

Trust-Based Task Assignment

with Multi-Objective Optimization

in Service-Oriented Ad Hoc Networks

Yating Wang†, Ing-Ray Chen†, Jin-Hee Cho*, and Jeffrey J.P. Tsai‡

Abstract— We propose and analyze a trust management
protocol in service-oriented mobile ad hoc networks
(MANETs) populated with service providers (SPs) and
service requesters (SRs), and demonstrate the resiliency
and convergence properties against bad-mouthing, ballot-
stuffing, opportunistic service, and self-promotion attacks.
To demonstrate the applicability, we consider a mission-
driven service-oriented MANET that must handle
dynamically arriving tasks to achieve multiple conflicting
objectives. We devise a trust-based heuristic algorithm
based on auctioning with local knowledge of node status
to solve this node-to-task assignment problem with multi-
objective optimization (MOO) requirements. Our trust-
based heuristic algorithm has a polynomial runtime
complexity, rather than an exponential runtime
complexity as in existing work, thus allowing dynamic
node-to-task assignment to be performed at runtime. It
outperforms a non-trust-based counterpart using
blacklisting techniques while performing close to the
ideal solution quality with perfect knowledge of node
status over a wide range of environmental conditions. We
conduct extensive sensitivity analysis of the results with
respect to key design parameters and alternative trust
protocol designs. We also develop a table-lookup method
to apply the best trust protocol parameter settings upon
detection of dynamically changing environmental
conditions to maximize MOO performance.

Index Terms— Trust management, multi-objective

optimization, task assignment, service-oriented

computing, mobile ad hoc networks, performance

analysis.

I. INTRODUCTION

With the proliferation of fairly powerful mobile devices

and ubiquitous wireless technology, traditional mobile ad

hoc networks (MANETs) now migrate into a new era of

service-oriented MANETs wherein a node can provide and

receive service from other nodes it encounters and interacts

with. In this paper, we are concerned with autonomous

service-oriented MANETs populated with service providers

(SPs) and service requesters (SRs). One can view a service-

oriented MANET as an instance of Internet of Things (IoT)

systems with a wide range of mobile applications including

smart city, smart tourism, smart car, smart environmental

monitoring, and healthcare [7][19].

In this paper, we consider a mission-driven service-

oriented MANET that must handle dynamically arriving

tasks to achieve multiple system objectives. Each task

requires an SR to be the task lead and to assemble a team

among SPs to accomplish the task. For example, a service-

oriented MANET may have the following three system

objectives: (1) maximizing mission reliability based on task

completion ratio; (2) minimizing utilization variance,

leading to high load balance among all nodes; and (3)

minimizing the delay to complete time-sensitive tasks, thus

maximizing quality of service (QoS). We note that the

objective of load balancing is in conflict with others since

maximizing load balance may sacrifice task completion

ratio and QoS. Nevertheless, all objectives are essential in

order to maintain the “global welfare” of the service-

oriented MANET. The problem we are interested in solving

is dynamic node-to-task assignment (or task assignment for

short) with multi-objective optimization (MOO)

requirements, given that multiple objectives often have

conflicting goals. This issue is further compounded by the

fact that nodes may exhibit malicious behavior for

“individual welfare” (explained later in Section III.B) and

the information received is often erroneous, uncertain and

incomplete in MANET environments [14] [15].

The literature is rich in solution techniques for solving

task assignment MOO problems. Two major problems of

existing solutions are (1) not considering the existence of

malicious nodes acting for their own interest and colluding

for individual welfare, and (2) solving the task assignment

MOO problem in exponential time complexity, making it

unsuitable for runtime deployment. In this paper, we

develop trust-based solutions to mitigate these problems. In

particular, we develop a trust-based algorithm to solve the

task assignment MOO problem in polynomial time

complexity, making it possible to perform dynamic node-

to-task assignment at runtime. We demonstrate that our

trust-based allocation protocol outperforms a non-trust-

based counterpart using blacklisting techniques while

performing close to the ideal solution quality with perfect

knowledge of node status over a wide range of

environmental conditions.

†Yating Wang and Ing-Ray Chen are with the Department of Computer
Science, Virginia Tech, Falls Church, VA 22043. E-mail: {yatingw,
irchen}@vt.edu.
*Jin-Hee Cho is with Computational and Information Sciences
Directorate, U.S. Army Research Laboratory, Powder Mill Rd. Adelphi,
MD 20783. E-mail: jinhee.cho@us.army.mil.
‡Jeffrey J.P. Tsai is with the Department of Bioinformatics and
Biomedical Engineering, Asia University, Taichung, Taiwan 41354.
Email: jjptsai@gmail.com.

The contributions of this work are as follows:

1. We develop a trust management protocol specifically

for autonomous service-oriented MANET applications

and demonstrate the resiliency and convergence

properties against bad-mouthing, ballot-stuffing,

opportunistic service, and self-promotion attacks.

2. To the best of our knowledge, this work is the first to

solve a multiple objective optimization (MOO)

problem dealing with multiple, concurrent and dynamic

task assignments with conflicting goals using trust in

service-oriented MANETs. Our trust-based heuristic

algorithm has a polynomial runtime complexity, thus

allowing dynamic node-to-task assignment to be

performed at runtime. Our heuristic design is based on

local knowledge of node status, so it can only produce

a suboptimal solution. However, our heuristic design is

able to achieve a solution quality approaching that of

the ideal solution which has perfect knowledge of node

status.

3. This work proposes and analyzes a new design concept

of trust-based MOO based on assessed trust levels to

screen task team members for dynamic node-to-task

assignment.

4. We conduct a comparative analysis of our proposed

trust-based heuristic member selection algorithm

against the ideal solution with perfect knowledge of

node status, demonstrating that our trust-based solution

achieves solution efficiency without compromising

solution optimality.

5. We develop a table-lookup method to apply the best

trust parameter settings upon detection of dynamically

changing environmental conditions to maximize

protocol performance.
The rest of this paper is organized as follows. Section II

discusses related work, and contrasts our work with existing

work. Section III describes our system model including the

network model, attack/defense model, baseline trust

protocol design, task model, and our MOO problem

definition. Section IV proposes a polynomial runtime

complexity trust-based heuristic algorithm to solve the

MOO problem. Section V performs a comparative analysis

of our proposed scheme against the ideal solution with

perfect knowledge over node reliability as well as a non-

trust baseline scheme. We demonstrate that our trust-based

scheme outperforms the non-trust-based counterpart using

blacklisting techniques and performs close to the ideal

solution quality. We conduct extensive sensitivity analysis

of the results with respect to key design parameters and

alternative trust protocol designs. Section VI discusses the

applicability issues allowing one to make use of the

analysis results obtained for maximizing protocol

performance at runtime in response to dynamically

changing environment conditions. Section VII concludes

the paper and outlines some future research directions.

II. RELATED WORK

Existing work on task assignment MOO can be

categorized into two classes, depending on whether the

work deals with system objectives for global welfare and/or

individual objectives for individual welfare. Table I

compares Class 1 and Class 2 solution techniques.

Class 1 represents the case in which there are multiple

system objectives for global welfare, but there are no

individual objectives. Class 2 represents the case in which

there are multiple system objectives for global welfare but

there are also individual objectives for individual welfare

which may induce or hinder global welfare. Our work falls

under Class 2 as we consider the presence of malicious

nodes performing malicious attacks and colluding to

monopoly service as the individual objectives for individual

welfare.

Class 1 concerns solving a task assignment MOO

problem to maximize global welfare but individual nodes

do not have individual objectives. Balicki [5] studied a task

assignment problem in a distributed environment based on

a multi-objective quantum-based algorithm. The objectives

are to maximize system reliability while minimizing

workload and communication cost, all are global welfare.

Chen et al. [12] solved a task assignment problem in a

multi-robot environment consisting of heterogeneous

mobile robots, given resource constraints associated with

tasks. They proposed a heuristic leader-follower structure

that identifies optimal solutions of the task allocation

problems. Guo et al. [18] examined a task assignment

problem using a particle swarm optimization technique that

minimizes task execution time and cost for data transfer

between processors in cloud computing environments. Xie

and Qin [31] proposed an energy-efficient task assignment

protocol based on the tradeoff between energy and delay to

execute a task for collaborative networked embedded

systems to minimize the length of schedules of task

allocation and energy consumption. Shen et al. [26] develop

a trust-based solution for task assignment in grid

management with multiple system objectives including

security, reliability, load balance, and throughput. Solutions

fall under Class 1 assume no malicious entity in the system,

which is not a valid assumption in a service-oriented

MANET environment which very likely will be populated

with malicious nodes acting for own interest and colluding

for individual welfare. In our work, we develop a trust

management protocol specifically for autonomous service-

oriented MANET applications. We demonstrate the

resiliency and convergence properties of our trust protocol

design for service-oriented MANETs in the presence of

malicious nodes performing bad-mouthing, ballot-stuffing,

opportunistic service, and self-promotion attacks.

Class 2 concerns solving a task assignment MOO

problem to maximize global welfare but nodes may have

separate individual objectives for individual welfare.

