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Abstract—We propose and analyze a trust-based data fusion
scheme against spectrum sensing data falsification attacks in a
distributed cognitive radio network. Our trust-based data fusion
scheme is based on mechanism design theory to motivate users
to report authentic sensing data so as to improve the success
rate. Further, we decouple erroneous sensing reports due to
low sensing capabilities from false reports due to attacks, thus
avoiding unnecessary punishments to benign users. We conduct
a theoretical analysis validated with extensive simulation and
identify optimal parameter settings under which our trust-based
data fusion scheme outperforms existing non-trust based data
fusion schemes.

Index Terms—Distributed cognitive radio networks, cooper-
ative spectrum sensing, SSDF, trust, mechanism design.

I. INTRODUCTION

The main idea of cognitive radio is to let the secondary
users (SUs) opportunistically access the channels that are
temporarily not occupied by the primary users (PUs). Cooper-
ative spectrum sensing significantly improves the probability
of detecting the transmission of PUs and provides a way
to increase channel sensing accuracy in cognitive radio
networks [1]. The idea behind cooperative spectrum sensing
is to adopt data fusion rules to aggregate sensing reports from
SUs within the network.

Cooperative spectrum sensing can be conducted in both
centralized and distributed cognitive radio networks. In a
centralized system, SUs report sensing outcomes to a data
fusion center (DFC) and receive instructions from the DFC.
In a distributed system, SUs do not rely on a DFC for
channel access decision making but autonomously decide
the channel availability by aggregating outcomes reported by
other SUs. Cooperative spectrum sensing is confronted by
spectrum sensing data falsification (SSDF) attacks by which
malicious SUs intentionally report fake sensing results to
mislead decision making. Most existing anti-attack fusion

rules in cooperative spectrum sensing are for the centralized
infrastructure [2]–[4]. To date, there are only a handful
of works on fusion rule design against SSDF attacks in
distributed cognitive radio networks [5]–[7]. This paper is
concerned with effective data fusion rules against SSDF
attacks in a distributed cognitive radio system.

One common drawback of existing works is that they fail
to decouple erroneous sensing reports due to low sensing ca-
pabilities from false reports due to attacks. The consequence
is that benign SUs can be misidentified as attackers, which
can cause severe performance degradation. Recently, [4] pro-
posed a fusion rule to discern erroneous sensing reports due
to low sensing capabilities from false reports due to attacks.
In particular, the data fusion rule requires each SU to report
a binary sensing outcome together with its sensing power
to the DFC in a centralized cooperative spectrum sensing
system. However, their approach may fail when malicious
SUs intentionally report higher sensing capabilities to impact
more on the final data fusion outcome. To solve this problem,
[3] proposed a data fusion rule to discourage malicious
nodes from reporting fake sensing capabilities. The above
two cited works are for centralized cooperative spectrum
sensing only. In this work, we extend [3] to distributed
cooperative spectrum sensing against SSDF in distributed
cognitive networks.

A unique contribution of our work is that we develop a
trust-based data fusion scheme based on mechanism design
theory [8] to provide incentives for all SUs within the system
to report their actual sensing capabilities and outcomes,
despite the fact that some of the SUs are self-interested with
malicious intent. Our trust-based data fusion scheme employs
a trust system [9] to identify malicious SUs in the long run.

The primary contributions of this paper are as follows:
• We are the first to design trust-based data fusion rules



Figure 1: Time Schedule on the Common Control Channel.

which decouple erroneous reports due to low sensing ca-
pabilities from false reports due to attacks in distributed
cooperative spectrum sensing systems.

• Our scheme based on mechanism design guarantees that
a benign SU will be awarded with trust gain if it reports
its true sensing capability and sensing outcome faith-
fully, while a malicious SU’s trust will be penalized with
trust loss if it falsely reports a high sensing capability
and performs SSDF attacks.

• We identify the best parameter settings under which the
performance of our proposed scheme is optimized and
outperforms existing schemes.

