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Abstract— We propose and analyze a trust management 
protocol in service-oriented mobile ad hoc networks 
(MANETs) populated with service providers (SPs) and 
service requesters (SRs), and demonstrate the resiliency 
and convergence properties against bad-mouthing, ballot-
stuffing, opportunistic service, and self-promotion attacks. 
To demonstrate the applicability, we consider a mission-
driven service-oriented MANET that must handle 
dynamically arriving tasks to achieve multiple conflicting 
objectives. We devise a trust-based heuristic algorithm 
based on auctioning with local knowledge of node status 
to solve this node-to-task assignment problem with multi-
objective optimization (MOO) requirements. Our trust-
based heuristic algorithm has a polynomial runtime 
complexity, rather than an exponential runtime 
complexity as in existing work, thus allowing dynamic 
node-to-task assignment to be performed at runtime. It 
outperforms a non-trust-based counterpart using 
blacklisting techniques while performing close to the 
ideal solution quality with perfect knowledge of node 
status over a wide range of environmental conditions. We 
conduct extensive sensitivity analysis of the results with 
respect to key design parameters and alternative trust 
protocol designs. We also develop a table-lookup method 
to apply the best trust protocol parameter settings upon 
detection of dynamically changing environmental 
conditions to maximize MOO performance. 

Index Terms— Trust management, multi-objective 

optimization, task assignment, service-oriented 

computing, mobile ad hoc networks, performance 

analysis.  

I. INTRODUCTION 

With the proliferation of fairly powerful mobile devices 

and ubiquitous wireless technology, traditional mobile ad 

hoc networks (MANETs) now migrate into a new era of 

service-oriented MANETs wherein a node can provide and 

receive service from other nodes it encounters and interacts 

with. In this paper, we are concerned with autonomous 

service-oriented MANETs populated with service providers 

(SPs) and service requesters (SRs). One can view a service-

oriented MANET as an instance of Internet of Things (IoT) 

systems with a wide range of mobile applications including 

smart city, smart tourism, smart car, smart environmental 

monitoring, and healthcare [7][19]. 

In this paper, we consider a mission-driven service-

oriented MANET that must handle dynamically arriving 

tasks to achieve multiple system objectives. Each task 

requires an SR to be the task lead and to assemble a team 

among SPs to accomplish the task. For example, a service-

oriented MANET may have the following three system 

objectives: (1) maximizing mission reliability based on task 

completion ratio; (2) minimizing utilization variance, 

leading to high load balance among all nodes; and (3) 

minimizing the delay to complete time-sensitive tasks, thus 

maximizing quality of service (QoS). We note that the 

objective of load balancing is in conflict with others since 

maximizing load balance may sacrifice task completion 

ratio and QoS. Nevertheless, all objectives are essential in 

order to maintain the “global welfare” of the service-

oriented MANET. The problem we are interested in solving 

is dynamic node-to-task assignment (or task assignment for 

short) with multi-objective optimization (MOO) 

requirements, given that multiple objectives often have 

conflicting goals. This issue is further compounded by the 

fact that nodes may exhibit malicious behavior for 

“individual welfare” (explained later in Section III.B) and 

the information received is often erroneous, uncertain and 

incomplete in MANET environments [14] [15]. 

The literature is rich in solution techniques for solving 

task assignment MOO problems. Two major problems of 

existing solutions are (1) not considering the existence of 

malicious nodes acting for their own interest and colluding 

for individual welfare, and (2) solving the task assignment 

MOO problem in exponential time complexity, making it 

unsuitable for runtime deployment. In this paper, we 

develop trust-based solutions to mitigate these problems. In 

particular, we develop a trust-based algorithm to solve the 

task assignment MOO problem in polynomial time 

complexity, making it possible to perform dynamic node-

to-task assignment at runtime. We demonstrate that our 

trust-based allocation protocol outperforms a non-trust-

based counterpart using blacklisting techniques while 

performing close to the ideal solution quality with perfect 

knowledge of node status over a wide range of 

environmental conditions. 
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The contributions of this work are as follows: 

1. We develop a trust management protocol specifically 

for autonomous service-oriented MANET applications 

and demonstrate the resiliency and convergence 

properties against bad-mouthing, ballot-stuffing, 

opportunistic service, and self-promotion attacks.  

2. To the best of our knowledge, this work is the first to 

solve a multiple objective optimization (MOO) 

problem dealing with multiple, concurrent and dynamic 

task assignments with conflicting goals using trust in 

service-oriented MANETs. Our trust-based heuristic 

algorithm has a polynomial runtime complexity, thus 

allowing dynamic node-to-task assignment to be 

performed at runtime. Our heuristic design is based on 

local knowledge of node status, so it can only produce 

a suboptimal solution. However, our heuristic design is 

able to achieve a solution quality approaching that of 

the ideal solution which has perfect knowledge of node 

status.  

3. This work proposes and analyzes a new design concept 

of trust-based MOO based on assessed trust levels to 

screen task team members for dynamic node-to-task 

assignment.  

4. We conduct a comparative analysis of our proposed 

trust-based heuristic member selection algorithm 

against the ideal solution with perfect knowledge of 

node status, demonstrating that our trust-based solution 

achieves solution efficiency without compromising 

solution optimality.  

5. We develop a table-lookup method to apply the best 

trust parameter settings upon detection of dynamically 

changing environmental conditions to maximize 

protocol performance.   
The rest of this paper is organized as follows. Section II 

discusses related work, and contrasts our work with existing 

work. Section III describes our system model including the 

network model, attack/defense model, baseline trust 

protocol design, task model, and our MOO problem 

definition. Section IV proposes a polynomial runtime 

complexity trust-based heuristic algorithm to solve the 

MOO problem. Section V performs a comparative analysis 

of our proposed scheme against the ideal solution with 

perfect knowledge over node reliability as well as a non-

trust baseline scheme. We demonstrate that our trust-based 

scheme outperforms the non-trust-based counterpart using 

blacklisting techniques and performs close to the ideal 

solution quality. We conduct extensive sensitivity analysis 

of the results with respect to key design parameters and 

alternative trust protocol designs. Section VI discusses the 

applicability issues allowing one to make use of the 

analysis results obtained for maximizing protocol 

performance at runtime in response to dynamically 

changing environment conditions. Section VII concludes 

the paper and outlines some future research directions. 

II. RELATED WORK 

Existing work on task assignment MOO can be 

categorized into two classes, depending on whether the 

work deals with system objectives for global welfare and/or 

individual objectives for individual welfare. Table I 

compares Class 1 and Class 2 solution techniques.  

Class 1 represents the case in which there are multiple 

system objectives for global welfare, but there are no 

individual objectives. Class 2 represents the case in which 

there are multiple system objectives for global welfare but 

there are also individual objectives for individual welfare 

which may induce or hinder global welfare. Our work falls 

under Class 2 as we consider the presence of malicious 

nodes performing malicious attacks and colluding to 

monopoly service as the individual objectives for individual 

welfare. 

Class 1 concerns solving a task assignment MOO 

problem to maximize global welfare but individual nodes 

do not have individual objectives. Balicki [5] studied a task 

assignment problem in a distributed environment based on 

a multi-objective quantum-based algorithm. The objectives 

are to maximize system reliability while minimizing 

workload and communication cost, all are global welfare. 

Chen et al. [12] solved a task assignment problem in a 

multi-robot environment consisting of heterogeneous 

mobile robots, given resource constraints associated with 

tasks. They proposed a heuristic leader-follower structure 

that identifies optimal solutions of the task allocation 

problems. Guo et al. [18] examined a task assignment 

problem using a particle swarm optimization technique that 

minimizes task execution time and cost for data transfer 

between processors in cloud computing environments. Xie 

and Qin [31] proposed an energy-efficient task assignment 

protocol based on the tradeoff between energy and delay to 

execute a task for collaborative networked embedded 

systems to minimize the length of schedules of task 

allocation and energy consumption. Shen et al. [26] develop 

a trust-based solution for task assignment in grid 

management with multiple system objectives including 

security, reliability, load balance, and throughput. Solutions 

fall under Class 1 assume no malicious entity in the system, 

which is not a valid assumption in a service-oriented 

MANET environment which very likely will be populated 

with malicious nodes acting for own interest and colluding 

for individual welfare. In our work, we develop a trust 

management protocol specifically for autonomous service-

oriented MANET applications. We demonstrate the 

resiliency and convergence properties of our trust protocol 

design for service-oriented MANETs in the presence of 

malicious nodes performing bad-mouthing, ballot-stuffing, 

opportunistic service, and self-promotion attacks. 