Anagnostopoulos et al. [4] explored a solution for a task

assignment problem by matching a set of skilled people to

each task. Their solution aims to minimize the

communication overhead while balancing workloads by

solving a single objective problem that considers multiple

objectives. Edalat et al. [16] proposed an auction-based task

assignment solution in wireless sensor networks with two

global objectives: maximizing the overall network lifetime

while satisfying application deadlines. An individual entity

seeks to maximize its payoff by bidding on a task with low

workload so as to consume less energy but have a high

chance of being assigned to the task. Szabo and Kroeger

[27] examined a task allocation problem in cloud

computing using evolutionary genetic algorithms. This

work has the system goals to minimize workflows, delay

introduced by the task completion, and communication cost

while each individual user wants to minimize cost and

service delay. Tolmidis and Petrou [28] proposed an

auction theoretic approach to solve a task allocation

problem in multi-robot systems where each robot is able to

perform several functions. An individual robot has the goals

to minimize energy consumption and delay in task

completion while maximizing the degree of relevancy and

priority level to an assigned task. Similarly, the system aims

to maximize the number of completed tasks and minimize

delay introduced due to task assignment and completion.

Wang et al. [30] proposed a trust-based task assignment

technique for mobile ad hoc grid computing environments

for maximizing mission completion ratio based on required

levels of security and reliability in task assignment and

minimizing delay to mission completion. The main

drawback of the existing work cited above is that the worst

case runtime complexity is exponential because the MOO

problem to be solved is NP-complete [17], making it

unsuitable to be deployed at runtime. Our work remedies

this problem by devising trust-based heuristic solutions that

incur only polynomial runtime complexity, and verifying

that the performance of our trust-based solution approaches

the ideal MOO performance with perfect knowledge of

node status.

This work substantially extends [29] by (a) adding a

new literature survey section comparing and contrasting our

work with existing work in task assignment MOO problem

Table I: A Comparison of Class 1 and Class 2 Solution Techniques.

Reference Individual objective System objective Solution technique Problem to solve

Class 1

Balicki [5] NA

Minimize workload and cost

while maximizing system

reliability

Quantum-based

evolutionary algorithm
Task assignment

Chen et al.

[12]

NA Maximize coalition utility while

minimizing the number of robots

involved in a task

Heuristic leader-follower

based coalition algorithm

Task allocation

Guo et al. [18] NA Minimize task execution time

while minimizing data transfer

time

Particle swarm

optimization

Task assignment

Shen et al. [26] NA Maximize security, reliability,

load balance, and throughput

Trust-driven grid job

scheduling

Resource allocation

Xie et al. [31] NA Maximize energy savings while

minimizing the length of the

schedule of task allocation

Energy-delay tradeoff

algorithm

Task allocation

Class 2

Anagnostopou-

los et al. [4]

maximize use of individual

skill set, minimize

workload, and minimize

communication overhead

Satisfy the team skill sets

requirement, minimize

communication overhead, and

maximize load balance

Bi-criteria approximation

algorithm

Team formation

Edalat et al.

[16]
Minimize bid waiting time

Minimize energy consumption

and delay

Reverse auction in

cooperative game
Task allocation

Szabo et al.

[27]

Minimize cost and delay Minimize workflows, task

completion time, and

communication overhead

Evolutionary genetic

algorithm

Task allocation

Tolmidis et al.

[28]

Minimize energy

consumption and task

completion time while

maximizing the degree of

relevancy and task priority

Maximize the number of tasks

completed while minimizing

delay

Auction theory Multi-robots task

allocation

Wang et al.

[30]

Minimize energy

consumption while

maximizing load balance

Maximize mission completion

ratio based on the relevance of

security and reliability for node-

to-task assignment and minimize

mission completion time

Trust-based max-min

algorithm

Task scheduling

solving; (b) adding a cost analysis of the runtime

communication/memory overhead involved during trust

protocol execution; (c) adding an extensive sensitivity

analysis of the results with respect to key design parameters

and alternative trust protocol designs, as well as providing

insightful conclusions for designing the best trust protocol

and trust-based task assignment algorithm in service-

oriented MANETs, and (d) developing a novel method to

apply the best trust parameter settings upon detection of

dynamically changing environmental conditions to

maximize MOO performance.

III. SYSTEM MODEL

In this section, we discuss the system model including

the network model, attack/defense model, trust protocol,

task model, and system objectives. Table II summarizes the

acronyms and symbols used in the paper.

A. Network Model

We consider a service-oriented MANET environment in

which a node has two roles in executing operations: (1) as a

service provider (SP) to support an operation; and (2) as a

service requestor (SR) to request services in the process of

initiating (and executing) a task. Nodes may be

heterogeneous with vastly different functionalities and

natures. For example, the entities may be sensors, robots,

unmanned vehicles or other devices, dismounted soldiers or

first response personnel carrying sensors or handheld

devices, and manned vehicles with various types of

equipment. We consider M ordered node types, 1, 2, … M,

such that a higher node type has a higher capability than a

lower node type. A node with a high node type also may

involve a human operator and thus has additional trust

dimensions pertaining to social trust [6] [9] [10]. When

mobile nodes are not involved in a task, they follow their

routine-work mobility model. We use SWIM [21] in this

paper to model social routine work mobility patterns of

Table II: Acronyms and Symbols.

Acronym/Symbol Meaning

MOO Multi-objective optimization

SP Service provider

SR Service requester

CN Commander node

TL Task lead

NT Node type

STO Service trust only

SSTRT Separating service trust from recommendation trust

ISTRT Integrating service trust with recommendation trust

α, β Amount of positive evidence, amount of negative evidence

𝒩, |𝒩| Node set in the system, # of nodes in the system

𝒯, |𝒯| Task set in the system, # of tasks in the system

R, U, D Reliability, utilization variance, delay to task completion

�̅�, �̅�, �̅� Scaled R, U, D

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 Weights associated with �̅�, �̅�, �̅� for multi-objective optimization

𝑃𝑀𝑂𝑂 𝜔𝑅�̅� + 𝜔𝑈�̅� + 𝜔𝐷�̅�

[𝐼𝑚, 𝑁𝑇𝑚, 𝑁𝑚, 𝐹𝑚, (𝑇𝑚
𝑠𝑡𝑎𝑟𝑡, 𝑇𝑚

𝑒𝑛𝑑)] Task m’s specification: importance, node type, number of nodes needed

 for task execution, task flow, start time, and end time (deadline)

𝑁𝐵 Number of bidders in response to task m’s specification advertisement

[𝑈𝑗 , 𝐷𝑗 , 𝑁𝑇𝑗] Node j’s specification: utilization, execution time, node type

𝐷𝑇𝑚, 𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛 Task m execution duration, mission execution duration

𝑇𝑖,𝑗 Trust of node i has toward node j

𝑛𝑟𝑒𝑐 Maximum number of recommenders for trust propagation

Pb Percentage of malicious nodes

Fig. 1: System Architecture of Nodes and Tasks.

human operators. The implementation detail will be

discussed later in Section V.

Fig. 1 illustrates the system architecture of nodes and

tasks. We consider a mission-driven service-oriented

MANET that must handle dynamically arriving tasks in a

mission setting to achieve multiple system objectives. A

commander node (CN) governs the mission team. Under

the CN, multiple task leads (TLs) lead task teams. The CN

selects TLs at the beginning of network deployment based

on the trustworthiness of nodes known to CN a priori and

the TLs (acting as SRs) each recruit trustworthy SPs

dynamically for executing the tasks assigned to them. Tasks

that overlap in time are grouped into a chunk. In Fig. 1,

tasks 1-4 are grouped into chunk 1 and tasks 5-6 are

grouped into chunk 2. Tasks in the same chunk must

compete with each other for services provided by qualified

SPs as each SP can participate in only one task at a time.

Here we make the assumption that the TLs selected by the

CN are fully trusted. In military command and control

environments, a hierarchical chain of command and control

is a common network structure [2] wherein this assumption

is justified. One example is a tactical convoy operation

where a commander and multiple assistant commanders

work together to control members to maximize

communication and efficiency. Assistant commanders are

selected a priori and the trust relationships between the

commander and assistant commanders are assumed [1].

B. Attack/Defense Model

A node in the service-oriented MANET may exhibit the

following malicious behaviors for individual welfare:

1. Bad-mouthing attacks: a malicious node may collude

with other malicious nodes to ruin the reputation of a

good node by providing bad recommendations against

the good node so as to decrease the chance of the good

node being selected for task execution. Our trust

protocol deals with bad-mouthing attacks by belief

discounting [20] such that the lesser the trustor node

trusts the recommender, the more the recommendation

is discounted.

2. Ballot-stuffing attacks: a malicious node may collude

with other malicious nodes to boost the reputation of a

bad node by providing good recommendations for the

bad node so as to increase the chance of the bad node

being selected for task execution. Our trust protocol

deals with ballot-stuffing attacks also by belief

discounting.

3. Opportunistic service attacks: a malicious node can

provide good service to gain high reputation when it

senses its reputation is low, and can provide bad

service when it senses its reputation is high. Our trust

protocol deals with opportunistic service attacks by

severely punishing nodes that fail to provide the

advertised service quality during task execution.

