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Abstract—In this work, we propose an energy-adaptive moni-
toring system for a solar sensor-based smart animal farm (e.g.,
cattle). The proposed smart farm system aims to maintain high-
quality monitoring services by solar sensors with limited and
fluctuating energy against a full set of cyberattack behaviors
including false data injection, message dropping, or protocol
non-compliance. We leverage Subjective Logic (SL) as the belief
model to consider different types of uncertainties in opinions
about sensed data. We develop two Deep Reinforcement Learning
(DRL) schemes leveraging the design concept of uncertainty
maximization in SL for DRL agents running on gateways to
collect high-quality sensed data with low uncertainty and high
freshness. We assess the performance of the proposed energy-
adaptive smart farm system in terms of accumulated reward,
monitoring error, system overload, and battery maintenance
level. We compare the performance of the two DRL schemes
developed (i.e., multi-agent deep Q-learning, MADQN, and multi-
agent proximal policy optimization, MAPPO) with greedy and
random baseline schemes in choosing the set of sensed data to be
updated to collect high-quality sensed data to achieve resilience
against attacks. Our experiments demonstrate that MAPPO
with the uncertainty maximization technique outperforms its
counterparts.

Index Terms—Smart farm, energy-adaptive, deep reinforce-
ment learning, solar sensors, uncertainty, cyberattacks.

I. INTRODUCTION

The smart farm research has been conducted to enhance
monitoring animal welfare, or to support farmers’ decisions
for sensing data and environmental controls. However, there
has been a lack of efforts to develop security-aware smart
farm technologies for energy limited sensor networks. Food
contamination due to bacteria, viruses, toxins, or chemicals
has made hundreds of million people sick and nearly half a
million people die according to the head of the World Health
Organization (WHO) [6]. This can be increased exponentially
if cyberattacks aiming at disrupting the process of correct
data are not properly defended in farms, transportation sys-
tems, or food processing industrial control systems (ICSs).
In particular, monitoring livestock in smart farms [14] plays
a critical role toward increasing a farmer’s revenue. If false
or misleading data are received for the status of monitored
animals, this will lead to improper actions, such as spread
of disease or provision of wrong information to potential
customers of the livestock [6].

In this work, we concern how accurate monitoring of cattle
in a smart farm can be achieved in the presence of cyberattacks
forging, modifying, dropping sensed data, or injecting false

data from sensors to gateways or edge devices. Since most
sensors for cattle are powered by batteries and attached to
collars, they are incapable of measuring biometrics. Moreover,
sensors using three AA-size batteries last only two to three
days. Replacing or recharging batteries of sensors in every
few days is laborious and not cost-effective for a typical
farm. To address the problem, we consider a sensor attached
to an animal’s ear and powered by solar energy harvesting.
However, the amount of harvested energy is small due to a
small size solar panel. In addition, the harvested energy level
fluctuates drastically as the animal and its ears with sensors
move. Therefore, this calls for an energy-adaptive monitoring
system for smart farms.

In this work, we make the following key contributions:
• We propose an energy-adaptive monitoring system for smart

farms with solar sensors attached to cattle. This is the first
work that aims at achieving high monitoring quality and
energy maintenance of smart farms in the presence of high
uncertainty and adversarial attacks.

• We leverage the merits of both deep reinforcement learning
(DRL) [5] and a belief model, called Subjective Logic [8]
(SL), to achieve our research goal. We develop an un-
certainty maximization (UM) technique derived from SL
for DRL agents running on gateways to collect high-
quality sensed data with low uncertainty and high freshness
for building an attack-resilient and energy-adaptive smart
farm. Specifically, we develop two DRL-based schemes
incorporated with the UM technique for energy-adaptive
monitoring of smart farms. We demonstrate the effectiveness
of the developed DRL-based schemes in terms of monitoring
quality, system overload, and energy consumption in smart
farm environments against baseline models.

• We show the robustness of the proposed smart farm moni-
toring system against a full set of cyberattack behaviors (i.e.,
protocol non-compliance, false data injection, and denial of
service) that can happen to a smart farm.

II. RELATED WORK

Energy-aware algorithms for wireless sensor networks
(WSNs) have been proposed in various applications. A cluster-
based routing protocol, called QL-Cluster [10], was proposed
using Q-learning to continuously and efficiently monitor a
patient’s health. An adaptive energy management strategy was
proposed for a solar-powered WSN with hybrid storage [13].



Fig. 1. Wireless Sensor Node-based Smart Farm Environment.