We begin with introducing the system model in Section II.
Our proposed scheme is described in III. Section IV conducts
a theoretical analysis. Section V presents simulation results
to validate theoretical results. We summarize the paper and
outline directions for future work in Section VI.

II. SYSTEM MODEL

We consider a distributed cognitive radio network with N
SUs adopting the cooperative spectrum sensing technique to
learn the PU’s activity on one channel. We assume that all
SUs are aware of the existence of each other and are within
the communication range. In particular, each SU has a unique
identity i ∈ {1, ..., N} which is publicly known by other
SUs. To control the overhead communication messages, SUs
are not allowed to communicate directly with each other.
Instead, the SUs share their sensing outcomes on a common
control channel (CCC) in a broadcast manner. To avoid
communication interference on the CCC, time is slotted and
each time slot is further divided into N subslots, one for each
SU. An SU with identity i will only broadcast its report in the
ith designated subslot while listening to other SUs’ reports
in other subslots. Since each SU has a unique identity and
it can broadcast only in its designated subslot, there is no
identity attack possibility. There are altogether M time slots
in a reporting cycle. The first M − 1 slots (each called a
sensing report slot) are used for reporting sensing outcomes
and sensing capabilities, while the last time slot (called a
blacklist report slot) is used for reporting malicious nodes for

the purpose of building a blacklist. M is a system parameter
and should be sufficiently large to allow each individual SU
to assess trust scores of other SUs and report malicious SUs
in the blacklist report slot. Figure 1 shows a time schedule
on the common control channel.

In a sensing report slot, SUs take turns to broadcast their
sensing outcomes in their respective subslots. Specifically,
SU i broadcasts its outcome Ot

i together with its capability
Ct

i,real on the CCC. SU i’s outcome Ot
i is a binary variable

with Ot
i = 1 indicating that SU i sensed PU existence and

Ot
i = 0 indicating that SU i sensed no PU activity. i’s

sensing capability denoted by Ct
i,real is a continuous value

∈ [0, 1] representing the probability of SU i being able to
correctly sense the channel occupancy status. Hence, the
closer Ct

i,real is to 1, the more confident SU i is about
its reported sensing outcome at time t. An SU’s sensing
capability is characterized by the probabilities of false alarm
and missed detection. We follow [5] for estimating the missed
detection rate Pmd and the false alarm rate Pfa, as follows:

Pmd = P (pti < γ|H1) (1)

Pfa = P (pti > γ|H0) (2)

where H1 and H0 denote the hypotheses corresponding to
the presence and the absence of PU, respectively, and pti
represents the received signal power by SU i at time t which
can be estimated by an energy detection sensing method
[10]. The sensing capability Ct

i,real of SU i can be estimated
based on its false alarm rate Pfa and missed detection rate
Pmd. Specifically, when SU i senses the existence of PU, its
sensing capability can be calculated as Ct

i,real = 1 − Pmd.
When SU i senses the absence of PU, its sensing capability
can be calculated as Ct

i,real = 1− Pfa.
Let Ct

i,report be the sensing capability reported by SU i
at time t. A benign SU i reports its real sensing capability,
i.e., Ct

i,report = Ct
i,real, while a malicious SU i intentionally

reports a higher sensing capability Ct
i,report > Ct

i,real to
impact other SUs’ decision making.

In a blacklist report time slot, each SU reports an SU
with the lowest trust score among all SUs it keeps in its
database. SU i then updates its blacklist binary vector bij for
j ∈ {1, 2, ..., N} based on the blacklist reports gathered in
the blacklist report slot. We assume that a malicious node
can perform bad-mouthing attacks to frame a good node as
a bad node.

The goal of our distributed cooperative spectrum sensing
design is for SU i to effectively aggregate self and received
sensing information, i.e., (Ot

i ,C
t
i,report) for i ∈ {1, ..., N}

such that it can achieve high accuracy in sensing PU occu-
pancy and detect malicious SUs in the long run.