Following the Byzantine Failure model [22], we

assume that a task fails when at least 1/3 nodes

providing bad service. Here we note that with good

reputation, a malicious node can effectively collude

with other bad nodes to perform bad-mouthing and

ballot-stuffing attacks. Hence, a malicious node will

provide good service (at its true service capability)

most of the time in order to gain high reputation.

However, a malicious node can opportunistically

collude with other malicious nodes to fail a task, when

it senses that there are enough bad nodes around (at

least 1/3) at the expense of trust loss.

4. Self-promotion attacks: A malicious node can boost its

service quality or lie about its utilization information so

as to increase its chance of being selected as the SP.

Our trust protocol deals with self-promotion attacks by

severely punishing nodes that lie about their utilization

or fail to provide the advertised service quality during

task execution. In practice, self-promotion attacks can

be easily detected, and as a result a malicious node

would expose itself as vulnerable, resulting in a low

reputation. This attack is less likely to be performed by

a smart attacker.

Here, we note that our trust protocol design is to defend

against inside attackers (who are legitimate members of the

service-oriented MANET community), not outside

attackers. Forgery of trust values can indeed happen during

our protocol execution in the form of bad-mouthing and

ballot-stuffing attacks by inside attackers. Opportunistic

service attacks and self-promotion attacks are also

performed by inside attackers. We assume that a MANET

member key, as a symmetric key, is used for

communications among members to prevent outside

attackers. Public Key Infrastructure (PKI) can be used to

uniquely identify each node and can be useful to defend

against identity or Sybil attackers [24]. However, it is not

required in our protocol execution. Defending against

communication-level attacks such as Denial-of-Service,

identity or Sybil attacks is outside the scope of this paper.

We assume such behaviors are detected by intrusion

detection mechanisms [3] [6] [13] [23] [25] [33].

A node is a legitimate node if it is a member of the

mobile ad hoc group. Our trust-based protocol does not use

blacklisting to identify “bad” legitimate nodes and prevent

them from task bidding. Blacklisting is a non-trust-based

baseline protocol against which our trust-based protocol is

compared for comparative performance analysis. Our trust

protocol simply assesses a trust value for each legitimate

node but allows all legitimate nodes to bid for tasks. A

legitimate node with a low trust value is automatically

filtered out (i.e., not selected) during task allocation

because they are not trustworthy to complete the task

assignment. So in effect we filter out less trustworthy

nodes, although we do not label these less trustworthy

nodes as “bad” nodes. Note that to incorporate blacklisting

into our trust-based protocol, we must define a minimum

trust threshold below which a node is blacklisted as “bad”

and therefore prevented from participating in task bidding.

This approach requires the best minimum trust threshold

value to be identified, which is an error-prone process. Our

trust protocol does not classify nodes as “good” or “bad”

but simply gives them each a trust value to assess their

trustworthiness in task execution.

C. Trust Protocol and Cost Analysis

Our baseline trust protocol uses Beta (α, β) distribution

[20] modeling a trust value in the range of [0, 1] as a

random variable where α and β represent the amounts of

positive service evidence and negative service evidence

respectively, such that the estimated mean trust value of a

node is α/(α+β). A node uses the mean of Beta (α, β)

distribution as the trust value it has toward another node.

When a task which a node participated in is executed

successfully (unsuccessfully), this node’s α is incremented

by ∆𝛼 (β is incremented by ∆𝛽 correspondingly). When we

want to severely punish malicious behavior, we set ∆𝛽

≫ ∆𝛼 . In this paper, we propose a “penalty severity”

parameter denoted by ∆𝛽:∆𝛼 to analyze its effect of trust

penalty severity on our trust protocol performance. For all

nodes, the initial α and β values are 1, representing

ignorance with the initial trust value of 0.5.

All nodes can serve as recommenders based on self-

observation experiences. To reduce message overhead

especially for large MANETs, trust propagation is not by

flooding. Instead, trust propagation is performed (via a

recommendation message) only when a trustor node

encounters a recommender node (not necessarily a TL). A

trustor node evaluating a trustee node will select

𝑛𝑟𝑒𝑐 recommenders whom it trusts most to provide trust

recommendations toward the trustee node. A recommender

should only pass its direct interaction experience with the

trustee node in terms of (α, β) as a recommendation to

avoid dependence and looping. After a task is completed,

the TL can serve as a recommender toward the members in

its team because it had gathered interaction experiences.

For trust aggregation, each trustor aggregates trust evidence

of its own (α, β) with a recommender’s (α, β) toward the

trustee node. Note that a recommender’s (α, β) trust

evidence is discounted based on the concept of belief

discounting [20], such that the lesser the trustor node trusts

the recommender, the more the recommendation is

discounted. Because a bad node can perform bad-mouthing

and ballot-stuffing attacks, it can provide a bad

recommendation (with 𝛽 ≫ 𝛼) toward a good node and a

good recommendation (with 𝛼 ≫ 𝛽) toward a bad node,

respectively. It can be shown that the Beta reputation

system is resilient to such attacks if the trustor node has a

low trust value toward the bad recommender [20].

Below we do a cost analysis of the

communication/memory/energy-consumption overhead

involved. Based on our protocol design, a recommender

propagates its (α, β) recommendations toward other |𝒩| −
2 trustee nodes upon encountering a trustor node. The

communication overhead per node in terms of bits/sec

(from node i’s perspective) is ∑ 𝜆𝑖𝑗
|𝒩|−1

𝑗=1
(|𝒩| − 2)(𝑏𝐼 +

𝑏𝑜) where 𝑏𝐼 is the information bits holding (α, β) of a

trustee node, 𝑏𝑜 is the encryption bits for secure

communication, and 𝜆𝑖𝑗 is the encountering rate of node i

(the recommender) with node j (the trustor node) which can

be derived by analyzing the encounter pattern, e.g., a

power-law distribution, in a mobility model such as SWIM

[21] and LSWTC [8]. Here we note that because trust

propagation is encountered-based, trust convergence does

not depend on the size of the network but depends on the

encountering rate of node i (the recommender) with node j

(the trustor node). Essentially upon encountering node j,

node i exchanges trust information with node j in terms of

the (α, β) value pairs of other nodes in the MANET

community. In practice, the message overhead is lower

because one can combine all required information into one

message during transmission.

The energy-consumption overhead per node in terms of

J/sec (from node i’s perspective) is the sum of energy

consumption rate for reception and energy consumption

rate for transmission, i.e., ∑ 𝜆𝑖𝑗
|𝒩|−1

𝑗=1
(|𝒩| − 2)(𝑏𝐼 +

𝑏𝑜)𝐸𝑅 + ∑ 𝜆𝑖𝑗
|𝒩|−1

𝑗=1
(|𝒩| − 2)(𝑏𝐼 + 𝑏𝑜) (1 +

1

𝑝
) 𝐸𝑇 where

𝐸𝑅 is the reception energy consumption rate (J/bit), 𝐸𝑇 is

the transmission energy consumption rate (J/bit), and

𝑝 = 𝑒
− ∑ 𝜆𝑖𝑗

|𝒩|−1

𝑗=1
(𝑇𝑅𝑇𝑆+𝑇𝐶𝑇𝑆)

is the probability that other

nodes within radio range are not transmitting during TRTS +

TCTS and thus 1/p is the number of trials before node i clears

the channel for transmission based on the RTS/CTS

transmission protocol [11]. Here 𝜆𝑖𝑗 is the encountering rate

between node i and node j, accounting for the rate at which

node j will transmit a recommendation packet to node i

when they encounter during TRTS + TCTS, thus causing a

collision and triggering a packet retransmission.

The memory overhead of our protocol is minimum.

Each node only needs to allocate space to store its (α, β)

value pairs toward other |𝒩| − 1 nodes in the MANET

community.

D. Task Model

Tasks arrive asynchronously and may start and

complete at different times. Each task is characterized by

the following unique properties:

 Importance (Im) refers to the impact of task failure on the

mission with a higher value indicating higher

importance.

 Required node type (𝑁𝑇𝑚) indicates the required

functionality of nodes for executing task m. A node with

a higher node type has a higher capability and, because

of human involvement, also has social trust dimensions.

 Required number of nodes (Nm) refers to the number of

nodes needed for execution of task m.

 Task execution Flow (Fm) indicates the task structure

(sequential, parallel or both) by which nodes coordinate

with each other. For simplicity, we assume Nm nodes

execute the task sequentially.

 Task execution start time (𝑇𝑚
𝑠𝑡𝑎𝑟𝑡) and end time (𝑇𝑚

𝑒𝑛𝑑).
A task fails when (a) the TL cannot recruit enough SPs

to execute the task; (b) the task is not completed by the task

end time (deadline), or (c) when it suffers from a Byzantine

failure due to opportunistic service attacks as described in

Section III.B which can result from malicious nodes

purposely delaying task execution time to cause a task

failure. For case (a), the TL will restart the bidding process

until the deadline is reached before announcing failure.