A sleep scheduling algorithm was proposed for rechargeable
sensors based on a DRL algorithm [3]. Q-learning was also
leveraged to control power for communications to build jam-
ming attack-resistant, healthcare applications [1]. A sensor
access control using DRL is proposed to adjust the access
time and transmit power of the sensor based on the state of
the sensor [2]. Relative to the above cited works which applied
DRL to develop energy-efficient WSNs, our work develops an
uncertainty maximization technique derived from SL for DRL
agents running on gateways to collect high-quality sensed data
with low uncertainty and high freshness for building an attack-
resilient and energy-adaptive smart farm with sensors having
limited and fluctuating energy.

III. PROBLEM STATEMENT

In this work, we are interested in identifying an optimal
monitoring policy to minimize the monitoring error and system
overload in a sensor network. Here, an update policy 𝑃 =

{𝑝1, 𝑝2, . . . , 𝑝𝑇 } consists 𝑇 monitoring actions 𝑝𝑖 with a total
monitoring step 𝑇 , where 𝑝𝑖 ∈ P and P is a set of available
monitoring actions in each monitoring step. When a dynamic
sensor network 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑇 } is given, we define the
objective function as follows:

arg max
𝑃={𝑝1 , 𝑝2 ,..., 𝑝𝑇 }

𝑇∑︁
𝑖=1

𝑓 (𝑔𝑖 (𝑝1, 𝑝2, . . . , 𝑝𝑖)), (1)

𝑠.𝑡. ∀𝑖 ∈ [1, 𝑇], 𝑝𝑖 ∈ P,

where 𝑓 (𝑔) returns the values depending on the evaluation
function 𝑓 : 𝑔 ↦→ −ME(𝑔) − OL(𝑔), aiming to minimize
the monitoring error ME and system overload OL, which are
detailed in Section VI. It is a non-trivial task for the DRL agent
to identify an optimal update policy that can meet multiple
objectives based on the inherent difficulty of solving multi-
objective optimization [4]. This is discussed with more details
based on experimental results shown in Section VII.

IV. SYSTEM MODEL

Network Model: The network consists of solar-powered
wireless sensor nodes attached to cattle where the sensors
transmit sensed data to LoRa gateways, which send the data to
a cloud server. The LoRa gateways act as intermediaries be-
tween the sensors and the cloud server, allowing inexpensive,
long-range (LoRa) connectivity for Internet-of-Things (IoT)
devices via the standard IP protocol. In the given WSN-based

smart farm environment, a low energy sensor can transmit its
sensed data to a nearby sensor with excess energy via BLE
(Bluetooth Low Energy), allowing transmitting the received
data as well as its own sensed data to LoRa gateways via LoRa.
We assume that each sensor has a Microchip SAM R34/35 mi-
crocontroller with an embedded LoRa radio which dissipates
170 𝑚𝑊 during transmission, while the microcontroller itself
dissipates only 8 𝑚𝑊 in active mode. The BLE protocol is
intended for short distance communications with a maximum
distance of 100 𝑚𝑒𝑡𝑒𝑟𝑠 and a data rate of 2 𝑀𝑏𝑝𝑠. In contrast,
the LoRa protocol is for long distance communications with
a distance of several 𝑘𝑚 and a data rate of 27 𝑘𝑏𝑝𝑠. BLE
dissipates much less power than LoRA. For example, a Texas
Instruments CC2640R2F microcontroller chip with an embed-
ded BLE radio dissipates 11 𝑚𝑊 during transmission [18].
Hence, the amount of energy to send one bit of data for the
BLE radio is about 1,100 times smaller when compared with
the LoRa radio of SAM R34/35 microcontroller chip. We
assume each sensor is deployed with full charge of 5 kWs
as an initial energy level. The power density for outdoor solar
is about 10 𝑚𝑊/𝑐𝑚2 and 0.1 𝑚𝑊/𝑐𝑚2 for indoor light [11].
As such, the maximum harvestable power for outdoor solar is
about 200 mW for a solar panel with the diameter of 5 cm,
and it is about 2 mW for indoor light. Fig. 1 describes the
high level overview of the considered network in this work.

A DRL agent is deployed on each LoRa gateway to identify
which animal’s sensed data are more needed than others to
enhance the overall monitoring quality. We describe how the
DRL agent identifies the sensed data in need in Section V.
We assume that sensors communicate with each other via
BLE without encryption considering its limited and fluctuating
energy. Hence, attackers can intercept data in transmission
and freely modify/forge data or inject false data. In addition,
if a sensor is compromised by obtaining the sensor’s key to
be authenticated with gateways, the attacker can impersonate
the sensor and transmit false data for other sensors with
low energy and itself to a LoRa gateway. We assume that
the gateways and the cloud server are trusted and will use
secure communication channels based on existing security
technologies. We leave the performance and security concerns
between LoRa gateways and a cloud server for our future
work. As shown in Fig. 1, multiple LoRa gateways each
running a DRL agent can collaborate to each other in sharing
collected sensed data received from sensors.

