 

 

 
 

Figure 3: Effect of 𝑻𝑰𝑫𝑺 on MTTF under varying at-

tack probability 𝑷𝒂. Given 𝑷𝒂, there exists an opti-

mal 𝑻𝑰𝑫𝑺 value for maximizing MTTF. 
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Figure 4: Effect of 𝑷𝒄 on MTTF under varying at-

tack probability 𝑷𝒂. Given 𝑷𝒂, there exists an op-

timal 𝑷𝒄 value for maximizing MTTF. 

 

We next analyze the effect of the auditing probability. 

Figure 4 shows that as 𝑃𝑎  (the defense system auditing 

probability) increases the system MTTF decreases, except 

for the special case 𝑃𝑎 = 0 in which the bad nodes do not 

attack because the system wastes energy for performing 

auditing. Further, given a 𝑃𝑎  value, there is an optimal 𝑃𝑐 

value that maximizes the system MTTF. For example, the 

optimal 𝑃𝑐 values are 0, 0.3, 0.8, and 1 (marked with bold 

phase) when 𝑃𝑎 ≤ 0.5,  𝑃𝑎 = 0.6,  𝑃𝑎 = 0.7,  and 𝑃𝑎 = 1, re-

spectively. When 𝑃𝑎 is low, the disadvantage of auditing 

(wasting energy) outweighs the advantage of auditing 

(evicting bad nodes and preserving good nodes). Conse-

quently, the optimal 𝑃𝑐 value is low. Conversely, when 𝑃𝑎 

is high, the advantage of auditing (evicting bad nodes 

and preserving good nodes) outweighs the disadvantage 

of auditing (wasting energy) and the optimal 𝑃𝑐 value is 

high. If bad nodes attack all the time, i.e., 𝑃𝑎 = 1, the sys-

tem is better off by performing auditing on every IDS 

voting outcome. In this case the system can best prolong 

the system lifetime by delaying Byzantine failure from 

happening at the expense of inducing energy depletion 

failure caused by energy consumption due to frequent 

auditing.  

Figure 5 compares our IDS attack-defense game 

against the baseline mobile CPS without IDS game design 

[11] head-to-head in terms of percentage gain or loss in 

MTTF. The MTTF loss happens when 𝑃𝑎  is low (𝑃𝑎 ≤

0.5) due to energy wasted for excessively auditing the 

IDS voting outcomes. On the other hand, the MTTF gain 

happens when 𝑃𝑎  is high (𝑃𝑎 > 0.5) due to timely removal 

of malicious nodes who decide to perform attacks during 

IDS voting. The exact point at which the tradeoff occurs 

depends on the magnitude of the cost per auditing (the C 

term in the IDS game). In case C is low, our IDS game will 

always gain in MTTF when compared to the baseline mo-

bile CPS because of little risk of increasing the probability 

of energy depletion failure due to auditing. In our exper-

iment setup, we set a high C value in order to realistically 

reflect the high cost associated with each audit, i.e., half of 

the 128 nodes are involved in providing evidence to the 

defense system to audit the IDS voting outcome.  

As shown in Figure 5, when 𝑃𝑎  is high, our design out-

performs the baseline system [11] and the gain of MTTF is 

more significant as the auditing probability 𝑃𝑐  increases 

because when bad nodes attack often during IDS voting, 

the risk of Byzantine failure is higher, so the system 

MTTF is higher by auditing more frequently to prevent 

good nodes from being removed and bad nodes from 

being retained. On the other hand, when 𝑃𝑎  is low our 

design performs worse than the baseline system [11] es-

pecially as the auditing probability 𝑃𝑐  increases because of 

unnecessary energy waste for performing auditing lead-

ing to a high risk of energy depletion failure. 

It is noteworthy that the gain in MTTF (which happens 

when 𝑃𝑎  is high) is large in magnitude relative to the loss 

in MTTF (which happens when 𝑃𝑎  is low). This indicates 

that our IDS attack-defense game is most effective in 

highly hostile environments where attacks are reckless 

and intensive such that the attackers are eager to bring 

down the autonomous IoT system, so they perform attack 

whenever there is a chance. In this case, the system can 

best prolong the lifetime of the IoT system by performing 

auditing frequently even if the cost of auditing is high. 