When a task fails due to (b) or (c), we assume that the TL

can differentiate the guilty parties from lawful members

and will apply a penalty to guilty parties by either

blacklisting the guilty parties for the non-trust-based

scheme, or applying a trust loss to the guilty parties in

terms of ∆𝛽 for the trust-based scheme as discussed in

Section III.C.

E. System Objectives

Without loss of generality, we consider three objectives,

namely, mission reliability (R), utilization variance (U), and

delay to task completion (D). We note that energy may also

be an important objective for MANET applications which

must run a long time without energy replenishment. In such

environments, energy consumption minimization is another

conflicting goal with reliability maximization and delay

minimization. The trust-based algorithm design principle

for maximizing task allocation MOO performance for the

three objectives considered in this paper can still be applied

if additional objectives (such as energy minimization) need

to be considered.

One can view minimizing utilization variance as

maximizing load balance, and minimizing delay to task

completion as maximizing QoS. A TL tends to select high

QoS nodes because they can reduce service delay.

However, always selecting high QoS nodes will cause the

utility of these high QoS nodes to be extremely high

compared with other nodes, thus causing a high utilization

variance. Similarly, a TL tends to select highly reliable

nodes because they can increase task reliability. However,

always selecting highly reliable nodes will cause the utility

of these highly reliable nodes to be extremely high

compared with other nodes, thus again causing a high

utilization variance. Consequently, there is a tradeoff

between load balancing, task delay, and task reliability.

These three objectives are further defined below.

 Mission Reliability (R): This is the task reliability

weighted by the task importance 𝐼𝑚, computed by:

𝑅 = ∑ 𝑅𝑚
𝐼𝑚

∑ 𝐼𝑚𝑎𝑙𝑙

𝑚∈𝒯

 (1)

where 𝒯 is the set of tasks in the mission, 𝑅𝑚 is the

reliability of task m such that 𝑅𝑚 = 1 when task m

succeeds; 𝑅𝑚 = 0 otherwise, and 𝐼𝑚 is task m’s

importance. A task fails when (a) the TL cannot recruit

enough SPs to execute the task; (b) the task is not

completed by the task end time (deadline), or (c) when it

suffers from a Byzantine failure due to opportunistic

service attacks. Higher R is desirable. To achieve this

objective, a TL should select highly trustworthy nodes.

 Utilization Variance (U): This measures the utilization

variance of nodes and is defined by:

𝑈 =
∑ (|𝑈𝑖−�̃�|)𝑖∈𝒩

|𝒩|
 where 𝑈𝑖 = ∑ 𝑈𝑖,𝑚𝑚∈𝒯 (2)

where 𝒩 is the set of legitimate member nodes, i.e., nodes

that are recognized as legitimate members of the ad hoc

group and can bid for tasks. 𝑈𝑖,𝑚 is 𝐷𝑇𝑚/𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛 if node i

executes task m, and is zero otherwise, where 𝐷𝑇𝑚 is the

task duration and 𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛is the mission duration. 𝑈𝑖 is the

overall utilization of node i. �̃� is the average utilization of

all nodes. |𝑈𝑖 − �̃�| is the utilization variance of node i to

the average. Lower 𝑈 is desirable as it minimizes the

utilization variance and achieves the load balance objective.

To achieve this goal, a TL should select nodes with low

utilization.

 Delay to Task Completion (D): This is the average delay

to task completion over all tasks, defined by:

𝐷 =
∑ 𝐷𝑚𝑚∈𝒯

|𝒯|
 where 𝐷𝑚 = 𝑇𝑚

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
− 𝑇𝑚

𝑠𝑡𝑎𝑟𝑡 (3)

where 𝒯 is the set of tasks in the mission, 𝑇𝑚
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

 is the

actual completion time of task m, and 𝑇𝑚
𝑠𝑡𝑎𝑟𝑡 is the start

time of task m. It is desirable to complete task m as early as

possible before the drop-dead end time 𝑇𝑚
𝑒𝑛𝑑 . If

𝑇𝑚
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

> 𝑇𝑚
𝑒𝑛𝑑 , then task m fails and 𝐷𝑚 is set to

𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛. Lower D is desirable. To achieve this goal, a TL

should select nodes with low execution time.

To formulate the MOO problem as a maximization

problem, we first scale R, U and D into �̅�, �̅� and �̅� such

that they each are in the range of [0, 1] and the higher the

value to 1, the better the objective is achieved. Specifically,

we scale R, U and D by [32]:

�̅� =
𝑅 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
; �̅� =

𝑈𝑚𝑎𝑥 − 𝑈

𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
; �̅� =

𝐷𝑚𝑎𝑥 − 𝐷

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
 (4)

Here 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥 and 𝑈𝑚𝑖𝑛, and 𝐷𝑚𝑎𝑥 and

𝐷𝑚𝑖𝑛 are the maximum and minimum values of R, U, and

D, respectively at the mission level. These values define the

maximum achievable and minimum tolerable solution

quality, as determined by the user and system designer

during the specification stage. One can view �̅� after scaling

as “load balance” in the range of [0, 1], and �̅� as “QoS” in

the range of [0, 1]. Here we aim to solve the MOO problem

by maximizing �̅� , �̅� and �̅�, given node and task

characteristics as input. We adopt the weighted sum form

converting the MOO problem to a single-objective

optimization problem. Specifically, we formulate the MOO

problem as:

Maximize 𝑃𝑀𝑂𝑂 = 𝜔𝑅�̅� + 𝜔𝑈�̅� + 𝜔𝐷�̅� (5)

Here 𝜔𝑅 , 𝜔𝑈 and 𝜔𝐷 are the weights associated with �̅�,
�̅� and 𝐷,̅ respectively, with 𝜔𝑅+𝜔𝑈+𝜔𝐷 = 1.

IV. TRUST-BASED DYNAMIC TASK

ASSIGNMENT

We have two layers of task assignment: by a CN to TLs

and by each TL to nodes. We assume that the TLs selected

by the CN are fully trusted. A TL is assigned to execute one

task at a time. A node can participate in only one task at a

time, although it may participate in multiple tasks during its

lifetime. TLs advertise tasks and free nodes respond as

described next. Below we describe our heuristic-based

dynamic task assignment algorithm design based on

auctioning with local knowledge of node status, with the

objective to achieve MOO with a polynomial runtime

TL Execution in each task chunk:

1: 𝒊𝒇 a task is assigned 𝒕𝒉𝒆𝒏

2: 𝑁𝑚 ← number of nodes required for the task

3: 𝑡𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒

4: 𝒘𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑡𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝒅𝒐

5: advertise task specification to all SPs

6: 𝑆 ← all SPs that bid the task

7: �̂� ← SPs that are selected for task execution based on Eq. (8)

8: send offers to �̂�

9: �̂�′ ← SPs that commit to the task

10: 𝑁𝑚 ← 𝑁𝑚 − |�̂�′|
11: 𝒊𝒇 𝑁𝑚 == 0 𝒕𝒉𝒆𝒏

12: 𝑡𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 ← 𝑡𝑟𝑢𝑒

13: wait for task execution

14: update and broadcast trust of participant SPs

15: 𝒆𝒏𝒅

16: end

17: end

SP Execution in each task chunk:

18: 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒, 𝑃 ← ∅, 𝑅 ← ∅

19: 𝒊𝒇 task requests received 𝒂𝒏𝒅 𝑛𝑜𝑡 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 𝒕𝒉𝒆𝒏

20: 𝑃 ← received task requests

22: 𝑁𝑇𝑥 ←SP’s node type

21: foreach 𝑝 𝑖𝑛 𝑃

22: 𝑁𝑇𝑝 ← required node type by 𝑝

23: 𝒊𝒇 𝑁𝑇𝑥 ≥ 𝑁𝑇𝑝 𝒕𝒉𝒆𝒏

24: send bidding information to the TL of 𝑝

25: 𝒆𝒏𝒅

26: 𝒆𝒏𝒅

27: 𝑅 ← all tasks that make offers

28: 𝒊𝒇 |𝑅| ≥ 1 𝒕𝒉𝒆𝒏

29: 𝑟 ← the task with the highest importance in 𝑅

31: send task commitment to the TL of 𝑟

32: 𝒆𝒏𝒅

33: wait for the TL decision

34: 𝒊𝒇 SP is selected 𝒕𝒉𝒆𝒏

35: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒

36: 𝒊𝒇 SP is malicious 𝒂𝒏𝒅 Byzantine failure condition meets 𝒕𝒉𝒆𝒏

37: fail 𝑟

38: 𝒆𝒍𝒔𝒆

39: execute 𝑟

40: 𝒆𝒏𝒅

41: 𝒆𝒏𝒅

42: 𝒆𝒏𝒅

Fig. 2: Actions taken by the SR and SPs during Auctioning for Task Assignment.

complexity. Fig. 2 lists the pseudo code of the actions taken

by the TL acting as the SR and the actions taken by well-

behaved and malicious SPs during the execution of the

trust-based task allocation algorithm.