Node Model: Sensor nodes in a given smart environment
are assumed solar-powered and deployed as implants and can
transmit data on request. The energy levels of the sensor nodes
vary throughout the day upon animals moving and from day
to day. Hence, it is necessary to use energy efficiently for
ubiquitous, steady, and persistent use. Each sensor node 𝑖

is characterized by sn𝑖𝑡 = [temp𝑖𝑡 , hb𝑖𝑡 ,ma𝑖𝑡 , bl𝑖𝑡 ], where temp𝑖𝑡
refers to sensor node 𝑖’s temperature at time 𝑡 in Celsius, hb𝑖𝑡
is the number of 𝑖’s heart beat at time 𝑡, ma𝑖𝑡 is 𝑖’s speed at
time 𝑡 and bl𝑖𝑡 is 𝑖’s battery life at time 𝑡 scaled in [0, 100]
in percent. A sensor’s battery will be consumed mostly for
data transmission to a LoRa gateway while communications



between the sensor and other nearby sensors via BLE will
consume about 1000 times less.

Based on the reported data by sensors to LoRa gateways,
each DRL agent will identify what data is needed with high
priority to achieve high monitoring quality in sensing accurate
conditions of animals in the farm. To this end, we separate
sensor nodes into low or high battery level sensors, denoted by
LBS and HBS, respectively, by a recommended battery level
𝑇𝑀 . In this way, sensor networks can be modeled as directed
bipartite graphs as we are only interested in the transmissions
from LBS to HBS. We will discuss the operations performed
by DRL agents running on LoRa gateways in Section V. A
cloud server will collect the sensed data of animals from
multiple LoRa gateways and provide the aggregated results
to end users. The scope of this work is to examine how the
DRL agent on LoRa gateways can contribute to enhancing the
quality of animal monitoring in the presence of cyberattacks
and fluctuating energy levels.

Attack Model: We consider the following attacks:
• Protocol non-compliance: A compromised sensor node may

not be compliant to the request by the DRL agents on LoRa
gateways with a probability 𝑃𝑁𝐶𝐴. That is, when a DRL
agent requests animal 𝐴’s sensed data, the attacker may send
another animal’s sensed data or may not send 𝐴’s data.

• False data injection: A compromised sensor can transmit
forged/modified data to gateways or inject false data. In
addition, man-in-the-middle attackers (MIMAs) can inter-
cept data being transmitted in the middle and insert mod-
ified/forged data. We model these with the probabilities of
data change by internal or external attackers, denoted by
𝑃𝐼𝐷𝐴 and 𝑃𝐸𝐷𝐴, respectively.

• Denial-of-Service (DoS): An attacker can send a request to
nearby sensors requesting them to forward its data, thus
exhausting their energy. We model this by probability 𝑃𝐼𝐷𝐴.

V. DRL-BASED ANIMAL MONITORING

A. Uncertainty-Aware Animal Monitoring

Multiple gateways receive sensed data from solar sensors
attached to cattle. They periodically report their collected
sensed data to the cloud server. The multiple DRL agents
sitting on the gateways will share knowledge on sensed data
and associated information, including each animal’s condition
and associated uncertainty levels. The gateway will maintain
a database of all animals’ reported data.

Each observation item’s condition (see Table I) will be
reported based on the range of condition in 𝐾 = 3 classes,
which can be easily diagnosed as normal by the end user’s
diagnosis based on the received data from the cloud server.
Since the gateway will report all animals’ average conditions
periodically to the cloud, it will collect sensed data from
sensors and estimate their average values with the probability
of each class and their corresponding uncertainty levels. To
realize this, we will leverage Subjective Logic (SL) [9] to
formulate an opinion on an animal’s condition in a given
category. Due to the space constraint, interested readers can
refer to [9] for formulating a multinomial opinion and [8]

for estimating two types of uncertainties (i.e., vacuity and
dissonance) considered in this work.

In this work, we consider each report by sensors to a
gateway as evidence. For example, in a temperature report,
if 38 C is reported, 𝑏2 (i.e., 𝑏1 = lower than normal, 𝑏2 =

normal, 𝑏3 = higher than normal) will be updated based on
the mapping rule in SL [9]. SL stops updating an opinion when
uncertainty becomes zero. This will prevent new reports to be
effectively applied in a latest opinion. To avoid this, we will
leverage the uncertainty (vacuity) maximization technique [9]
to offset conflicting evidence while the amount of conflicting
evidence can be transformed to vacuity of an opinion. Due
to space constraint, readers can be referred to [9] for the
uncertainty (vacuity) maximization function.