III. TRUST-BASED DATA FUSION RULE DESIGN

In this section, we describe our trust-based data fusion rule
design consisting of a data fusion process and a blacklist gen-
eration process. An SU makes channel availability decisions
using sensing reports gathered in a sensing report slot. An SU
updates its blacklist in the blacklist generation process using
blacklist reports gathered in a blacklist report time slot.
A. Data Fusion Process

In a sensing report slot, SU i makes a channel occupancy
decision based on its own and received sensing outcomes
from other SUs. Due to a lack of ground truth in decision
making, SU i first decides whether to trust its own sensing
outcome by comparing its own sensing outcome Ct

i,real with
a minimum sensing capability threshold T t

i . There are two
cases:

1) If Ct
i,real > T t

i , SU i has high confidence about its
own sensing outcome and will simply adopt its sensing
outcome as the final decision, i.e., Ot

i,final = Ot
i .

Meanwhile, i adjusts other SUs’ trust scores by com-
paring the received sensing outcomes with its own
sensing outcome. Initially all SUs start with the same
trust score of 1 which represents ignorance. SU i
updates the trust score of SU j, denoted by Rt

i,j , only
if SU j′s reported sensing capability is over SU i’s
minimum trust threshold, i.e., Ct

j,report > F t
i , where

F t
i is SU i’s minimum trust threshold in the range of

[0, 1]. In this case if j’s reported outcome matches i’s
outcome, SU i increases SU j’s trust score by:

Rt
i,j = Rt

i,j(1 + Ct
j,report) (3)

If j’s reported outcome Ot
j does not match i’s sensing

outcome, SU i decreases SU j’s trust score by:

Rt
i,j = Rt

i,j(1− (Ct
j,report)

2) (4)

2) If Ct
i,real ≤ T t

i , SU i does not have confidence in
its own sensing outcome and will rely on the received
sensing information reported by other SUs to decide
the final outcome. In this case, given that SU i does
not have any basis to judge the trustworthiness of
sensing results reported by other SUs, SU i does not
update the trust scores of other SUs. SU i first filters
out sensing reports from receivers with low sensing
capabilities, i.e., Ct

j,report < F t
i , or on the blacklist,

i.e., bij = 1 for j ∈ {1, 2, ..., N}. After the minimum
capability step, the remaining reports are separated into
two groups based on if the sensing outcome is 0 or 1.
For each group, a group trust score is calculated by a
capability-weighted trust sum. SU i then chooses the
group with a higher group trust score, and adopts the
sensing outcome of the group (either 0 or 1) as the final

outcome. If the group scores are of the same value, SU
i randomly decides the channel occupancy status for
that time slot.

B. Blacklist Generation Process

In a blacklist report slot t, SU i reports the identity of the
lowest trust node Bt

i ∈ {1, ..., N}. If more than one node are
of the same lowest trust score, SU i randomly chooses one to
broadcast. Meanwhile, SU i updates a blacklist binary vector
[bi1, ..., b

i
N ] based on the received node identities broadcast by

other SUs. Since a malicious SU may perform bad-mouthing
attacks and intentionally report a good node as a malicious
node, SU i considers Bt

j (reported by SU j) as malicious only
if i trusts j as well as i does not trust Bt

j itself. Specifically,
SU i considers that Bt

j should be put on the blacklist if the
following two conditions are met:

1) j’s trust score is above the average trust score of all
nodes maintained by i;

2) Bt
j’s trust score is below the average trust score of all

nodes maintained by i.
After i decides j as a malicious node, i sets bij to 1 and will
exclude j’s reports in future decision making.

IV. ANALYSIS

In this section, we theoretically analyze our data fusion
rule design. We denote by G and L the trust gain and loss,
respectively. The theorem below provides the design of G
and L to make sure that a benign SU will be awarded with
trust gain if it reports its true sensing capability and sensing
outcome faithfully.