A. Advertisement of Task Specification

The task specification disseminated during the auction

process includes a set of requirements for task execution

specified by:

[𝐼𝐷𝑚, 𝐼𝑚, 𝑁𝑇𝑚, 𝐹𝑚, (𝑇𝑚
𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑚

𝑒𝑛𝑑)] (6)

where 𝐼𝐷𝑚, 𝐼𝑚, 𝑁𝑇𝑚, 𝐹𝑚, 𝑇𝑚
𝑠𝑡𝑎𝑟𝑡and 𝑇𝑚

𝑒𝑛𝑑 are task m’s

identifier, importance, node type, number of nodes needed

for task execution, task flow, start time, and end time

(deadline), respectively.

B. Bidding a Task

When a node receives the task specification message by

a TL, it makes a bidding decision on whether to bid the task

or not. A node meeting the node type requirement 𝑁𝑇𝑚 is

considered capable of handling the required work elements

imposed by task m and will respond to the request with its

node ID if it is free. To help the TL make an informed

decision, node j sends its information to the TL as follows:

[𝐼𝐷𝑗 , 𝑈𝑗 , 𝐷𝑗 , 𝑁𝑇𝑗] (7)

 Here 𝐼𝐷𝑗 is the identifier of node j, 𝑈𝑗 is the utilization

of node j so far at the time of bidding, 𝐷𝑗 is the time

required by node j to execute task m, and 𝑁𝑇𝑗 is the node

type of node j.

C. Member Selection

TLs implicitly seek to optimize the MOO function.

However, to achieve run-time efficiency, they adopt

heuristics with local knowledge of node status to work

independently of each other. The TL of task m ranks all

bidding nodes (node j’s) based on 𝜔𝑅�̅�𝑗 + 𝜔𝑈�̅�𝑗 + 𝜔𝐷�̅�𝑗

where �̅�𝑗, �̅�𝑗 and �̅�𝑗 are defined as:

𝑅�̅� = 𝑇𝑇𝐿,𝑗; 𝑈�̅� =
𝑈𝑚𝑎𝑥 − 𝑈𝑗

𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
; 𝐷�̅� =

𝐷𝑚𝑎𝑥 − 𝐷𝑗

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
 (8)

Here a TL considers 𝑈𝑗 (utilization of node j) instead of

U (utilization variance of all nodes who have participated in

at least one task) because it does not have global knowledge

about the latter and picking nodes to minimize utilization

variance essentially can be achieved by picking bidding

nodes with low 𝑈𝑗 (equivalently with high �̅�𝑗 after scaling).

A TL also does not know the reliability of node j. So the

heuristics used is to relate the reliability of node j with the

trust value the TL has toward node j, i.e., �̅�𝑗 = 𝑇𝑇𝐿,𝑗 to

predict the task reliability, if node j (a bidder) is selected for

task execution.

Top 𝑁𝑚 nodes with the highest ranking scores are

selected to execute task m. Here we note that the trust-based

algorithm has a polynomial runtime complexity

𝑂(𝑁𝐵𝑙𝑜𝑔(𝑁𝑚)) where 𝑁𝐵 is the number of bidders. This is

so because it only needs to examine all bidders once and

selects the top ranked 𝑁𝑚 bidders.

D. Task Commitment by Nodes

A node may receive more than one offer from multiple

TLs where tasks arrive concurrently. A TL sends out a

winner notification with the full list of winners where the

winners are potential members that are selected by the TL

to execute its task. A node determines which task to join

based on the expected payoff. This depends on if the node

is a good node or a bad node. For a good node, it selects the

task of the highest importance to join so as obtain the

highest trust gain. For a malicious node, it does the same in

order to gain high trust except when the Byzantine failure

[22] condition is satisfied, i.e., at least 1/3 of the task

members are malicious nodes. In the latter case, the bad

node selects the highest important task that is bound to fail

to join to cause the greatest damage to the mission at the

expense of trust loss. Here we note that ballot-stuffing will

not allow a malicious node to maintain high trust while

inflicting damage because (1) our protocol will severely

punish the malicious node for failing the task by

significantly reducing the malicious node’s trust value; (2)

our protocol will discount false recommendations from

other malicious nodes performing ballot-stuffing attacks

due to their low trust values.

Table III: Parameters Used in Simulation.
Parameter Value Parameter Value

(|𝒩| , 𝑁𝑚) (20, 3), (100,15),

(1000, 150)

|𝒯| 180 tasks

𝐼𝑚 1-5 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 variable

𝐷𝑗 𝑈(1,5) min 𝑃𝑏 10%-70%

𝑇𝑚
𝑒𝑛𝑑 − 𝑇𝑚

𝑠𝑡𝑎𝑟𝑡 𝑈(𝑁𝑚, 5𝑁𝑚)min 𝑛𝑟𝑒𝑐 3

∆𝛼 𝐼𝑚 ∆𝛽:∆𝛼 0.1 − 10

Slope of

SWIM

1.45 Max pause time

of SWIM

4 hours

V. NUMERICAL RESULTS AND ANALYSIS

In this section, we conduct a comparative performance

analysis of trust-based solutions against ideal solutions

based on perfect knowledge, and non-trust-based solutions

in terms of MOO performance with MATLAB simulation.

The mobility pattern of each node is modeled by the SWIM

mobility pattern based on the C++ simulator in [21]. We

also perform sensitivity analysis of the results with respect

to key design parameters and alternative trust protocol

designs.

Table III summarizes key parameter values used for this

case study. Our example system considers |𝒩| =20, 100,

and 1000 nodes for small-sized, medium-sized, and large-

sized problems, respectively. For the small-sized problem,

each task will need only 𝑁𝑚 = 3 nodes, for the medium-

sized problem, 𝑁𝑚 = 15 nodes, while for the large-sized

problem, 𝑁𝑚 = 150 nodes. For all problems, there are

|𝒯|=180 tasks arriving dynamically. A node’s capability is

specified by its node type, ranging from 1 to 4 equally

divided among |𝒩| nodes. For simplicity, the required node

type is 1 so all nodes are qualified for bidding. A node’s

service quality in terms of service time required (regardless

of whether it is malicious) is specified by 𝐷𝑗 which follows

uniform distribution U(1, 5) min. Tasks with overlapping

start and end times are grouped into a concurrent “chunk.”

Task importance is in the range from 1 to 5. We simulate

task m’s execution duration 𝐷𝑇𝑚 by 𝑈(𝑁𝑚, 5𝑁𝑚) such that

𝑇𝑚
𝑒𝑛𝑑 is 𝑇𝑚

𝑠𝑡𝑎𝑟𝑡 + 𝐷𝑇𝑚, defining the task end time (deadline)

by which a task must be completed, or it will fail. An effect

of this is that nodes with a long execution time delay will

not be selected for task execution by the TL of the task to

prevent failure. A task’s execution time is the sum of those

of individual nodes selected for task execution since we

consider sequential execution in this paper. The percentage

of malicious nodes 𝑃𝑏 ranges from 10% to 70% whose

effect will be analyzed in this section. The weights

associated with multiple objectives, i.e.,𝑅,̅ �̅� and �̅� in the

MOO problem are specified by a weight ratio

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 which we vary to analyze its sensitivity on

MOO performance. The system designer must provide the

weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 as input to reflect the relative

importance of �̅� vs. �̅� and �̅� as dictated by the application

requirement.

We consider |𝒩| = 20, 100, and 1000 nodes for small-

sized, medium-sized, and large-sized problems,

respectively, moving according to the SWIM mobility

model [21] modeling human social behaviors in an

m×m=16×16 (4km×4km) operational region, with each

region covering R=250m radio radius based on 802.11n.

The operational area and the radio range remain the same

for all problems. In SWIM, a node has a home location and

a number of popular places. A node makes a move to one of

the population places based on a prescribed pattern. The

probability of a location being selected is higher if it is

closer to the node’s home location or if it has a higher

popularity (visited by more nodes). Once a node has chosen

its next destination, it moves towards the destination

following a straight line and with a constant speed that

equals the movement distance. When reaching the

destination, the node pauses at the destination location for a

period of time following a bounded power law distribution

with the slope set to 1.45 (as in [21]) and the maximum

pause time set to 4 hours. In addition, when a node is

selected to execute a task, it moves to the location of the TL

and follows the TL over the task execution duration. After

completing a task, a node resumes its SWIM mobility

pattern until it is selected again for executing another task.

The movements and locations of |𝒩| mobile nodes are

simulated this way and then integrated with Matlab for

evaluating trust-based, ideal, and non-trust-based solutions.

A malicious node performs attacks as specified in the

attack model in Section III.B. For the trust protocol, the

number of recommenders 𝑛𝑟𝑒𝑐 is set to 3. The increment to

positive evidence ∆𝛼 is set to 𝐼𝑚, while the increment to

negative evidence ∆𝛽 is set to 𝐼𝑚 multiplied by the penalty

severity parameter (i.e., ∆𝛽:∆𝛼) in the range of 0.1 to 10,

with a larger number representing a more severe penalty to

negative evidence. We will analyze the effect of severely

punishing malicious behavior on MOO performance.

We consider two baseline algorithms against which our

trust-based algorithm is compared in the performance

analysis, namely, ideal selection with perfect knowledge of

node status vs. non-trust-based selection, as follows:

1. Ideal selection: The TL of task m ranks all bidding

nodes in the same way as the trust-based algorithm

described earlier except that it has perfect knowledge of

node status, i.e., �̅�𝑗 = 1 if node j is a good node, and

�̅�𝑗 = 0 if node j is malicious. The ideal solution is

impossible to achieve; it is just used to predict the

performance upper bound to the trust-based solution.