The animal condition in a given category 𝑋 is estimated
as an opinion, 𝜔𝑋 = (𝒃𝑋, 𝑢𝑋, 𝒂𝑋) where 𝒃𝑋 is a vector of
belief masses, 𝑢𝑋 is vacuity, and 𝒂𝑋 is a vector of base rates
(i.e., prior belief) to the corresponding belief masses. Note that
dissonance can be estimated based on the belief masses where
its formulation is given in [8]. The aforementioned opinion
and uncertainties are estimated at the gateways based on the
received sensed data from solar sensors.

B. DRL-based Monitoring Update

State space (S𝑡 ): The state space S𝑡 of the proposed
smart farm monitoring system at time 𝑡 is the sensor network
𝑔𝑡 represented by the history action sequence. We evaluate
the state space in four aspects: mean vacuity ( ˆvac𝑖𝑡 ), mean
dissonance ( ˆdiss𝑖𝑡 ), mean degree of freshness (f̂r𝑖𝑡 ) [16], and
mean battery life (b̂l𝑖𝑡 ). Each component of the state at time 𝑡
by agent 𝑖 is the average value of each measurement by:

ˆvac𝑖𝑡 =
∑𝑛

𝑗=1 vac𝑖 𝑗𝑡
𝑛

, ˆdiss𝑖𝑡 =
∑𝑛

𝑗=1 diss𝑖 𝑗𝑡
𝑛

,

f̂r𝑖𝑡 =
∑𝑛

𝑗=1 fr𝑖 𝑗𝑡
𝑛

, b̂l𝑖𝑡 =
∑𝑛

𝑗=1 bl𝑖 𝑗𝑡
𝑛

, (2)

where each component measures the mean value of the mea-
surements for 𝑛 animals, which is in the range of [0, 1]. The
fr𝑖 𝑗𝑡 is formulated by fr𝑖 𝑗𝑡 = 𝑒−𝜙𝑡 , where 𝑡 is time elapsed
from the last update and 𝜙 is a constant to normalize the
freshness. Note that we need at least one update to calculate
fr𝑖 𝑗𝑡 . Here vac𝑖 𝑗𝑡 , diss𝑖 𝑗𝑡 , bl𝑖 𝑗𝑡 , and fr𝑖 𝑗𝑡 are all scaled in [0, 1].
Note that we use each report (i.e., sensed data of an animal)
as evidence to support a categorical class (i.e., below normal
range, normal range, above normal range). An opinion towards
a given animal is initialized with one evidence (i.e., r(𝑥𝑖) = 1)
for each class 𝑖 and 𝐾 = 3.

Action space (A𝑡 ): To minimize the monitoring error and
system overload, each DRL agent will select 𝑘 animals whose
reports should be received with high priority. Note that a
certain degree of information redundancy is needed since
sensors may not be able to send their data due to battery or
topology constraints. The utility of animal 𝑗 is given by:

utility𝑖 𝑗 = (1 − vac𝑖 𝑗𝑡 ) + (1 − diss𝑖 𝑗𝑡 ) + fr𝑖 𝑗𝑡 + 𝑓 (bl𝑖 𝑗𝑡 ), (3)



TABLE I
EVD DATASET DESCRIPTION

Metric Description
Serial A unique animal identifier

Heart rate Heart bits per min.
Average-temperature Average body temperature in Celsius

Min-temperature Minimum temperature in Celsius
Max-temperature Maximum temperature in Celsius
Average-activity Average activity recorded by the number

of steps taken
Battery-level Residual battery life
Timestamp Date and time of transmission

where 𝑓 (𝑥) is defined by 𝑓 (𝑥) = −(𝑥 − 𝑇𝑀 )2 where 𝑥 is
set to bl𝑖 𝑗𝑡 . Here 𝑇𝑀 indicates the recommended level of a
battery life to be maintained in a sensor node not to be
depleted or overcharged under sun. Each agent will send out
a list of top 𝑘 animal IDs based on the ranks by Eq. (3) in
ascending order. In this way, we consider three discrete actions
to select top 𝑘 animal IDs such that 𝑘 ∈ [0, ⌊ 𝑛2 ⌋, 𝑛], where
𝑛 is the total number of LBS. Therefore, the action space
size is independent from 𝑛, which allows us to mitigate the
overhead caused by unbounded action spaces and generalize
the proposed framework to large sensor networks. Higher 𝑘
will increase the number of unnecessary requests and cause
the system overload, while lower 𝑘 could hurt the monitoring
quality. Thus, an action is to determine the optimal value of
𝑘 in this context.