 

 

Class 2 concerns solving a task assignment MOO 

problem to maximize global welfare but nodes may have 

separate individual objectives for individual welfare. 

Anagnostopoulos et al. [4] explored a solution for a task 

assignment problem by matching a set of skilled people to 

each task. Their solution aims to minimize the 

communication overhead while balancing workloads by 

solving a single objective problem that considers multiple 

objectives. Edalat et al. [16] proposed an auction-based task 

assignment solution in wireless sensor networks with two 

global objectives: maximizing the overall network lifetime 

while satisfying application deadlines. An individual entity 

seeks to maximize its payoff by bidding on a task with low 

workload so as to consume less energy but have a high 

chance of being assigned to the task. Szabo and Kroeger 

[27] examined a task allocation problem in cloud 

computing using evolutionary genetic algorithms. This 

work has the system goals to minimize workflows, delay 

introduced by the task completion, and communication cost 

while each individual user wants to minimize cost and 

service delay. Tolmidis and Petrou [28] proposed an 

auction theoretic approach to solve a task allocation 

problem in multi-robot systems where each robot is able to 

perform several functions. An individual robot has the goals 

to minimize energy consumption and delay in task 

completion while maximizing the degree of relevancy and 

priority level to an assigned task. Similarly, the system aims 

to maximize the number of completed tasks and minimize 

delay introduced due to task assignment and completion. 

Wang et al. [30] proposed a trust-based task assignment 

technique for mobile ad hoc grid computing environments 

for maximizing mission completion ratio based on required 

levels of security and reliability in task assignment and 

minimizing delay to mission completion. The main 

drawback of the existing work cited above is that the worst 

case runtime complexity is exponential because the MOO 

problem to be solved is NP-complete [17], making it 

unsuitable to be deployed at runtime. Our work remedies 

this problem by devising trust-based heuristic solutions that 

incur only polynomial runtime complexity, and verifying 

that the performance of our trust-based solution approaches 

the ideal MOO performance with perfect knowledge of 

node status.   

This work substantially extends [29] by (a) adding a 

new literature survey section comparing and contrasting our 

work with existing work in task assignment MOO problem 

Table I: A Comparison of Class 1 and Class 2 Solution Techniques. 
 

Reference Individual objective System objective Solution technique Problem to solve 

Class 1 

Balicki [5] NA 

Minimize workload and cost 

while maximizing system 

reliability 

Quantum-based 

evolutionary algorithm 
Task assignment 

Chen et al. 

[12] 

NA Maximize coalition utility while 

minimizing the number of robots 

involved in a task 

Heuristic leader-follower 

based coalition algorithm 

Task allocation 

Guo et al. [18] NA Minimize task execution time 

while minimizing data transfer 

time 

Particle swarm 

optimization 

Task assignment 

Shen et al. [26] NA Maximize security, reliability, 

load balance, and throughput 

Trust-driven grid job 

scheduling 

Resource allocation 

Xie et al. [31] NA Maximize energy savings while 

minimizing the length of the 

schedule of task allocation 

Energy-delay tradeoff 

algorithm 

Task allocation 

Class 2 

Anagnostopou-

los et al. [4] 

maximize use of individual 

skill set, minimize 

workload, and minimize 

communication overhead 

Satisfy the team skill sets 

requirement, minimize 

communication overhead, and 

maximize load balance 

Bi-criteria approximation 

algorithm 

Team formation 

Edalat et al. 

[16] 
Minimize bid waiting time 

Minimize energy consumption 

and delay  

Reverse auction in 

cooperative game 
Task allocation 

Szabo et al. 

[27] 

Minimize cost and delay Minimize workflows, task 

completion time, and 

communication overhead 

Evolutionary genetic 

algorithm 

Task allocation 

Tolmidis et al. 

[28] 

Minimize energy 

consumption and task 

completion time while 

maximizing the degree of 

relevancy and task priority 

Maximize the number of tasks 

completed while minimizing 

delay  

Auction theory Multi-robots task 

allocation 

Wang et al. 

[30] 

Minimize energy 

consumption while 

maximizing load balance 

Maximize mission completion 

ratio based on the relevance of 

security and reliability for node-

to-task assignment and minimize 

mission completion time 

Trust-based max-min 

algorithm  

Task scheduling 

 



 

 

solving; (b) adding a cost analysis of the runtime 

communication/memory overhead involved during trust 

protocol execution; (c) adding an extensive sensitivity 

analysis of the results with respect to key design parameters 

and alternative trust protocol designs, as well as providing 

insightful conclusions for designing the best trust protocol 

and trust-based task assignment algorithm in service-

oriented MANETs, and (d) developing a novel method to 

apply the best trust parameter settings upon detection of 

dynamically changing environmental conditions to 

maximize MOO performance. 

III. SYSTEM MODEL 

In this section, we discuss the system model including 

the network model, attack/defense model, trust protocol, 

task model, and system objectives. Table II summarizes the 

acronyms and symbols used in the paper. 

A. Network  Model 

We consider a service-oriented MANET environment in 

which a node has two roles in executing operations: (1) as a 

service provider (SP) to support an operation; and (2) as a 

service requestor (SR) to request services in the process of 

initiating (and executing) a task. Nodes may be 

heterogeneous with vastly different functionalities and 

natures. For example, the entities may be sensors, robots, 

unmanned vehicles or other devices, dismounted soldiers or 

first response personnel carrying sensors or handheld 

devices, and manned vehicles with various types of 

equipment. We consider M ordered node types, 1, 2, … M, 

such that a higher node type has a higher capability than a 

lower node type. A node with a high node type also may 

involve a human operator and thus has additional trust 

dimensions pertaining to social trust [6] [9] [10]. When 

mobile nodes are not involved in a task, they follow their 

routine-work mobility model. We use SWIM [21] in this 

paper to model social routine work mobility patterns of 

Table II: Acronyms and Symbols. 
 

Acronym/Symbol Meaning 

MOO Multi-objective optimization 

SP Service provider 

SR Service requester 

CN Commander node 

TL Task lead 

NT Node type 

STO Service trust only 

SSTRT Separating service trust from recommendation trust  

ISTRT Integrating service trust with recommendation trust  

α, β Amount of positive evidence, amount of negative evidence 

𝒩, |𝒩| Node set in the system, # of nodes in the system 

𝒯, |𝒯| Task set in the system, # of tasks in the system 

R, U, D Reliability, utilization variance, delay to task completion 

�̅�,  �̅�,  �̅� Scaled R, U, D 

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 Weights associated with �̅�,  �̅�,  �̅� for multi-objective optimization  

𝑃𝑀𝑂𝑂       𝜔𝑅�̅� + 𝜔𝑈�̅� + 𝜔𝐷�̅� 

[𝐼𝑚, 𝑁𝑇𝑚, 𝑁𝑚, 𝐹𝑚, (𝑇𝑚
𝑠𝑡𝑎𝑟𝑡, 𝑇𝑚

𝑒𝑛𝑑)] Task m’s specification: importance, node type, number of nodes needed 

    for task execution, task flow, start time, and end time (deadline) 

𝑁𝐵 Number of bidders in response to task m’s specification advertisement 

[𝑈𝑗 , 𝐷𝑗 , 𝑁𝑇𝑗] Node j’s specification: utilization, execution time, node type 

𝐷𝑇𝑚, 𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛 Task m execution duration, mission execution duration 

𝑇𝑖,𝑗 Trust of node i has toward node j 

𝑛𝑟𝑒𝑐 Maximum number of recommenders for trust propagation 

Pb Percentage of malicious nodes 

 

 
Fig. 1: System Architecture of Nodes and Tasks. 