2. Non-trust-based selection: The TL of task m also ranks

all bidding nodes in the same way as the trust-based

algorithm except that �̅�𝑗 =0 if the bidding node is

blacklisted; �̅�𝑗 =1 if the bidding node is not blacklisted

and had participated in a successful task execution for

which the TL was the task lead; and �̅�𝑗 =0.5 (no

knowledge) otherwise. We assume intelligent behavior

so that each TL can learn from experiences. If a TL

experiences a task failure, it blacklists nodes

participated in the task execution and excludes them

from a future node-to-task assignment for which it is the

TL. Top 𝑁𝑚 ranked nodes are selected for executing

task m.

A. Comparative Performance Analysis

Figs. 3, 4, and 5 present the solution quality in terms of

the scaled mission reliability (�̅�), load balance (�̅�), QoS

(�̅�), and 𝑃𝑀𝑂𝑂obtained by the trust-based solution against

the ideal solution and the non-trust-based solution for the

small-sized (|𝒩| = 20, 𝑁𝑚 = 3), medium-sized (|𝒩| =

100, 𝑁𝑚 = 15), and large-sized (|𝒩| = 1000, 𝑁𝑚 = 150)

problems, respectively, as a function of the percentage of

malicious nodes in the range of 10% to 70%, with

∆𝛽: ∆𝛼 = 1: 1 and the weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

6
:

1

3
 for

a case in which reliability is more important than QoS and

load balance.

 Note that �̅�, �̅�, �̅� and 𝑃𝑀𝑂𝑂 are all scaled in the range

of [0, 1] with a higher number indicating a higher

performance. Each result point indicates the average value

of the metric based on 100 simulation runs, each of which

has the same task arrival sequence with the Dj distribution

randomized. We observe that Figs. 3, 4, and 5 are similar in

trend with the trust-based scheme approaching the ideal

scheme in the overall performance. As the problem size

increases, the performance gain of our trust-based scheme

over the non-trust-based scheme is more pronounce because

there are more qualified nodes to select from for task

execution. Furthermore, the dominance is more manifested

as the percentage of malicious nodes (Pb) increases.

Fig. 3: Mission Reliability (�̅�), Load Balance (�̅�), QoS (�̅�), and 𝑃𝑀𝑂𝑂 vs. Bad Node Percentage (𝑃𝑏)

for a Small-Sized MOO Problem.

Fig. 4: Mission Reliability (�̅�), Load Balance (�̅�), QoS (�̅�), and 𝑃𝑀𝑂𝑂 vs. Bad Node Percentage (𝑃𝑏)

for a Medium-Sized MOO Problem.

Fig. 5: Mission Reliability (�̅�), Load Balance (�̅�), QoS (�̅�), and 𝑃𝑀𝑂𝑂 vs. Bad Node Percentage (𝑃𝑏)

for a Large-Sized MOO Problem.

Fig. 6: Trust Value Distribution of Good Nodes (Top) and Bad Nodes (Bottom) in Boxplot Format.

The ideal case has perfect knowledge over node status,

i.e., it knows whether a node is malicious or not. Therefore,

the ideal solution is perfect in maximizing mission

reliability (�̅�). However, since mission reliability and load

balance (�̅�) are conflicting objectives, the ideal solution can

sacrifice load balance. This is indicated by the second

subfigure in Figs. 3, 4 and 5 where we see both trust-based

and non-trust-based solutions actually perform better than

the ideal solution in load balance (�̅�). Lastly, the ideal

solution, by selecting nodes to maximize mission reliability,

does not necessarily guarantee maximizing QoS (�̅�). This is

indicated by the third subfigure in Figs. 3, 4 and 5 where

we see our trust-based solution actually performs

comparably to or even better than the ideal solution in QoS

(�̅�).

There is an interesting tradeoff between the multiple

objectives in terms of �̅�, �̅� and 𝐷.̅ The ideal solution

attempts to maximize 𝑃𝑀𝑂𝑂 in (5) by maximizing �̅�

because of its perfect knowledge of node reliability at the

expense of �̅� and �̅�. On the other hand, without having

sufficient evidence to establish trust (at least initially), the

trust-based solution attempts to maximize �̅� without overly

compromising �̅� and �̅�. Finally, with only private

blacklisting information kept by the TLs, the non-trust-

based solution attempts to maximize �̅� at the expense of �̅�

and �̅�. The ability for the TLs to differentiate good nodes

from malicious nodes thus dictates how 𝑃𝑀𝑂𝑂 in (5) is

maximized. We conclude that our heuristic trust-based

solution with polynomial complexity indeed can achieve

solution efficiency without compromising solution

optimality.

Fig. 6 depicts the trust value distribution of good nodes

(top) and bad nodes (bottom) in boxplot format as a

function of time (chunk #) in our trust protocol. This

boxplot is the same for all problem sizes. A boxplot

graphically depicts trust values through their quartiles

without making any assumption about the probability

distribution. In a boxplot, the bottom and top of a boxplot

are the first and third quartiles, and the band inside the box

is the second quartile (the median) with the ends of the

whiskers showing the minimum and maximum of all of the

trust values. The trust value of a good node should be

above 0.5 and approaching 1 (ground truth), while the trust

value of a bad node should be blow 0.5 and approaching 0

(ground truth). We can see that for Pb = 10%, trust values

are less dispersed, so the first and third quartiles are

clustered into a thick dot. Further, the trust values of bad

nodes are mostly above 0.5 because there are too few bad

nodes in the system and the chance for them to be in the

same task to perform opportunistic service attacks is low. In

this case, bad nodes remain hidden and behave, with their

trust values maintained above 0.5 to earn the trust reward.

As Pb increases, the chance of performing opportunistic

service attacks increases. As a result, the trust values of bad

nodes are quickly updated to fall below 0.5 because of trust

penalty. We also observe that trust convergence is achieved

after 50 chunks (about 100 tasks). This is particularly the

case when Pb is sufficiently high at which the medium trust

value of bad nodes is sufficiently low and the medium trust

value of good nodes is sufficiently high, so the system is

able to differentiate good nodes from bad nodes for task

execution. For example, the medium good node trust value

is 0.75 and the medium bad node trust value is 0.35 when

Pb is 50%. This explains why when Pb is 50% in Figs. 3, 4,

and 5, the trust-based solution outperforms the non-trust-

based solution and approaches the ideal solution.

B. Sensitivity Analysis of ∆𝛽: ∆𝛼 and 𝜔𝑅: 𝜔𝑈: 𝜔𝐷

The observation that people hope to severely punish

malicious behavior by having a large ∆𝛽: ∆𝛼 ratio is true if

mission reliability is the most important or is the sole

objective especially for mission-critical applications.

However, when there are multiple conflicting objectives

such as mission reliability (�̅�), load balance (�̅�), and delay

to task completion (�̅�) considered in this paper, this

observation is not necessarily true. One contribution of this

paper is that we identify the best ∆𝛽: ∆𝛼 to use in order to

maximize 𝑃𝑀𝑂𝑂, depending on the weights associated with

multiple objectives, i.e., �̅�, �̅� and �̅� in the MOO problem.

Fig. 7: Sensitivity Analysis of MOO with respect to ∆𝛽: ∆𝛼 and 𝜔𝑅: 𝜔𝑈: 𝜔𝐷.

Fig. 7 tests the sensitivity of �̅�, �̅�, �̅� and 𝑃𝑀𝑂𝑂obtained

from our trust-based solution with respect to the ratio of the

positive increment to the negative increment ∆𝛽: ∆𝛼, and

the weight ratio of the weights associated with multiple

objectives 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 for the case in which Pb = 70%

(picked to show area of interest) for the small-sized

problem. We see that in general �̅� increases while �̅� and �̅�

decrease as ∆𝛽: ∆𝛼 increases because a larger ratio severely

punishes bad nodes for performing attacks, making the bad

nodes more distinguishable from good nodes. Selecting

mostly good nodes for task execution, however, increases �̅�

but sacrifices �̅� because node selection tends to select

mostly good nodes, and also sacrifices �̅� because bad nodes

with good service quality are not selected.

We observe that the best ∆𝛽: ∆𝛼 to maximize 𝑃𝑀𝑂𝑂 is

affected by the weights associated with multiple objectives,

i.e., �̅�, �̅� and �̅� in the MOO problem. This is evident in the

rightmost graph of Fig. 7 where we observe that the best

∆𝛽: ∆𝛼 ratios are 0.1, 1, and 2 (labeled by black dots), for

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

3
:

1

3
:

1

3
,

1

2
:

1

3
:

1

6
, and

1

2
:

1

6
:

1

3
, respectively, for

maximizing 𝑃𝑀𝑂𝑂 in (5). The reason is that a higher ∆𝛽: ∆𝛼

(a) 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

3
:

1

3
:

1

3

(b) 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

3
:

1

6

(c) 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

6
:

1

3

(d) 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

3
:

1

6
:

1

2

Fig. 8: Sensitivity Analysis of MOO with respect to Trust Protocol Design: STO vs. SSTRT and ISTRT.

increases �̅� but sacrifices �̅� and �̅� as they are conflicting

goals. Hence, under the equal weight scenario (the red line)

when all objectives contribute equally, the best ∆𝛽: ∆𝛼

value is small as so to best balance the gain of �̅� vs. the loss

of �̅� and �̅� for MOO. Here we note that although the

sensitivity analysis is demonstrated for the case in which Pb

= 70%, the general behavior observed is true across. The

only difference is the degree of sensitivity.