Theorem 1. For a trust-based data fusion rule design to
award SU j who reports its authentic sensing outcome and
capability, the trust gain (G) and the trust loss (L) must
satisfy:

1− Ct
i,real + Ct

j,real − 2Ct
i,realC

t
j,real ≥

G

G− L

Proof: The reported sensing capability of node j,
Ct

j,real, is the probability of j being able to sense PU
existence status on the channel. According to our designed
scheme (described in Section III) the conditions to award
j’s trust by SU i are: i trusts its own sensing outcome, i.e.,
Ct

i,real > T t
i , j’s sensing capability is above i’s minimum

trust threshold, i.e., Ct
j,real > F t

i , and j’s reported sensing
outcome matches that of i, i.e., both i and j sense PU exis-
tence the same way either 0 or 1. Therefore, the probability
for j being rewarded by SU i with sensing capability Ct

i,real,
denoted by Paward, is given by:

Paward =p(Ct
i,real > T t

i )p(C
t
j,real > F t

i )

(Ct
i,realC

t
j,real + (1− Ct

i,real)(1− Ct
j,real)) (5)



On the other hand, the conditions to penalize j’s trust by SU
i are: i trusts its own sensing outcome, i.e., Ct

i,real > T t
i , j’s

sensing capability is above i’s minimum trust threshold, i.e.,
Ct

j,real > F t
i , and j’s reported sensing outcome conflicts

with that of i, which happens if only one of the two SUs
correctly senses PU existence. Therefore, the probability of
j being punished by i with sensing capability Ct

i,real, denoted
by Ppunish, is given by:

Ppunish =p(Ct
i,real > T t

i )p(C
t
j,real > F t

i )

(Ct
i,real(1− Ct

j,real) + Ct
j,real(1− Ct

i,real)) (6)

To guarantee j’s trust is not penalized when it reports its real
sensing outcome and capability, we need:

GPaward ≥ LPpunish (7)

By plugging in Equation 5 and Equation 6 into Equation 7
we can obtain the expression shown in the theorem.

We denote by �G and �L the gap of trust gain and loss
between reporting higher sensing capability and real sensing
capability. The theorem below provides the design of �G
and �L to prevent a malicious SU from gaining trust if it
reports high sensing capability and performs SSDF attacks.

Theorem 2. To prevent a malicious SU j from reporting
higher sensing capability to gain trust increase to SU i, �G
and �L must satisfy:

Ct
i,real�L ≥ (1− Ct

i,real)�G

Proof: For a malicious SU j who reports a fake sensing
outcome and a higher capability s.t. Ct

j,report > Ct
j,real, the

conditions for j to be caught and punished by SU i are:
i trusts its own sensing outcome, i.e., Ct

i,real > T t
i , j’s

sensing capability is above i’s minimum trust threshold, i.e.,
Ct

j,report > F t
i , and j’s reported sensing outcome disagrees

with that of i, which requires i’s sensing outcome to be true.
SU i uses a higher sensing capability than the minimum trust
threshold, i.e., Ct

j,report > F t
i , to mislead the data fusion

process. Therefore, the probability of j being caught by i
with sensing capability Ct

i,real, denoted by Pcaught, is given
by:

Pcaught = p(Ct
i,real > T t

i )C
t
i,real (8)

Similarly, the probability of a malicious node j not being
punished by SU i, denoted by Pmiss, is given by:

Pmiss = p(Ct
i,real > T t

i )(1− Ct
i,real) (9)

To guarantee j’s trust is decreased when it reports a fake
sensing outcome and a higher calculated capability, we need:

�LPcaught ≥ �GPmiss (10)

By plugging in Equation 8 and Equation 9 into Equation 10
we prove the theorem.

Corollary 3. Our trust-based data fusion rule design guar-
antees that a benign SU’s trust is increased when it reports
authentic sensing outcome and capability, and a malicious
SU’s trust is decreased when it reports a false sensing
outcome and a higher sensing capability.

Proof: We prove this corollary by showing that our
trust-based data fusion rule design satisfies the above two
theorems. According to Equations 3 and 4, a benign SU
(j) who reports true sensing outcome Ot

real and capability
Ct

j,real and will get a trust increase of G = Rt−1
i,j × Ct

j,real

and get a trust loss of L = Rt−1
i,j × (Ct

j,real)
2.