 

 

human operators. The implementation detail will be 

discussed later in Section V. 

Fig. 1 illustrates the system architecture of nodes and 

tasks. We consider a mission-driven service-oriented 

MANET that must handle dynamically arriving tasks in a 

mission setting to achieve multiple system objectives. A 

commander node (CN) governs the mission team. Under 

the CN, multiple task leads (TLs) lead task teams. The CN 

selects TLs at the beginning of network deployment based 

on the trustworthiness of nodes known to CN a priori and 

the TLs (acting as SRs) each recruit trustworthy SPs 

dynamically for executing the tasks assigned to them. Tasks 

that overlap in time are grouped into a chunk. In Fig. 1, 

tasks 1-4 are grouped into chunk 1 and tasks 5-6 are 

grouped into chunk 2. Tasks in the same chunk must 

compete with each other for services provided by qualified 

SPs as each SP can participate in only one task at a time. 

Here we make the assumption that the TLs selected by the 

CN are fully trusted. In military command and control 

environments, a hierarchical chain of command and control 

is a common network structure [2] wherein this assumption 

is justified. One example is a tactical convoy operation 

where a commander and multiple assistant commanders 

work together to control members to maximize 

communication and efficiency. Assistant commanders are 

selected a priori and the trust relationships between the 

commander and assistant commanders are assumed [1].  

B. Attack/Defense Model 

A node in the service-oriented MANET may exhibit the 

following malicious behaviors for individual welfare: 

1. Bad-mouthing attacks: a malicious node may collude 

with other malicious nodes to ruin the reputation of a 

good node by providing bad recommendations against 

the good node so as to decrease the chance of the good 

node being selected for task execution. Our trust 

protocol deals with bad-mouthing attacks by belief 

discounting [20] such that the lesser the trustor node 

trusts the recommender, the more the recommendation 

is discounted. 

2. Ballot-stuffing attacks: a malicious node may collude 

with other malicious nodes to boost the reputation of a 

bad node by providing good recommendations for the 

bad node so as to increase the chance of the bad node 

being selected for task execution. Our trust protocol 

deals with ballot-stuffing attacks also by belief 

discounting. 

3. Opportunistic service attacks: a malicious node can 

provide good service to gain high reputation when it 

senses its reputation is low, and can provide bad 

service when it senses its reputation is high. Our trust 

protocol deals with opportunistic service attacks by 

severely punishing nodes that fail to provide the 

advertised service quality during task execution. 

Following the Byzantine Failure model  [22], we 

assume that a task fails when at least 1/3 nodes 

providing bad service. Here we note that with good 

reputation, a malicious node can effectively collude 

with other bad nodes to perform bad-mouthing and 

ballot-stuffing attacks. Hence, a malicious node will 

provide good service (at its true service capability) 

most of the time in order to gain high reputation. 

However, a malicious node can opportunistically 

collude with other malicious nodes to fail a task, when 

it senses that there are enough bad nodes around (at 

least 1/3) at the expense of trust loss.  

4. Self-promotion attacks: A malicious node can boost its 

service quality or lie about its utilization information so 

as to increase its chance of being selected as the SP. 

Our trust protocol deals with self-promotion attacks by 

severely punishing nodes that lie about their utilization 

or fail to provide the advertised service quality during 

task execution. In practice, self-promotion attacks can 

be easily detected, and as a result a malicious node 

would expose itself as vulnerable, resulting in a low 

reputation. This attack is less likely to be performed by 

a smart attacker. 

Here, we note that our trust protocol design is to defend 

against inside attackers (who are legitimate members of the 

service-oriented MANET community), not outside 

attackers. Forgery of trust values can indeed happen during 

our protocol execution in the form of bad-mouthing and 

ballot-stuffing attacks by inside attackers. Opportunistic 

service attacks and self-promotion attacks are also 

performed by inside attackers. We assume that a MANET 

member key, as a symmetric key, is used for 

communications among members to prevent outside 

attackers. Public Key Infrastructure (PKI) can be used to 

uniquely identify each node and can be useful to defend 

against identity or Sybil attackers [24]. However, it is not 

required in our protocol execution. Defending against 

communication-level attacks such as Denial-of-Service, 

identity or Sybil attacks is outside the scope of this paper. 

We assume such behaviors are detected by intrusion 

detection mechanisms [3] [6] [13] [23] [25] [33]. 

A node is a legitimate node if it is a member of the 

mobile ad hoc group. Our trust-based protocol does not use 

blacklisting to identify “bad” legitimate nodes and prevent 

them from task bidding. Blacklisting is a non-trust-based 

baseline protocol against which our trust-based protocol is 

compared for comparative performance analysis. Our trust 

protocol simply assesses a trust value for each legitimate 

node but allows all legitimate nodes to bid for tasks. A 

legitimate node with a low trust value is automatically 

filtered out (i.e., not selected) during task allocation 

because they are not trustworthy to complete the task 

assignment. So in effect we filter out less trustworthy 

nodes, although we do not label these less trustworthy 

nodes as “bad” nodes. Note that to incorporate blacklisting 

into our trust-based protocol, we must define a minimum 

trust threshold below which a node is blacklisted as “bad” 

and therefore prevented from participating in task bidding. 

This approach requires the best minimum trust threshold 



 

 

value to be identified, which is an error-prone process. Our 

trust protocol does not classify nodes as “good” or “bad” 

but simply gives them each a trust value to assess their 

trustworthiness in task execution. 

C. Trust Protocol and Cost Analysis 

Our baseline trust protocol uses Beta (α, β) distribution 

[20] modeling a trust value in the range of [0, 1] as a 

random variable where α and β represent the amounts of 

positive service evidence and negative service evidence 

respectively, such that the estimated mean trust value of a 

node is α/(α+β). A node uses the mean of Beta (α, β) 

distribution as the trust value it has toward another node. 

When a task which a node participated in is executed 

successfully (unsuccessfully), this node’s α is incremented 

by ∆𝛼 (β is incremented by ∆𝛽 correspondingly). When we 

want to severely punish malicious behavior, we set ∆𝛽 

≫ ∆𝛼 . In this paper, we propose a “penalty severity” 

parameter denoted by ∆𝛽:∆𝛼 to analyze its effect of trust 

penalty severity on our trust protocol performance. For all 

nodes, the initial α and β values are 1, representing 

ignorance with the initial trust value of 0.5. 

All nodes can serve as recommenders based on self-

observation experiences. To reduce message overhead 

especially for large MANETs, trust propagation is not by 

flooding. Instead, trust propagation is performed (via a 

recommendation message) only when a trustor node 

encounters a recommender node (not necessarily a TL). A 

trustor node evaluating a trustee node will select 

𝑛𝑟𝑒𝑐 recommenders whom it trusts most to provide trust 

recommendations toward the trustee node. A recommender 

should only pass its direct interaction experience with the 

trustee node in terms of (α, β) as a recommendation to 

avoid dependence and looping. After a task is completed, 

the TL can serve as a recommender toward the members in 

its team because it had gathered interaction experiences. 

For trust aggregation, each trustor aggregates trust evidence 

of its own (α, β) with a recommender’s (α, β) toward the 

trustee node. Note that a recommender’s (α, β) trust 

evidence is discounted based on the concept of belief 

discounting [20], such that the lesser the trustor node trusts 

the recommender, the more the recommendation is 

discounted. Because a bad node can perform bad-mouthing 

and ballot-stuffing attacks, it can provide a bad 

recommendation (with 𝛽 ≫ 𝛼) toward a good node and a 

good recommendation (with 𝛼  ≫ 𝛽)  toward a bad node, 

respectively. It can be shown that the Beta reputation 

system is resilient to such attacks if the trustor node has a 

low trust value toward the bad recommender [20]. 