C. Sensitivity Analysis of Trust Protocol Design

In this section, we consider the effect of trust protocol

design on trust-based MOO performance. Recall that the

trust protocol design considered in Section III.C is based on

a service trust value in the range of [0, 1] represented by α

and β denoting the amount of positive evidence and

negative evidence, respectively. We consider three trust

protocol designs as follows:

1. Service Trust Only (STO): this is the protocol

described in Section III.C.

2. Separating Service Trust from Recommendation Trust

(SSTRT): this protocol behaves the same as STO when

updating the service trust. In addition, it maintains a

separate trust value for rating a recommender.

Specifically, there is a second pair of α and β denoting

the amount of positive evidence and negative evidence

respectively for rating a recommender. Upon receiving

a recommendation from node k regarding node j, node i

can compare its own service rating toward j with the

recommendation received from k about j. If the

difference deviates more than a percentage threshold

(25% is considered in the paper), then node i views it

as negative evidence against node k because of a

possible bad-mouthing or ballot staffing attack by node

k. Otherwise, node i views it as positive evidence for

node k. When node i receives a recommendation from

node k, node i uses the recommendation trust (instead

of the service trust) it has toward k for trust merging.

Here α and β for recommendation trust are set to 1

initially. The same ∆𝛽: ∆𝛼 ratio applies.

3. Integrating Service Trust with Recommendation Trust

(ISTRT): this protocol also considers positive/negative

evidence of a recommender as SSTRT does. However,

as STO, it only maintains a pair of α and β denoting the

amount of positive evidence and negative evidence.

Both recommendation quality evidence and service

quality evidence collected are combined for updating α

and β. Again α and β are set to 1 initially. The same

∆𝛽: ∆𝛼 ratio applies.

 The effect of trust protocol design on MOO

performance is summarized in Figs. 8 and 9.

Figs. 8(a), 8(b), 8(c) and 8(d) compare �̅� , �̅� , �̅� and

𝑃𝑀𝑂𝑂 obtained by STO, SSTRT, and ISTRT as a function

of the percentage of malicious nodes in the range of 10%-

(a) Trust Values of Good Nodes (top) and Bad Nodes (bottom) under STO.

(b) Trust Values of Good Nodes (top) and Bad Nodes (bottom) under SSTRT.

(c) Trust Values of Good Nodes (top) and Bad Nodes (bottom) under ISTRT.

Fig. 9: Trust Value Distribution of Good Nodes and Bad Nodes under STO vs. SSTRT and ISTRT.

70% for 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

3
:

1

3
:

1

3
 ,

1

2
:

1

3
:

1

6
 ,

1

2
:

1

6
:

1

3
 , and

1

3
:

1

6
:

1

2
,

respectively. While there is no clear winner among these

three trust protocol designs, SSTRT appears to perform the

best in terms of R̅ over all weight ratio scenarios. Because

of the tradeoff between the multiple goals between �̅� vs. �̅�

and �̅�, maximizing �̅� is often offset by sacrificing �̅� and

�̅�. In particular, we observe that under the weight ratio

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

3
:

1

6
, SSTRT outperforms STO and ISTRT

in 𝑃𝑀𝑂𝑂 since in this scenario SSTRT can best balance the

gain of �̅� against the combined loss of �̅� and 𝐷 ̅compared

with STO and ISTRT.

Figs. 9(a), 9(b), and 9(c) show the trust values of good

nodes (top) and bad nodes (bottom) over time (chunk #) in

boxplot format under STO, SSTRT and ISTRT,

respectively, with the weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

3
:

1

6
.

We see clearly that SSTRT can best discern good nodes

from bad nodes compared with STO and ISTRT. We

attribute this to the ability of SSTRT to separate service

trust from recommendation trust, which improves trust

accuracy.

We conclude that the choice of the best trust protocol

design is dictated by the relative importance of �̅� vs. �̅� and

�̅�, i.e., it is highly sensitive to the weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷

which in turn is dictated by the application requirement.

The analysis performed here allows the system designer to

choose the best trust protocol design for maximizing task

assignment MOO performance.

VI. APPLICABILITY

The simulation results obtained reveal the best trust

protocol settings in terms of the best ∆𝛽: ∆𝛼 ratio to

achieve MOO, given the relative importance of �̅� vs. �̅� and

�̅� (which determines 𝜔𝑅: 𝜔𝑈: 𝜔𝐷) and the hostility

condition (which determines Pb) as input. More

specifically, the simulation results obtained can be built into

a lookup table, covering a conceivable range of 𝜔𝑅: 𝜔𝑈: 𝜔𝐷

and Pb values as input.

The lookup table as shown in Figure 10 would store

key-value pairs where the “keys” are combinations of input

parameter values, and the “values” are the best ∆𝛽: ∆𝛼 ratio

for maximizing MOO performance under the input

parameter values. The input parameters on the left are input

to the lookup table at runtime. The design parameters on

the right are output as a result of a table lookup operation.

Upon sensing the environment changes in terms of input

parameter values, the system can perform a simple table

lookup operation augmented with extrapolation or

interpolation techniques to determine and apply the best

∆𝛽: ∆𝛼 ratio in response to dynamically changing

conditions. Depending on data granularity, a set of input

parameter values may not directly map to a set of output

parameter values. Extrapolation or interpolation techniques

may be used to produce the matching output. The lookup

time is O(1) and can be efficiently applied at runtime to

determine the best trust protocol design as well as the best

∆𝛽: ∆𝛼 ratio for maximizing task allocation MOO

performance.

VII. CONCLUSION

In this paper, we proposed a trust-based dynamic task

assignment algorithm for autonomous service-oriented

MANETs where we are concerned with MOO for multiple

objectives with conflicting goals. The results demonstrated

that our trust-based solution has low complexity and yet can

achieve performance comparable to that of the ideal

solution with perfect knowledge of node reliability, and can

significantly outperform the non-trust-based solution. We

also provided insight of how MOO is achieved by the ideal,

trust-based and non-trust-based solutions, and identified the

trust protocol parameter settings under which MOO

performance is maximized for the trust-based solution

which can best balance multiple objectives with conflicting

goals. The results obtained are useful for dynamic trust

protocol management to maximize application performance

in terms of MOO.

In the future, we plan to refine our heuristic design for

member bidding and selection strategies to further enhance

MOO performance, possibly exploring game theory. We

also plan to explore other forms of MOO formulation

applicable to other autonomous service-oriented MANET

scenarios.

ACKNOWLEDGEMENTS

This work was supported in part by the U. S. Army

Research Laboratory and the U. S. Army Research Office

under contract number W911NF-12-1-0445. This research

was also partially supported by the Department of Defense

(DoD) through the office of the Assistant Secretary of

Defense for Research and Engineering (ASD (R&E)). The

views and opinions of the authors do not reflect those of the

DoD or ASD (R&E).

REFERENCES

[1] Air Land Sea Application Center, Tactical Convoy Ops: Multi-

Service Tactics, Techniques, and Procedures for Tactical Convoy

Operations, Langley AFB, VA, USA, March 2005.

[2] D.S. Alberts and R.E. Hayes, Power to the Edge: Command and

Control in the Information Age. CCRP Publication Series, 2003.

[3] H. Al-Hamadi and I.R. Chen, “Adaptive Network Management for

Countering Smart Attack and Selective Capture in Wireless Sensor

Networks,” IEEE Transactions on Network and Service Management,

vol. 12, no. 3, 2015, pp. 451-466.

[4] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, and S.

Leonardi, "Online Team Formation in Social Networks," in 21st Int.

Input parameters

 {𝜔𝑅: 𝜔𝑈: 𝜔𝐷, Pb} under

STO, SSTRT, or ISTRT

Design parameters

 ∆𝛽: ∆𝛼 under STO,

SSTRT, or ISTRT

Key Value

. . .

. . .

Lookup table

Figure 10: Lookup Table Mechanism.

Conf. World Wide Web, 2012, pp. 839-848.

[5] J. Balicki, "An Adaptive Quantum-Based Multiobjective

Evolutionary Algorithm," in World Scientific and Engineering

Academy and Society (WSEAS) 13th Int. Conf. Computers, 2009, pp.

417-422.

[6] F. Bao, I.R. Chen, and J. Guo, "Scalable, Adaptive and Survivable

Trust Management for Community of Interest Based Internet of

Things Systems," in 11th IEEE International Symposium on

Autonomous Decentralized Systems, 2013, pp. 1-7.