On the other hand, a malicious SU (j) who reports a fake
sensing outcome and a higher capability Ct

j,report > Ct
j,real

will get an extra trust increase of �G = Rt−1
i,j × (Ct

j,report−
Ct

j,real) and an extra loss of �L = Rt−1
i,j × ((Ct

j,report)
2 −

(Ct
j,real)

2).
We can easily confirm that G, L, �G and �L satisfy

Theorems 1 and 2.
Therefore, our trust-based data fusion rule design guaran-

tees a trust gain to normal SUs and discourages malicious
SUs from reporting false sensing outcomes and capabilities.

V. SIMULATION RESULTS

In this section, we conduct a performance analysis of
our data fusion rule design using Matlab and compare its
performance with three baseline schemes: individual, major-
ity voting, and capability-weighted majority voting. Under
individual data fusion, an SU directly accepts its sensing
outcome as the final outcome without considering reported
information from other SUs. Therefore, it can be viewed as a
non-cooperative scheme. Majority voting counts the number
of 0’s and 1’s and takes the majority as the final outcome.
Capability-weighted majority voting is the same as majority
voting except that every count is weighted by the SU’s
reported capability. The performance metric is the individual
success rate, or the probability of successfully detecting the
actual status of the channel.

The simulation setup is based on N = 20 SUs. As
in [5], we assume that the SU sensing capability follows
the Gaussian distribution. That is, each SU’s true sensing
capability is modeled by a Gaussian distribution with mean
μ = 0.6 and variance σ2 = 0.2. The reported sensing
capability for a malicious SU is set to a high value at 0.95.
The initial trust score for all nodes is set to 1 representing
ignorance. The report cycle M is set to a high value at
20 to allow each individual SU to assess trust scores of
other SUs and report malicious SUs in the blacklist report
slot. So in every 20 time slots, SUs update their individual
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Figure 2: Impact of Malicious Node Population.

blacklists based on blacklist reports from other SUs. Each
experiment covers 200 time slots. The result is based on 1000
independent repeated experiments.

A. Effect of Malicious Node Population

We first investigate the effect of malicious node per-
centage on the individual success rate (i.e., the probability
of successfully detecting the actual status of the channel).
Figure 2 shows the individual success rate of our trust-
based data fusion scheme (labeled by trust-based) against the
three baseline schemes (labeled by individual, majority, and
CW majority, respectively) in the presence of SSDF attacks.
It is clear from Figure 2 that our data fusion rule design
outperforms all baseline schemes. The gap between trust-
based data fusion and individual data fusion can be viewed as
the gain of adopting distributed cooperative spectrum sensing
over non-cooperative spectrum sensing. The only exception
happens when the percentage of malicious nodes is 90% in
which case the number of benign nodes is only 2 (10% of
N=20) and only one of which has capability higher than the
minimum capability threshold, so there is no chance for them
to update the trust scores of each other. As a result, the trust
score remains at 1 and the success rate remains at 0.5.

We observe that the success rate under individual data
fusion stays at 0.6. The reason is that each SU’s true sensing
capability is modeled by a Gaussian distribution with mean
μ = 0.6 and variance σ2 = 0.2. We also observe that
individual data fusion scheme performs better than majority
voting which in turn performs better than capability-weighted
majority voting, especially as the percentage of malicious
nodes increases. This is because malicious SUs report a
higher capability which has an adverse effect on capability-
weighted majority voting. Our trust-based data fusion scheme
on the other hand takes both trust and capability into con-
sideration and can achieve a much higher accuracy in data
fusion.

B. Trust Scores of Benign and Malicious SUs

We compare the average trust scores of benign and ma-
licious nodes in our designed scheme. Figure 3 shows the
average trust scores of benign and malicious SUs at the end

% of Malicious Nodes

0.2 0.4 0.6 0.8

 
 
 
 
T
r
u
s
t
 
S
c
o
r
e

0

1

2

3

Benign nodes
Malicious nodes

Figure 3: Comparison of Trust Scores.