Below we do a cost analysis of the 

communication/memory/energy-consumption overhead 

involved. Based on our protocol design, a recommender 

propagates its (α, β) recommendations toward other |𝒩| −
2 trustee nodes upon encountering a trustor node. The 

communication overhead per node in terms of bits/sec 

(from node i’s perspective) is ∑ 𝜆𝑖𝑗
|𝒩|−1

𝑗=1
(|𝒩| − 2)(𝑏𝐼 +

𝑏𝑜)  where 𝑏𝐼  is the information bits holding (α, β) of a 

trustee node, 𝑏𝑜 is the encryption bits for secure 

communication, and 𝜆𝑖𝑗  is the encountering rate of node i 

(the recommender) with node j (the trustor node) which can 

be derived by analyzing the encounter pattern, e.g., a 

power-law distribution, in a mobility model such as SWIM 

[21] and LSWTC [8]. Here we note that because trust 

propagation is encountered-based, trust convergence does 

not depend on the size of the network but depends on the 

encountering rate of node i (the recommender) with node j 

(the trustor node). Essentially upon encountering node j, 

node i exchanges trust information with node j in terms of 

the (α, β) value pairs of other nodes in the MANET 

community. In practice, the message overhead is lower 

because one can combine all required information into one 

message during transmission.  

The energy-consumption overhead per node in terms of 

J/sec (from node i’s perspective) is the sum of energy 

consumption rate for reception and energy consumption 

rate for transmission, i.e., ∑ 𝜆𝑖𝑗
|𝒩|−1

𝑗=1
(|𝒩| − 2)(𝑏𝐼 +

𝑏𝑜)𝐸𝑅  + ∑ 𝜆𝑖𝑗
|𝒩|−1

𝑗=1
(|𝒩| − 2)(𝑏𝐼 + 𝑏𝑜) (1 +

1

𝑝
) 𝐸𝑇 where 

𝐸𝑅  is the reception energy consumption rate (J/bit), 𝐸𝑇 is 

the transmission energy consumption rate (J/bit), and 

𝑝 = 𝑒
− ∑ 𝜆𝑖𝑗

|𝒩|−1

𝑗=1
(𝑇𝑅𝑇𝑆+𝑇𝐶𝑇𝑆)

is the probability that other 

nodes within radio range are not transmitting during TRTS + 

TCTS and thus 1/p is the number of trials before node i clears 

the channel for transmission based on the RTS/CTS 

transmission protocol [11]. Here 𝜆𝑖𝑗  is the encountering rate 

between node i and node j, accounting for the rate at which 

node j will transmit a recommendation packet to node i 

when they encounter during TRTS + TCTS, thus causing a 

collision and triggering a packet retransmission. 

The memory overhead of our protocol is minimum. 

Each node only needs to allocate space to store its (α, β) 

value pairs toward other |𝒩| − 1 nodes in the MANET 

community.   

D. Task Model 

Tasks arrive asynchronously and may start and 

complete at different times. Each task is characterized by 

the following unique properties:  

 Importance (Im) refers to the impact of task failure on the 

mission with a higher value indicating higher 

importance. 

 Required node type (𝑁𝑇𝑚)  indicates the required 

functionality of nodes for executing task m. A node with 

a higher node type has a higher capability and, because 

of human involvement, also has social trust dimensions.  

 Required number of nodes (Nm) refers to the number of 

nodes needed for execution of task m. 

 Task execution Flow (Fm) indicates the task structure 

(sequential, parallel or both) by which nodes coordinate 

with each other. For simplicity, we assume Nm nodes 

execute the task sequentially. 



 

 

 Task execution start time (𝑇𝑚
𝑠𝑡𝑎𝑟𝑡) and end time (𝑇𝑚

𝑒𝑛𝑑).   
A task fails when (a) the TL cannot recruit enough SPs 

to execute the task; (b) the task is not completed by the task 

end time (deadline), or (c) when it suffers from a Byzantine 

failure due to opportunistic service attacks as described in 

Section III.B which can result from malicious nodes 

purposely delaying task execution time to cause a task 

failure. For case (a), the TL will restart the bidding process 

until the deadline is reached before announcing failure. 

When a task fails due to (b) or (c), we assume that the TL 

can differentiate the guilty parties from lawful members 

and will apply a penalty to guilty parties by either 

blacklisting the guilty parties for the non-trust-based 

scheme, or applying a trust loss to the guilty parties in 

terms of ∆𝛽  for the trust-based scheme as discussed in 

Section III.C. 

E. System Objectives 

Without loss of generality, we consider three objectives, 

namely, mission reliability (R), utilization variance (U), and 

delay to task completion (D). We note that energy may also 

be an important objective for MANET applications which 

must run a long time without energy replenishment. In such 

environments, energy consumption minimization is another 

conflicting goal with reliability maximization and delay 

minimization. The trust-based algorithm design principle 

for maximizing task allocation MOO performance for the 

three objectives considered in this paper can still be applied 

if additional objectives (such as energy minimization) need 

to be considered.  

One can view minimizing utilization variance as 

maximizing load balance, and minimizing delay to task 

completion as maximizing QoS. A TL tends to select high 

QoS nodes because they can reduce service delay. 

However, always selecting high QoS nodes will cause the 

utility of these high QoS nodes to be extremely high 

compared with other nodes, thus causing a high utilization 

variance. Similarly, a TL tends to select highly reliable 

nodes because they can increase task reliability. However, 

always selecting highly reliable nodes will cause the utility 

of these highly reliable nodes to be extremely high 

compared with other nodes, thus again causing a high 

utilization variance. Consequently, there is a tradeoff 

between load balancing, task delay, and task reliability. 

These three objectives are further defined below. 

 Mission Reliability (R): This is the task reliability 

weighted by the task importance 𝐼𝑚, computed by:  

𝑅 = ∑ 𝑅𝑚  
𝐼𝑚

∑ 𝐼𝑚𝑎𝑙𝑙
 

𝑚∈𝒯

 (1)  

where 𝒯  is the set of tasks in the mission, 𝑅𝑚 is the 

reliability of task m such that 𝑅𝑚 = 1  when task m 

succeeds; 𝑅𝑚 = 0  otherwise, and 𝐼𝑚 is task m’s 

importance. A task fails when (a) the TL cannot recruit 

enough SPs to execute the task; (b) the task is not 

completed by the task end time (deadline), or (c) when it 

suffers from a Byzantine failure due to opportunistic 

service attacks. Higher R is desirable. To achieve this 

objective, a TL should select highly trustworthy nodes. 

 Utilization Variance (U): This measures the utilization 

variance of nodes and is defined by: 

𝑈 =
∑ (|𝑈𝑖−�̃�|)𝑖∈𝒩

|𝒩|
  where 𝑈𝑖 = ∑ 𝑈𝑖,𝑚𝑚∈𝒯  (2)  

where 𝒩 is the set of legitimate member nodes, i.e., nodes 

that are recognized as legitimate members of the ad hoc 

group and can bid for tasks. 𝑈𝑖,𝑚 is 𝐷𝑇𝑚/𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛 if node i 

executes task m, and is zero otherwise, where 𝐷𝑇𝑚 is the 

task duration and 𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛is the mission duration. 𝑈𝑖 is the 

overall utilization of node i. �̃� is the average utilization of 

all nodes. |𝑈𝑖 − �̃�| is the utilization variance of node i to 

the average. Lower 𝑈  is desirable as it minimizes the 

utilization variance and achieves the load balance objective. 

To achieve this goal, a TL should select nodes with low 

utilization. 

 Delay to Task Completion (D): This is the average delay 

to task completion over all tasks, defined by:  

𝐷 =  
∑ 𝐷𝑚𝑚∈𝒯

|𝒯|
   where 𝐷𝑚 = 𝑇𝑚

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒
− 𝑇𝑚

𝑠𝑡𝑎𝑟𝑡 (3)  

where 𝒯 is the set of tasks in the mission, 𝑇𝑚
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

 is the 

actual completion time of task m, and 𝑇𝑚
𝑠𝑡𝑎𝑟𝑡  is the start 

time of task m. It is desirable to complete task m as early as 

possible before the drop-dead end time 𝑇𝑚
𝑒𝑛𝑑 .  If 

𝑇𝑚
𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

>  𝑇𝑚
𝑒𝑛𝑑 ,   then task m fails and  𝐷𝑚  is set to 

𝐷𝑇𝑚𝑖𝑠𝑠𝑖𝑜𝑛.  Lower D is desirable. To achieve this goal, a TL 

should select nodes with low execution time.  