While Figure 5 shows the MTTF % gain/loss is a func-

tion of both 𝑃𝑎  and 𝑃𝑐 .  In practice we do not know 𝑃𝑎 . 

Therefore, it is not possible to dynamically set 𝑃𝑐  to its 

optimal value to maximize the system MTTF. Following 

our IDS game design, the system designer should set 𝑃𝑐 to 

𝑃𝑐
𝑚𝑖𝑛 = 1/(1 + 𝛽) = 0.5 to discourage bad nodes from 

performing attacks during IDS voting. There are two pos-

sibilities depending on how bad nodes react to the design 

that the defense system will audit 50% of the time:  

• Bad nodes are sensible and they follow the payoff 

logic of our game design knowing that they should 

not attack because otherwise their payoff would be 

less than zero in which case the attack probability 𝑃𝑎 

is forced to set to zero at which the system would 

achieve its maximum achievable MTTF, as demon-

strated in Figures 3 and 4.  

• Bad nodes are not logical and they do not follow our 

IDS game design and still attack with their original 

attack probability 𝑃𝑎  in which case we see from Figure 

5 that under 𝑃𝑐 = 0.5 the MTTF loss (which happens 

due to energy waste when 𝑃𝑎  is low) is negligibly 

small in magnitude relative to the MTTF gain (which 

happens due to high detection rate when 𝑃𝑎  is high). 

Therefore, even if bad nodes are not sensible, our IDS 

game design effectively improves the system MTTF 

by trading off energy (thus inducing energy deple-

tion failure) for achieving a higher true positive rate 

and a lower false positive rate (thus delaying Byzan-

tine failure), the effect of which is especially pro-
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nounced in hostile environments where attacks are 

reckless and intensive. 

 

 

Figure 5: Performance comparison of our IDS game 

model vs. the baseline mobile CPS [11] in MTTF 

percentage gain/loss under varying attack proba-

bility 𝑷𝒂. Our design sets 𝑷𝒄 = 𝟎. 𝟓 to satisfy Con-

dition (5) at which the MTTF gain (due to high de-

tection rate when attack is intensive) outweighs the 

MTTF loss (due to energy waste when attack is not 

intensive). 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper we pioneered the concept of IDS attack-

defense games to incentivize nodes to cooperate in exe-

cuting intrusion detection with the objective to maximize 

the system reliability of autonomous IoT systems. We 

analytically derived the exact condition under which ma-

licious nodes will not have the incentive to attack during 

IDS voting. We also developed an analytical model based 

on SPN modeling techniques to analyze the effects of at-

tack-defense behaviors deriving from attack probability, 

defense audit probability, IDS strength, and voting out-

come mismatch penalty on detection accuracy and system 

reliability. We illustrated the practical use of our IDS at-

tack-defense game by applying it to a mobile CPS where-

in each IoT device is given a life quota. The results 

demonstrate that our IDS attack-defense game design 

greatly improves system reliability over the baseline mo-

bile CPS when malicious nodes are sensible. When mali-

cious nodes are not sensible, our IDS game design effec-

tively improves the system MTTF by trading off energy 

(thus inducing energy depletion failure) for achieving a 

higher detection rate (thus delaying Byzantine failure), 

especially for hostile environments where attacks are 

reckless and intensive.   

The baseline autonomous IoT system considered in 

this paper for comparative performance analysis is a ho-

mogeneous mobile CPS, so a single SPN model can model 

the attack-defense behavior adequately. In the future we 

plan to apply our IDS game to autonomous IoT systems 

for which nodes are heterogeneous. This necessitates the 

use of a hierarchical SPN model with the low-level mod-

els describing diverse attack-defense behaviors and the 

upper-level models describing the aggregate behaviors 

and system responses. 
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