Minimum Capability Threshold T
i
t

0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
v
e
r
a
g
e
 
I
n
d
i
v
i
d
u
a
l
 
S
u
c
c
e
s
s
 
R
a
t
e

0.76

0.78

0.8

0.82

0.84

0.86

Always yes

Always no

Always false

Always random

Figure 4: Impact of T t
i .

of the 50th time slot as recorded by benign SUs under SSDF
attacks. The results support the claim that our trust-based
data fusion scheme can effectively distinguish malicious SUs
by their low trust scores. Figure 3 validates the theoretical
analysis results that a benign SU will be awarded with trust
gain if it reports its true sensing capability and sensing
outcome faithfully, while a malicious SU’s trust will be
penalized with trust loss if it falsely reports a high sensing
capability and a false sensing outcome. Our trust-based data
fusion scheme can efficiently distinguish benign nodes from
malicious nodes in the long run when the percentage of
malicious nodes is below 80%.

C. Impact of Threshold Parameters

We analyze the impact of the minimum capability thresh-
old T t

i and the minimum trust threshold F t
i on protocol

performance. We consider 4 variants of SSDF attacks: always
yes (always saying the channel is free), always no (always
saying the channel is not free), always false (always saying
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the channel is free/not free opposite to what it senses), and
always random (always saying the channel is free/not free
randomly). Note that the analysis performed so far is for the
case of “always false” SSDF attacks, which is the worst case
among all.

Figure 4 shows the average individual success rate vs.
T t
i , with F t

i =0.8 to isolate its effect. The figure is based
on 20% malicious nodes. We observe that there exists an
optimal T t

i value under which the success rate is maximized.
This is due to our data fusion rule design. Specifically, as
the minimum capability threshold T t

i increases, if SU i’s
true sensing capability is still above the increasing threshold,
then its own sensing outcome is likely to be accurate, so
the success decision rate will also increase. However, when
T t
i continues to increase, SU i’s true sensing capability will

more likely fall below the threshold. In this case, SU i cannot
update the trust scores of other SUs effectively and must
aggregate sensing outcomes from other SUs with inaccurate
trust scores. As a result, the success decision rate decreases.
This tradeoff results in the T t

i optimal point.
Figure 5 shows the average individual success rate vs. F t

i ,
with T t

i =0.8. We observe that there exist an optimal F t
i value

under which the success rate is maximized. This is because
as the minimum trust threshold F t

i increases, there will be
fewer sensing reports passing the threshold but the quality of
information is better. This tradeoff results in the F t

i optimal
point.

The optimal T t
i and F t

i settings are sensitive to the
percentage of malicious nodes (not reported here due to page
limit). This result suggests adaptive control based on the
percentage of malicious nodes sensed at runtime to maximize
protocol performance.

VI. CONCLUSION

In this paper we proposed and analyzed a trust-based data
fusion scheme for cooperative spectrum sensing in distribu-
tive cognitive radio networks to cope with data falsification
attacks. We designed data fusion rules to distinguish erro-
neous reports due to low sensing capability from those due
to malicious attacks. Our design effectively forces malicious
nodes to report true sensing capability and outcome to prevent
trust loss, thus allowing a high success rate to be achieved.
We also identified optimal trust protocol settings under
which the success rate is maximized. The simulation results
validated the theoretical analysis and demonstrated that our
trust-based data fusion scheme outperforms traditional data
fusion rules and can distinguish malicious nodes performing
data falsification attacks through their low trust scores in the
long run.

In the future we plan to explore modeling techniques such
as Stochastic Petri Nets [11]–[14] to model behaviors of be-

nign and malicious SUs in order to study the interaction and
exploit the design tradeoffs that exist in the game structure.
We also plan to further test the resiliency of our trust-based
data fusion scheme against more complicated environmental
and operational scenarios such as different received signals at
each node because of the geography effect of the SUs, as well
as more sophisticated attack behaviors such as opportunistic,
collusion, and insidious attacks [15], [16].
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