To formulate the MOO problem as a maximization 

problem, we first scale R, U and D into �̅�, �̅� and �̅� such 

that they each are in the range of [0, 1] and the higher the 

value to 1, the better the objective is achieved. Specifically, 

we scale R, U and D by [32]: 

�̅� =
𝑅 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
; �̅� =

𝑈𝑚𝑎𝑥 − 𝑈

𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
;  �̅� =

𝐷𝑚𝑎𝑥 − 𝐷

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
  (4)  

Here 𝑅𝑚𝑎𝑥 and 𝑅𝑚𝑖𝑛, 𝑈𝑚𝑎𝑥 and 𝑈𝑚𝑖𝑛,  and 𝐷𝑚𝑎𝑥 and 

𝐷𝑚𝑖𝑛 are the maximum and minimum values of R, U, and 

D, respectively at the mission level. These values define the 

maximum achievable and minimum tolerable solution 

quality, as determined by the user and system designer 

during the specification stage. One can view �̅� after scaling 

as “load balance” in the range of [0, 1], and �̅� as “QoS” in 

the range of [0, 1]. Here we aim to solve the MOO problem 

by maximizing  �̅� , �̅� and �̅�,  given node and task 

characteristics as input. We adopt the weighted sum form 

converting the MOO problem to a single-objective 

optimization problem. Specifically, we formulate the MOO 

problem as: 

Maximize 𝑃𝑀𝑂𝑂 = 𝜔𝑅�̅� + 𝜔𝑈�̅� + 𝜔𝐷�̅� (5)  



 

 

Here 𝜔𝑅 ,  𝜔𝑈 and 𝜔𝐷 are the weights associated with �̅�, 
�̅� and 𝐷,̅  respectively, with 𝜔𝑅+𝜔𝑈+𝜔𝐷 = 1. 

 

IV. TRUST-BASED DYNAMIC TASK 

ASSIGNMENT 

We have two layers of task assignment: by a CN to TLs 

and by each TL to nodes. We assume that the TLs selected 

by the CN are fully trusted. A TL is assigned to execute one 

task at a time. A node can participate in only one task at a 

time, although it may participate in multiple tasks during its 

lifetime. TLs advertise tasks and free nodes respond as 

described next. Below we describe our heuristic-based 

dynamic task assignment algorithm design based on 

auctioning with local knowledge of node status, with the 

objective to achieve MOO with a polynomial runtime 

#  TL Execution in each task chunk: 

1:  𝒊𝒇 a task is assigned 𝒕𝒉𝒆𝒏 

2:  𝑁𝑚  ← number of nodes required for the task 

3:  𝑡𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒 

4:  𝒘𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 𝑡𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝒅𝒐 

5:    advertise task specification to all SPs   

6:   𝑆 ←  all SPs that bid the task 

7:   �̂�  ← SPs that are selected for task execution based on Eq. (8) 

8:   send offers to �̂� 

9:   �̂�′ ← SPs that commit to the task 

10:  𝑁𝑚 ← 𝑁𝑚 − |�̂�′| 
11:  𝒊𝒇 𝑁𝑚 == 0 𝒕𝒉𝒆𝒏 

12:   𝑡𝑎𝑠𝑘𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 ← 𝑡𝑟𝑢𝑒 

13:   wait for task execution 

14:   update and broadcast trust of participant SPs 

15:  𝒆𝒏𝒅 

16: end 

17: end 

 

#    SP Execution in each task chunk:  

18: 𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒, 𝑃 ← ∅, 𝑅 ← ∅ 

19: 𝒊𝒇 task requests received 𝒂𝒏𝒅 𝑛𝑜𝑡 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 𝒕𝒉𝒆𝒏 

20: 𝑃 ← received task requests 

22: 𝑁𝑇𝑥 ←SP’s node type 

21: foreach 𝑝 𝑖𝑛 𝑃 

22:  𝑁𝑇𝑝 ← required node type by 𝑝 

23:  𝒊𝒇 𝑁𝑇𝑥 ≥ 𝑁𝑇𝑝 𝒕𝒉𝒆𝒏 

24:   send bidding information to the TL of 𝑝 

25:  𝒆𝒏𝒅 

26: 𝒆𝒏𝒅   

27: 𝑅 ← all tasks that make offers 

28: 𝒊𝒇 |𝑅| ≥ 1 𝒕𝒉𝒆𝒏 

29:  𝑟 ← the task with the highest importance in 𝑅 

31:  send task commitment to the TL of 𝑟 

32: 𝒆𝒏𝒅 

33: wait for the TL decision 

34: 𝒊𝒇 SP is selected 𝒕𝒉𝒆𝒏 

35:  𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ← 𝑡𝑟𝑢𝑒  

36:  𝒊𝒇 SP is malicious 𝒂𝒏𝒅 Byzantine failure condition meets 𝒕𝒉𝒆𝒏 

37:   fail 𝑟 

38:  𝒆𝒍𝒔𝒆 

39:   execute 𝑟 

40:  𝒆𝒏𝒅 

41: 𝒆𝒏𝒅 

42: 𝒆𝒏𝒅  

Fig. 2:   Actions taken by the SR and SPs during Auctioning for Task Assignment. 



 

 

complexity. Fig. 2 lists the pseudo code of the actions taken 

by the TL acting as the SR and the actions taken by well-

behaved and malicious SPs during the execution of the 

trust-based task allocation algorithm. 

A. Advertisement of Task Specification  

The task specification disseminated during the auction 

process includes a set of requirements for task execution 

specified by: 

[𝐼𝐷𝑚, 𝐼𝑚, 𝑁𝑇𝑚, 𝐹𝑚, (𝑇𝑚
𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑚

𝑒𝑛𝑑)] (6)  

where 𝐼𝐷𝑚, 𝐼𝑚, 𝑁𝑇𝑚, 𝐹𝑚, 𝑇𝑚
𝑠𝑡𝑎𝑟𝑡and 𝑇𝑚

𝑒𝑛𝑑 are task m’s 

identifier, importance, node type, number of nodes needed 

for task execution, task flow, start time, and end time 

(deadline), respectively. 

B.  Bidding a Task 

When a node receives the task specification message by 

a TL, it makes a bidding decision on whether to bid the task 

or not. A node meeting the node type requirement 𝑁𝑇𝑚 is 

considered capable of handling the required work elements 

imposed by task m and will respond to the request with its 

node ID if it is free. To help the TL make an informed 

decision, node j sends its information to the TL as follows:  

[𝐼𝐷𝑗 , 𝑈𝑗 , 𝐷𝑗 , 𝑁𝑇𝑗] (7)  

 Here 𝐼𝐷𝑗 is the identifier of node j, 𝑈𝑗 is the utilization 

of node j so far at the time of bidding, 𝐷𝑗  is the time 

required by node j to execute task m, and 𝑁𝑇𝑗  is the node 

type of node j. 

 

C. Member Selection  

TLs implicitly seek to optimize the MOO function. 

However, to achieve run-time efficiency, they adopt 

heuristics with local knowledge of node status to work 

independently of each other. The TL of task m ranks all 

bidding nodes (node j’s) based on 𝜔𝑅�̅�𝑗  + 𝜔𝑈�̅�𝑗 + 𝜔𝐷�̅�𝑗 

where �̅�𝑗, �̅�𝑗  and �̅�𝑗 are defined as:  

𝑅�̅� = 𝑇𝑇𝐿,𝑗; 𝑈�̅� =
𝑈𝑚𝑎𝑥 − 𝑈𝑗

𝑈𝑚𝑎𝑥 − 𝑈𝑚𝑖𝑛
;  𝐷�̅� =

𝐷𝑚𝑎𝑥 − 𝐷𝑗

𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛
  (8)  

Here a TL considers 𝑈𝑗 (utilization of node j) instead of 

U (utilization variance of all nodes who have participated in 

at least one task) because it does not have global knowledge 

about the latter and picking nodes to minimize utilization 

variance essentially can be achieved by picking bidding 

nodes with low 𝑈𝑗  (equivalently with high �̅�𝑗 after scaling). 

