Trust-based Service Composition and Binding with Multiple Objective Optimization in Service-Oriented Mobile Ad Hoc Networks

APPENDIX A

In this appendix, we provide details of trust propagation and aggregation in the single-trust baseline protocol design. A node receiving a trust update follows the propagation and aggregation protocol described below to update its (α, β) pair toward the SP. Trust propagation is done through recommendations received from 1-hop neighbors whom the trustor encounters dynamically. A node (trustor) will select n_{rec} recommenders whom it trusts most to provide trust recommendations of an SP (trustee). A recommender should only pass its direct interaction experience with the trustee node in terms of (α, β) as a recommendation to avoid dependence and looping [25]. Let node i be the trustor, node j be the trustee, and node k be a recommender. Also let $(\alpha_{i,i}, \beta_{i,i})$ be the trustor's (α, β) toward the trustee, $(\alpha_{k,j}, \beta_{k,j})$ be the recommender's (α, β) toward the trustee and $(\alpha_{i,k}, \beta_{i,k})$ be the trustor's (α, β) toward the recommender. Based on belief discounting (see [24] for details), node i will compute its new ($\alpha_{i,j}^{new}$, $\beta_{i,j}^{new}$) as follows:

$$\alpha_{i,j}^{\text{new}} = \alpha_{i,j} + \frac{2\alpha_{i,k}\alpha_{k,j}}{[(\beta_{i,k}+2)(\alpha_{k,j}+\beta_{k,j}+2)] + 2\alpha_{i,k}}$$
(14)

$$\beta_{i,j}^{\text{new}} = \beta_{i,j} + \frac{2\alpha_{i,k}\beta_{k,j}}{[(\beta_{i,k}+2)(\alpha_{k,j}+\beta_{k,j}+2)] + 2\alpha_{i,k}}$$
(15)

The basic idea is that if node i does not trust k, it will discount the recommendation provided by node k, so $\alpha_{i,j}^{new} \sim \alpha_{i,j}$ and $\beta_{i,j}^{new} \sim \beta_{i,j}$ as if the recommendation from k does not have any effect. This can be derived from (14) and (15). First of all, if node i does not trust node k then $\alpha_{i,k} \ll \beta_{i,k}$. In case node k is performing a bad-mouthing attack on node j, then $\alpha_{k,j} \ll \beta_{k,j}$. Applying these two conditions to (14) and (15), one can easily verify $\alpha_{i,j}^{new} \sim \alpha_{i,j}$ and $\beta_{i,j}^{new} \sim \beta_{i,j}$. In case node k is performing a ballot-stuffing attack on node j, then $\alpha_{k,j} \gg \beta_{k,j}$ and again one can easily verify $\alpha_{i,j}^{new} \sim \alpha_{i,j}$ and $\beta_{i,j}^{new} \sim \beta_{i,j}$. After trust aggregation, the trustor's (or node i's) trust toward the trustee (or node j) is then computed as $T_{i,j} = \frac{\alpha_{i,j}^{new}}{\alpha_{i,j}^{new} + \beta_{i,j}^{new}}$.

APPENDIX B

In this appendix, we provide implementation details of the ILP solution technique for optimally solving the nodeto-service assignment problem with MOO in (9) of the main file for both trust-based and non-trust-based algorithms.

TABLE IV: Variable Definitions for ILP.

Variable	Definition
ov _{p,q}	1 if service requests O_p and O_q are overlapping in
	time; 0 otherwise
s _{j,k}	1 if node j can provide abstract service S_k ; 0
	otherwise
tt _{j,k}	1 if advertised service quality of node j satisfies the
	abstract service level minimum threshold of Sk; 0
	otherwise
in _{k,m}	1 if service request O _m requires abstract service S _k ;
	0, otherwise
to _{j,k,m}	$s_{j,k} \times tt_{j,k} \times in_{k,m}$
w _{j,k,m}	1 if node j is assigned to service S_k in service request
	O _m ; 0 otherwise

Table IV defines the variables used in the ILP formulation. There is only one decision variable, namely, $w_{j,k,m}$ to be determined by the ILP, specifying if node j should be assigned to abstract service k of service request m. The ILP will search for an optimal solution of $w_{j,k,m}$ for all j's, k's and m's to maximize MOO in both trust-based design and non-trust-based design algorithms. The objective function $MOO = \sum_{m \in T} (\omega_{Q,m} \overline{Q}_m + \omega_{D,m} \overline{D}_m + \omega_{C,m} \overline{C}_m)$ as defined by (9) of the main file can be computed as a linear function of $w_{j,k,m}$ (the only decision variable to be decided by the ILP). The service-to-node assignment MOO problem is formulated as follows:

<u>Given</u> : $\mathcal{T}, \mathcal{S}_m, \mathcal{N}$	
<u>Calculate</u> : $ov_{p,q}$, $s_{j,k}$, $tt_{j,k}$, $in_{k,m}$	
<u>Find</u> : w _{j,k,m}	
$\underline{\text{Maximize}}: \sum_{m \in \mathcal{T}} (\omega_Q \overline{Q}_m + \omega_D \overline{D}_m + \omega_C \overline{C}_m)$	
$\underline{\text{Subject to}}: \forall j \ \forall \{p,q\} \ \text{ov}_{p,q} \ \times \ (w_{j,k,p} \ + \ w_{j,k,q} \) \leq 1;$	
$\sum_{j} w_{j,k,m} = in_{k,m}; \ w_{j,k,m} \leq \ to_{j,k,m}$	

REFERENCES

- [24] A. Jøsang and R. Ismail, "The Beta Reputation System," in 15th Bled Electronic Commerce Conf., 2002, pp. 1-14.
- [25] A. Jøsang, R. Ismail, and C. Boyd, "A Survey of Trust and Reputation Systems for Online Service Provision," *Decision Support Systems*, vol. 43, no. 2, pp. 618-644, 2007.