[7] E. Borgia, "The Internet of Things Vision: Key Features,

Applications and Open Issues," Computer Communications, vol. 54,

pp. 1-31, December 2014.

[8] M.R. Brust, C. Ribeiro, D. Turgut, and S. Rothkugel, "LSWTC: A

Local Small-World Topology Control Algorithm for Backbone-

Assisted Mobile Ad hoc Networks," in IEEE Conf. Local Computer

Networks, 2010, pp. 144-151.

[9] I.R. Chen, F. Bao, M. Chang, and J.H. Cho, "Dynamic Trust

Management for Delay Tolerant Networks and Its Application to

Secure Routing," IEEE Trans. Parallel and Distributed Systems, vol.

25, no. 5, 2014, pp. 1200-1210.

[10] I.R. Chen, J. Guo, and F. Bao, “Trust Management for SOA-based

IoT and Its Application to Service Composition,” IEEE Transactions

on Services Computing, vol. 9, no. 3, 2016, pp. 482-495.

[11] I.R. Chen and Y. Wang, “Reliability Analysis of Wireless Sensor

Networks with Distributed Code Attestation,” IEEE Communications

Letters, vol. 16, no. 10, 2012, pp. 1640-1643.

[12] J. Chen, X. Yan, H. Chen, and D. Sun, "Resource Constrained

Multirobot Task Allocation with A Leader-Follower Coalition

Method," in IEEE/RSJ Int. Conf. Intelligent Robots and Systems,

2010, pp. 5093 - 5098.

[13] J.H. Cho, I.R. Chen, and P.G. Feng, "Effect of Intrusion Detection on

Reliability of Mission-Oriented Mobile Group Systems in Mobile Ad

Hoc Networks," IEEE Trans. Reliability, vol. 59, no. 1, 2010, pp.

231-241.

[14] J.H. Cho, A. Swami, and I.R. Chen, "Modeling and Analysis of Trust

Management for Cognitive Mission-Driven Group Communication

Systems in Mobile Ad Hoc Networks," in Int. Conf. Computational

Science and Engineering, 2009, pp. 641-650.

[15] J.H. Cho, A. Swami, and I.R. Chen, "Modeling and Analysis of Trust

Management with Trust Chain Optimization in Mobile Ad hoc

Networks," Journal of Network and Computer Applications, vol. 35,

no. 3, 2012, pp. 1001-1012.

[16] E. Edalat, C. Than, and W. Xiao, "An Auction-Based Strategy for

Distributed Task Allocation in Wireless Sensor Networks," Computer

Communications, vol. 35, no. 8, 2012, pp. 916-928.

[17] M. R. Garey and D.S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness.: W.H. Freeman & Co.,

1979.

[18] L. Guo, G. Shao, and S. Zhao, "Multi-Objective Task Assignment in

Cloud Computing by Particle Swarm Optimization," in 8th Int. Conf.

Wireless Communications, Networking and Mobile Computing, 2012,

pp. 1- 4.

[19] J. Guo, I.R. Chen, J.J.P. Tsai, and H. Al-Hamadi, "Trust-based IoT

Participatory Sensing for Hazard Detection and Response," 1st

International Workshop for IoT Systems Provisioning & Management

in Cloud Computing, Banff, Canada, Oct. 2016, pp. 1-6.

[20] A. Jøsang and R. Ismail, "The Beta Reputation System," in 15th Bled

Electronic Commerce Conf., 2002, pp. 1-14.

[21] S. Kosta, A. Mei, and J. Stefa, "Large-Scale Synthetic Social Mobile

Networks with SWIM," IEEE Trans. Mobile Computing, vol. 13, no.

1, 2014, pp. 116-129.

[22] L. Lamport, R. Shostak, and M. Pease, "The Byzantine Generals

Problem," ACM Trans. Program. Lang. Syst., vol. 4, no. 3, 1982, pp.

382-401.

[23] R. Mitchell and I.R. Chen, "Behavior Rule Specification-based

Intrusion Detection for Safety Critical Medical Cyber Physical

Systems," IEEE Transactions on Dependable and Secure Computing,

vol. 12, no. 1, 2015, pp. 16-30.

[24] R. Mitchell and I.R. Chen, "A Survey of Intrusion Detection in

Wireless Network Applications," Computer Communications, vol. 42,

2014, pp. 1-23.

[25] R. Mitchell and I.R. Chen, "Adaptive Intrusion Detection of

Malicious Unmanned Air Vehicles using Behavior Rule

Specifications," IEEE Transactions on Systems, Man and

Cybernetics, vol. 44, no. 5, 2014, pp. 593-604.

[26] L. Shen, L. Zhang, and D. Huang, "Trust-Driven Both-Matched

Algorithm for Grid Task Multi-Objective Scheduling," in 2nd Int.

Conf. Information Science and Engineering, 2010, pp. 1661–1664.

[27] C. Szabo and T. Kroeger, "Evolving multi-objective strategies for

task allocation of scientific workflows on public clouds," in IEEE

World Congress on Computational Intelligence, 2012, pp. 1-8.

[28] A. Tolmidis and L. Petron, "Multi-Objective Optimization for

Dynamic Task Allocation in a Multi-Robot System," Engineering

Applications of Artificial Intelligence, vol. 26, no. 5-6, 2013, pp.

1458-1468.

[29] Y. Wang, I.R. Chen, J.H. Cho, K.S. Chan, and A. Swami, "Trust-

Based Service Composition and Binding for Tactical Networks with

Multiple Objectives," in 32th IEEE Military Commun. Conf., 2013.

[30] H. Wang, C. Li, C. Yan, Q. Li, and J. Li, "Ad Hoc Grid Task

Scheduling Algorithm Considering Trust-Demand," in 2nd Int. Conf.

Future Computer and Communication, 2010, pp. 108-113.

[31] T. Xie and X. Qin, "An Energy-Delay Tunable Task Allocation

Strategy for Collaborative Applications in Network Embedded

Systems," IEEE Trans. Comput. , vol. 57, no. 3, 2008, pp. 329-343.

[32] L. Zeng et al., "QoS-Aware Middleware for Web Services

Composition," IEEE Trans. Software Engineering, vol. 30, no. 5,

2004, pp. 311-327.

[33] H. Zhu, S. Du, Z. Gao, M. Dong, and Z. Cao, "A Probabilistic

Misbehavior Detection Scheme Towards Efficient Trust

Establishment in Delay-Tolerant Networks," IEEE Trans. Parallel

and Distributed Syst., vol. 25, no. 1, 2014, pp. 22-32.

AUTHOR BIOGRAPHIES
Yating Wang received her Bachelor degree from

Hubei University of Technology, Wuhan, China in

2007. She received her PhD degree in Computer

Science from Virginia Tech in 2016. She is currently

a software engineer at Google. Her research interests

include security, computer networks, wireless

networks, mobile computing, trust management, and

reliability and performance analysis.

Ing-Ray Chen received the BS degree from the

National Taiwan University, and the MS and PhD

degrees in computer science from the University of

Houston. He is a professor in the Department of

Computer Science at Virginia Tech. His research

interests include mobile computing, wireless systems,

security, trust management, and reliability and

performance analysis. Dr. Chen currently serves as an editor for IEEE

Communications Letters, IEEE Transactions on Network and Service

Management, The Computer Journal, and Security and Network

Communications. He is a recipient of the IEEE Communications Society

William R. Bennett Prize in the field of Communications Networking.

Jin-Hee Cho received the BA from the Ewha Womans

University, Seoul, Korea and the MS and PhD degrees

in computer science from the Virginia Tech. She is

currently a computer scientist at the U.S. Army Research Laboratory,

Adelphi, Maryland. Her research interests include wireless mobile

networks, mobile ad hoc networks, sensor networks, secure group

communications, group key management, network security, intrusion

detection, performance analysis, trust management, cognitive networks,

social networks, dynamic networks, and resource allocation. She received

the best paper awards in IEEE TrustCom09 and BRIMS13. She is a

recipient of the IEEE Communications Society William R. Bennett Prize

in the field of Communications Networking, and a recipient of the

Presidential Early Career Awards for Scientists and Engineers. She is a

senior member of the IEEE and a member of ACM.

Jeffrey J.P. Tsai received a Ph.D. degree in

Computer Science from the Northwestern

University, Evanston, Illinois. He is the President of

Asia University, Taiwan, and a professor in the

Department of Bioinformatics and Biomedical

Engineering at Asia University. Dr. Tsai was a

Professor of Computer Science at the University of Illinois, Chicago. His

current research interests include bioinformatics, ubiquitous computing,

services computing, intrusion detection, knowledge-based software

engineering, formal modeling and verification, distributed real-time

systems, and intelligent agents. He was an Associate Editor of the IEEE

Transactions on Knowledge and Data Engineering and is currently an

Associate Editor of the IEEE Transactions on Services Computing. He is

currently the Co-Editor-in-Chief of the International Journal on Artificial

Intelligence Tools and Book Series on Health Informatics. Dr. Tsai

received an IEEE Technical Achievement Award and an IEEE Meritorious

Service Award from the IEEE Computer Society. He is a Fellow of the

AAAS, IEEE, and SDPS.