A TL also does not know the reliability of node j. So the 

heuristics used is to relate the reliability of node j with the 

trust value the TL has toward node j, i.e., �̅�𝑗 = 𝑇𝑇𝐿,𝑗  to 

predict the task reliability, if node j (a bidder) is selected for 

task execution.  

Top 𝑁𝑚  nodes with the highest ranking scores are 

selected to execute task m. Here we note that the trust-based 

algorithm has a polynomial runtime complexity 

𝑂(𝑁𝐵𝑙𝑜𝑔(𝑁𝑚)) where 𝑁𝐵 is the number of bidders. This is 

so because it only needs to examine all bidders once and 

selects the top ranked 𝑁𝑚 bidders. 

D. Task Commitment by Nodes  

A node may receive more than one offer from multiple 

TLs where tasks arrive concurrently. A TL sends out a 

winner notification with the full list of winners where the 

winners are potential members that are selected by the TL 

to execute its task. A node determines which task to join 

based on the expected payoff. This depends on if the node 

is a good node or a bad node. For a good node, it selects the 

task of the highest importance to join so as obtain the 

highest trust gain. For a malicious node, it does the same in 

order to gain high trust except when the Byzantine failure  

[22] condition is satisfied, i.e., at least 1/3 of the task 

members are malicious nodes. In the latter case, the bad 

node selects the highest important task that is bound to fail 

to join to cause the greatest damage to the mission at the 

expense of trust loss. Here we note that ballot-stuffing will 

not allow a malicious node to maintain high trust while 

inflicting damage because (1) our protocol will severely 

punish the malicious node for failing the task by 

significantly reducing the malicious node’s trust value; (2) 

our protocol will discount false recommendations from 

other malicious nodes performing ballot-stuffing attacks 

due to their low trust values. 

Table III: Parameters Used in Simulation.  
Parameter Value Parameter Value 

(|𝒩| , 𝑁𝑚) (20, 3), (100,15), 

(1000, 150) 

|𝒯|  180 tasks 

𝐼𝑚 1-5 𝜔𝑅: 𝜔𝑈: 𝜔𝐷  variable 

𝐷𝑗 𝑈(1,5)  min 𝑃𝑏 10%-70% 

𝑇𝑚
𝑒𝑛𝑑 − 𝑇𝑚

𝑠𝑡𝑎𝑟𝑡 𝑈(𝑁𝑚, 5𝑁𝑚)min 𝑛𝑟𝑒𝑐 3 

∆𝛼  𝐼𝑚 ∆𝛽:∆𝛼 0.1 −  10 

Slope of 

SWIM 

1.45 Max pause time 

of SWIM 

4 hours 

V. NUMERICAL RESULTS AND ANALYSIS 

In this section, we conduct a comparative performance 

analysis of trust-based solutions against ideal solutions 

based on perfect knowledge, and non-trust-based solutions 

in terms of MOO performance with MATLAB simulation. 

The mobility pattern of each node is modeled by the SWIM 

mobility pattern based on the C++ simulator in [21]. We 

also perform sensitivity analysis of the results with respect 

to key design parameters and alternative trust protocol 

designs.  

Table III summarizes key parameter values used for this 

case study. Our example system considers |𝒩| =20, 100, 

and 1000 nodes for small-sized, medium-sized, and large-

sized problems, respectively. For the small-sized problem, 

each task will need only 𝑁𝑚 = 3 nodes, for the medium-

sized problem, 𝑁𝑚 = 15 nodes, while for the large-sized 

problem, 𝑁𝑚 = 150  nodes. For all problems, there are 

|𝒯|=180 tasks arriving dynamically. A node’s capability is 

specified by its node type, ranging from 1 to 4 equally 

divided among |𝒩| nodes. For simplicity, the required node 



 

 

type is 1 so all nodes are qualified for bidding. A node’s 

service quality in terms of service time required (regardless 

of whether it is malicious) is specified by 𝐷𝑗 which follows 

uniform distribution U(1, 5) min. Tasks with overlapping 

start and end times are grouped into a concurrent “chunk.” 

Task importance is in the range from 1 to 5. We simulate 

task m’s execution duration 𝐷𝑇𝑚 by 𝑈(𝑁𝑚, 5𝑁𝑚) such that 

𝑇𝑚
𝑒𝑛𝑑 is 𝑇𝑚

𝑠𝑡𝑎𝑟𝑡 + 𝐷𝑇𝑚, defining the task end time (deadline) 

by which a task must be completed, or it will fail. An effect 

of this is that nodes with a long execution time delay will 

not be selected for task execution by the TL of the task to 

prevent failure. A task’s execution time is the sum of those 

of individual nodes selected for task execution since we 

consider sequential execution in this paper. The percentage 

of malicious nodes 𝑃𝑏  ranges from 10% to 70% whose 

effect will be analyzed in this section. The weights 

associated with multiple objectives, i.e.,𝑅,̅  �̅� and �̅� in the 

MOO problem are specified by a weight ratio 

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 which we vary to analyze its sensitivity on 

MOO performance. The system designer must provide the 

weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 as input to reflect the relative 

importance of �̅� vs. �̅� and �̅� as dictated by the application 

requirement. 

We consider |𝒩| = 20, 100, and 1000 nodes for small-

sized, medium-sized, and large-sized problems, 

respectively, moving according to the SWIM mobility 

model [21] modeling human social behaviors in an 

m×m=16×16 (4km×4km) operational region, with each 

region covering R=250m radio radius based on 802.11n. 

The operational area and the radio range remain the same 

for all problems. In SWIM, a node has a home location and 

a number of popular places. A node makes a move to one of 

the population places based on a prescribed pattern. The 

probability of a location being selected is higher if it is 

closer to the node’s home location or if it has a higher 

popularity (visited by more nodes). Once a node has chosen 

its next destination, it moves towards the destination 

following a straight line and with a constant speed that 

equals the movement distance. When reaching the 

destination, the node pauses at the destination location for a 

period of time following a bounded power law distribution 

with the slope set to 1.45 (as in [21]) and the maximum 

pause time set to 4 hours. In addition, when a node is 

selected to execute a task, it moves to the location of the TL 

and follows the TL over the task execution duration. After 

completing a task, a node resumes its SWIM mobility 

pattern until it is selected again for executing another task. 

The movements and locations of |𝒩| mobile nodes are 

simulated this way and then integrated with Matlab for 

evaluating trust-based, ideal, and non-trust-based solutions.  

A malicious node performs attacks as specified in the 

attack model in Section III.B. For the trust protocol, the 

number of recommenders 𝑛𝑟𝑒𝑐 is set to 3. The increment to 

positive evidence  ∆𝛼  is set to 𝐼𝑚,  while the increment to 

negative evidence ∆𝛽 is set to 𝐼𝑚 multiplied by the penalty 

severity parameter (i.e., ∆𝛽:∆𝛼) in the range of 0.1 to 10, 

with a larger number representing a more severe penalty to  

negative evidence. We will analyze the effect of severely 

punishing malicious behavior on MOO performance.  

We consider two baseline algorithms against which our 

trust-based algorithm is compared in the performance 

analysis, namely, ideal selection with perfect knowledge of 

node status vs. non-trust-based selection, as follows: 

1. Ideal selection: The TL of task m ranks all bidding 

nodes in the same way as the trust-based algorithm 

described earlier except that it has perfect knowledge of 

node status, i.e.,  �̅�𝑗 = 1 if node j is a good node, and 

�̅�𝑗 = 0  if node j is malicious. The ideal solution is 

impossible to achieve; it is just used to predict the 

performance upper bound to the trust-based solution. 

2. Non-trust-based selection: The TL of task m also ranks 

all bidding nodes in the same way as the trust-based 

algorithm except that �̅�𝑗 =0 if the bidding node is 

blacklisted; �̅�𝑗  =1 if the bidding node is not blacklisted 

and had participated in a successful task execution for 

which the TL was the task lead; and �̅�𝑗 =0.5 (no 

knowledge) otherwise. We assume intelligent behavior 

so that each TL can learn from experiences. If a TL 

experiences a task failure, it blacklists nodes 

participated in the task execution and excludes them 

from a future node-to-task assignment for which it is the 

TL. Top 𝑁𝑚  ranked nodes are selected for executing 

task m. 

A. Comparative Performance Analysis  

Figs. 3, 4, and 5 present the solution quality in terms of 

the scaled mission reliability (�̅�), load balance (�̅�), QoS 

(�̅�), and 𝑃𝑀𝑂𝑂obtained by the trust-based solution against 

the ideal solution and the non-trust-based solution for the 

small-sized (|𝒩|  = 20,  𝑁𝑚 = 3),  medium-sized (|𝒩|  = 

100,  𝑁𝑚 = 15), and large-sized (|𝒩|  = 1000,  𝑁𝑚 = 150) 

problems, respectively, as a function of the percentage of 

malicious nodes in the range of 10% to 70%, with 

∆𝛽: ∆𝛼 = 1: 1 and the weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1
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:
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 for 

a case in which reliability is more important than QoS and 

load balance.  

 



 

 

 Note that �̅�, �̅�, �̅� and 𝑃𝑀𝑂𝑂 are all scaled in the range 

of [0, 1] with a higher number indicating a higher 

performance. Each result point indicates the average value 

of the metric based on 100 simulation runs, each of which 

has the same task arrival sequence with the Dj distribution 

randomized. We observe that Figs. 3, 4, and 5 are similar in 

trend with the trust-based scheme approaching the ideal 

scheme in the overall performance. As the problem size 

increases, the performance gain of our trust-based scheme 

over the non-trust-based scheme is more pronounce because 

there are more qualified nodes to select from for task 

execution. Furthermore, the dominance is more manifested 

as the percentage of malicious nodes (Pb) increases.  

 

 
Fig. 3:  Mission Reliability (�̅�), Load Balance (�̅�), QoS (�̅�), and 𝑃𝑀𝑂𝑂 vs. Bad Node Percentage (𝑃𝑏)  

for a Small-Sized MOO Problem. 

 

 

 
Fig. 4:  Mission Reliability (�̅�), Load Balance (�̅�), QoS (�̅�), and 𝑃𝑀𝑂𝑂 vs. Bad Node Percentage (𝑃𝑏)  

for a Medium-Sized MOO Problem. 

 

 

 
Fig. 5:  Mission Reliability (�̅�), Load Balance (�̅�), QoS (�̅�), and 𝑃𝑀𝑂𝑂 vs. Bad Node Percentage (𝑃𝑏)  

for a Large-Sized MOO Problem. 

 

 

 

Fig. 6:  Trust Value Distribution of Good Nodes (Top) and Bad Nodes (Bottom) in Boxplot Format. 



 

 

The ideal case has perfect knowledge over node status, 

i.e., it knows whether a node is malicious or not. Therefore, 

the ideal solution is perfect in maximizing mission 

reliability (�̅�). However, since mission reliability and load 

balance (�̅�) are conflicting objectives, the ideal solution can 

sacrifice load balance. This is indicated by the second 

subfigure in Figs. 3, 4 and 5 where we see both trust-based 

and non-trust-based solutions actually perform better than 

the ideal solution in load balance (�̅� ). Lastly, the ideal 

solution, by selecting nodes to maximize mission reliability, 

does not necessarily guarantee maximizing QoS (�̅�). This is 

indicated by the third subfigure in Figs. 3, 4 and 5 where 

we see our trust-based solution actually performs 

comparably to or even better than the ideal solution in QoS 

(�̅�). 

There is an interesting tradeoff between the multiple 

objectives in terms of �̅�, �̅� and 𝐷.̅   The  ideal   solution   

attempts  to  maximize 𝑃𝑀𝑂𝑂 in (5) by maximizing �̅� 

because of its perfect knowledge of node reliability at the 

expense of  �̅�  and �̅�. On the other hand, without having 

sufficient evidence to establish trust (at least initially), the 

trust-based solution attempts to maximize �̅� without overly 

compromising  �̅�  and �̅�.  Finally, with only private 

blacklisting information kept by the TLs, the non-trust-

based solution attempts to maximize �̅� at the expense of �̅� 

and �̅�. The ability for the TLs to differentiate good nodes 

from malicious nodes thus dictates how 𝑃𝑀𝑂𝑂 in (5) is 

maximized. We conclude that our heuristic trust-based 

solution with polynomial complexity indeed can achieve 

solution efficiency without compromising solution 

optimality. 

Fig. 6 depicts the trust value distribution of good nodes 

(top) and bad nodes (bottom) in boxplot format as a 

function of time (chunk #) in our trust protocol. This 

boxplot is the same for all problem sizes. A boxplot 

graphically depicts trust values through their quartiles 

without making any assumption about the probability 

distribution. In a boxplot, the bottom and top of a boxplot 

are the first and third quartiles, and the band inside the box 

is the second quartile (the median) with the ends of the 

whiskers showing the minimum and maximum of all of the 

trust values.  The trust value of a good node should be 

above 0.5 and approaching 1 (ground truth), while the trust 

value of a bad node should be blow 0.5 and approaching 0 

(ground truth). We can see that for Pb = 10%, trust values 

are less dispersed, so the first and third quartiles are 

clustered into a thick dot. Further, the trust values of bad 

nodes are mostly above 0.5 because there are too few bad 

nodes in the system and the chance for them to be in the 

same task to perform opportunistic service attacks is low. In 

this case, bad nodes remain hidden and behave, with their 

trust values maintained above 0.5 to earn the trust reward. 

As Pb increases, the chance of performing opportunistic 

service attacks increases. As a result, the trust values of bad 

nodes are quickly updated to fall below 0.5 because of trust 

penalty. We also observe that trust convergence is achieved 

after 50 chunks (about 100 tasks). This is particularly the 

case when Pb is sufficiently high at which the medium trust 

value of bad nodes is sufficiently low and the medium trust 

value of good nodes is sufficiently high, so the system is 

able to differentiate good nodes from bad nodes for task 

execution.  For example, the medium good node trust value 

is 0.75 and the medium bad node trust value is 0.35 when 

Pb is 50%. This explains why when Pb is 50% in Figs. 3, 4, 

and 5, the trust-based solution outperforms the non-trust-

based solution and approaches the ideal solution. 

B.  Sensitivity Analysis of ∆𝛽: ∆𝛼 and 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 

The observation that people hope to severely punish 

malicious behavior by having a large ∆𝛽: ∆𝛼 ratio is true if 

mission reliability is the most important or is the sole 

objective especially for mission-critical applications. 

However, when there are multiple conflicting objectives 

such as mission reliability (�̅�), load balance (�̅�), and delay 

to task completion ( �̅� ) considered in this paper, this 

observation is not necessarily true. One contribution of this 

paper is that we identify the best ∆𝛽: ∆𝛼 to use in order to 

maximize 𝑃𝑀𝑂𝑂, depending on the weights associated with 

multiple objectives, i.e., �̅�, �̅� and �̅� in the MOO problem. 

 

 

 
Fig. 7: Sensitivity Analysis of MOO with respect to ∆𝛽: ∆𝛼 and 𝜔𝑅: 𝜔𝑈: 𝜔𝐷. 



 

 

Fig. 7 tests the sensitivity of �̅�, �̅�, �̅� and 𝑃𝑀𝑂𝑂obtained 

from our trust-based solution with respect to the ratio of the 

positive increment to the negative increment ∆𝛽: ∆𝛼, and 

the weight ratio of the weights associated with multiple 

objectives 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 for the case in which Pb = 70% 

(picked to show area of interest) for the small-sized 

problem. We see that in general �̅� increases while �̅� and �̅� 

decrease as ∆𝛽: ∆𝛼 increases because a larger ratio severely 

punishes bad nodes for performing attacks, making the bad 

nodes more distinguishable from good nodes. Selecting 

mostly good nodes for task execution, however, increases �̅� 

but sacrifices �̅�  because node selection tends to select 

mostly good nodes, and also sacrifices �̅� because bad nodes 

with good service quality are not selected.  

We observe that the best ∆𝛽: ∆𝛼 to maximize 𝑃𝑀𝑂𝑂  is 

affected by the weights associated with multiple objectives, 

i.e., �̅�, �̅� and �̅� in the MOO problem. This is evident in the 

rightmost graph of Fig. 7 where we observe that the best 

∆𝛽: ∆𝛼 ratios are 0.1, 1, and 2 (labeled by black dots), for 
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maximizing 𝑃𝑀𝑂𝑂 in (5). The reason is that a higher ∆𝛽: ∆𝛼 
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Fig. 8: Sensitivity Analysis of MOO with respect to Trust Protocol Design: STO vs. SSTRT and ISTRT. 

 



 

 

increases �̅�  but sacrifices �̅�  and �̅�  as they are conflicting 

goals.  Hence, under the equal weight scenario (the red line) 

when all objectives contribute equally, the best ∆𝛽: ∆𝛼 

value is small as so to best balance the gain of �̅� vs. the loss 

of �̅�  and �̅�  for MOO. Here we note that although the 

sensitivity analysis is demonstrated for the case in which Pb 

= 70%, the general behavior observed is true across. The 

only difference is the degree of sensitivity. 

C. Sensitivity Analysis of Trust Protocol Design 

In this section, we consider the effect of trust protocol 

design on trust-based MOO performance. Recall that the 

trust protocol design considered in Section III.C is based on 

a service trust value in the range of [0, 1] represented by α 

and β denoting the amount of positive evidence and 

negative evidence, respectively. We consider three trust 

protocol designs as follows: 

1. Service Trust Only (STO): this is the protocol 

described in Section III.C. 

2. Separating Service Trust from Recommendation Trust 

(SSTRT): this protocol behaves the same as STO when 

updating the service trust. In addition, it maintains a  

separate trust value for rating a recommender. 

Specifically, there is a second pair of α and β denoting 

the amount of positive evidence and negative evidence 

respectively for rating a recommender. Upon receiving 

a recommendation from node k regarding node j, node i 

can compare its own service rating toward j with the 

recommendation received from k about j. If the 

difference deviates more than a percentage threshold 

(25% is considered in the paper), then node i views it 

as negative evidence against node k because of a 

possible bad-mouthing or ballot staffing attack by node 

k. Otherwise, node i views it as positive evidence for 

node k. When node i receives a recommendation from 

node k, node i uses the recommendation trust (instead 

of the service trust) it has toward k for trust merging. 

Here α and β for recommendation trust are set to 1 

initially. The same ∆𝛽: ∆𝛼 ratio applies.  

3. Integrating Service Trust with Recommendation Trust 

(ISTRT): this protocol also considers positive/negative 

evidence of a recommender as SSTRT does. However, 

as STO, it only maintains a pair of α and β denoting the 

amount of positive evidence and negative evidence. 

Both recommendation quality evidence and service 

quality evidence collected are combined for updating α 

and β. Again α and β are set to 1 initially. The same 

∆𝛽: ∆𝛼 ratio applies. 

 The effect of trust protocol design on MOO 

performance is summarized in Figs. 8 and 9.  

Figs. 8(a), 8(b), 8(c) and 8(d) compare  �̅� , �̅� , �̅�  and 

𝑃𝑀𝑂𝑂 obtained  by STO, SSTRT, and ISTRT as a function 

of the percentage of malicious nodes in the range of 10%-

 

 

(a) Trust Values of Good Nodes (top) and Bad Nodes (bottom) under STO. 

 

(b) Trust Values  of Good Nodes (top) and Bad Nodes (bottom) under SSTRT. 

 

(c) Trust Values  of Good Nodes (top) and Bad Nodes (bottom) under ISTRT. 

Fig. 9: Trust Value Distribution of Good Nodes and Bad Nodes under STO vs. SSTRT and ISTRT. 



 

 

70% for 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

3
:

1

3
:

1

3
 ,  

1

2
:

1

3
:

1

6
 ,  

1

2
:

1

6
:

1

3
 , and  

1

3
:

1

6
:

1

2
, 

respectively. While there is no clear winner among these 

three trust protocol designs, SSTRT appears to perform the 

best in terms of R̅ over all weight ratio scenarios. Because 

of the tradeoff between the multiple goals between �̅� vs. �̅� 

and �̅�,  maximizing �̅� is often offset by sacrificing �̅� and 

�̅�.  In particular, we observe that under the weight ratio 

𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

3
:

1

6
, SSTRT outperforms STO and ISTRT 

in 𝑃𝑀𝑂𝑂 since in this scenario SSTRT can best balance the 

gain of �̅� against the combined loss of �̅� and 𝐷 ̅compared 

with STO and ISTRT.  

Figs. 9(a), 9(b), and 9(c) show the trust values of good 

nodes (top) and bad nodes (bottom) over time (chunk #) in 

boxplot format under STO, SSTRT and ISTRT, 

respectively, with the weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 =
1

2
:

1

3
:

1

6
. 

We see clearly that SSTRT can best discern good nodes 

from bad nodes compared with STO and ISTRT. We 

attribute this to the ability of SSTRT to separate service 

trust from recommendation trust, which improves trust 

accuracy.  

We conclude that the choice of the best trust protocol 

design is dictated by the relative importance of  �̅� vs. �̅� and 

�̅�, i.e., it is highly sensitive to the weight ratio 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 

which in turn is dictated by the application requirement. 

The analysis performed here allows the system designer to 

choose the best trust protocol design for maximizing task 

assignment MOO performance. 

VI. APPLICABILITY 

The simulation results obtained reveal the best trust 

protocol settings in terms of the best ∆𝛽: ∆𝛼  ratio to 

achieve MOO, given the relative importance of �̅� vs. �̅� and 

�̅�  (which determines 𝜔𝑅: 𝜔𝑈: 𝜔𝐷)  and the hostility 

condition (which determines Pb) as input. More 

specifically, the simulation results obtained can be built into 

a lookup table, covering a conceivable range of 𝜔𝑅: 𝜔𝑈: 𝜔𝐷 

and Pb values as input.  

The lookup table as shown in Figure 10 would store 

key-value pairs where the “keys” are combinations of input 

parameter values, and the “values” are the best ∆𝛽: ∆𝛼 ratio 

for maximizing MOO performance under the input 

parameter values. The input parameters on the left are input 

to the lookup table at runtime. The design parameters on 

the right are output as a result of a table lookup operation. 

Upon sensing the environment changes in terms of input 

parameter values, the system can perform a simple table 

lookup operation augmented with extrapolation or 

interpolation techniques to determine and apply the best 

∆𝛽: ∆𝛼  ratio in response to dynamically changing 

conditions. Depending on data granularity, a set of input 

parameter values may not directly map to a set of output 

parameter values. Extrapolation or interpolation techniques 

may be used to produce the matching output. The lookup 

time is O(1) and can be efficiently applied at runtime to 

determine the best trust protocol design as well as the best 

∆𝛽: ∆𝛼  ratio for maximizing task allocation MOO 

performance.  

VII. CONCLUSION 

In this paper, we proposed a trust-based dynamic task 

assignment algorithm for autonomous service-oriented 

MANETs where we are concerned with MOO for multiple 

objectives with conflicting goals. The results demonstrated 

that our trust-based solution has low complexity and yet can 

achieve performance comparable to that of the ideal 

solution with perfect knowledge of node reliability, and can 

significantly outperform the non-trust-based solution. We 

also provided insight of how MOO is achieved by the ideal, 

trust-based and non-trust-based solutions, and identified the 

trust protocol parameter settings under which MOO 

performance is maximized for the trust-based solution 

which can best balance multiple objectives with conflicting 

goals. The results obtained are useful for dynamic trust 

protocol management to maximize application performance 

in terms of MOO. 

In the future, we plan to refine our heuristic design for 

member bidding and selection strategies to further enhance 

MOO performance, possibly exploring game theory. We 

also plan to explore other forms of MOO formulation 

applicable to other autonomous service-oriented MANET 

scenarios. 
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