Immediate reward (𝑟𝑡 ): This is formulated by 𝑟 𝑖𝑡 =

𝑓 (𝑔𝑡 (𝑘1, 𝑘2, . . . , 𝑘𝑡 )) based on 𝑓 (𝑔𝑡 ) = −ME(𝑔𝑡 ) − OL(𝑔𝑡 )
given in Eq. (1) where 𝑘𝑖 is an action taken in step 𝑖.

C. Data Aggregation at LoRa Gateways

Each sensor sends its sensed data consisting of the compo-
nents in Table I. After a LoRa gateway receives the sensed data
from each sensor, it will calculate an opinion about the sensed
data received. The opinion consists of belief and uncertainty in
two dimensions (i.e., vacuity, and dissonance masses). We call
the opinion a monitoring opinion (MO) hereafter, of measured
heart beats, temperature, and activity during the observation
time period Δ. The Δ is determined based on the time elapsed
since the last reported time. When the update is not made
due to limited energy or a node cannot find any nearby sensor
which can send its MO on behalf of itself, the MO may not be
updated. This would not increase belief masses of the MO. In
addition, if a sufficient number of sensed data is received for
a certain animal, vacuity becomes close to zero, which makes
an opinion stop being updated in each sensor in SL [8]. To
receive new evidence and update the MO accordingly, we will
use the uncertainty (vacuity) maximization (UM) technique
with a threshold 𝜌 (i.e., 0 < 𝜌 < 1) [9]. That is, if 𝑢𝑋 < 𝜌,
the MO will be updated based on the UM. A DRL agent at
each gateway will calculate the average condition of the animal
based on a set of sensed data and MOs received from multiple
sensors at time 𝑡. We will use the multinominal multiplication
technique in SL [9] to compute joint opinions where each
opinion is independent to each other.

VI. EXPERIMENTAL SETUP

Datasets: We utilized Virginia Tech (VT)’s SmartFarm
Innovation Network (TM), an interconnected data collection
and analysis hub throughout the state of Virginia to facili-
tate testing and demonstration of emerging technologies. We
obtained sample datasets from a smart farm managed by
VT’s College of Agriculture and Life Sciences, collected from
EmbediVet Implantable Temperature Devices (EVD), Halter
Sensors, Heart Rate Sensors, and Implantable Temperature
Sensors, as an example shown in Table I.

To realize adversarial attacks, we generated synthetic
datasets using the sample datasets where each sensor attached
to a cow is modeled to generate similar datasets while some
of the sensors are compromised or external attackers exist.

Parameterization: We consider 20 cows moving around in
the square farm area (𝐴) of 40 acres (∼ 160K square meters)
and length (𝑎) of 402 meters. We assume the farm area is fully
covered by two gateways where each gateway is within the
other’s coverage. Furthermore, we assume both gateways have
the same circular coverage. Specifically, they have locations
as (− 𝑎

4 , 0) and ( 𝑎4 , 0) and the same radius as
√

5𝑎
4 . It can be

proven that this setting allows the minimum coverage of the
farm area for each agent. Fig. 1 describes the farm setting as
our network model. We model the availability of solar energy
based on sun’s movement in a day by defining a probability
distribution 𝑃 over the farm area, where 𝑃(𝑥, 𝑦, 𝑡) indicates
the probability of being charged if a sensor locates in (𝑥, 𝑦)
at time 𝑡 in hour. For simplicity, we assume that 𝑃(𝑥, 𝑦, 𝑡) has
a quadratic form at time 𝑡 and can be written as 𝑃(𝑥, 𝑦, 𝑡) =
max{0,− 1

6 (𝑡 − 𝑡𝑥𝑦)
2 + 1}, where 𝑡𝑥𝑦 is a function of location

(𝑥, 𝑦) based on the farm’s direction. We consider a square
farm with its center at the origin and 𝑥 axis towards west.
Thus, 𝑡𝑥𝑦 is formulated as 𝑡𝑥𝑦 =

𝑡0
𝑎
× (𝑥 − 𝑎

2 ) + 12, where 𝑡0 is
a hyper-parameter.

A solar sensor is attached to each cow’s ear to capture its
attributes. A cow’s temperature follows a normal distribution
with mean being 38 C and standard deviation being 1 C. The
cow’s heart beat is randomly ranged in [60, 84] or [48, 60]
when it moves or not respectively. We use 𝑃𝑚𝑣

𝑖
for cow 𝑖’s

moving probability. We assume random movements of cows
and a normal distribution of their speeds with average 1.5m/s
and standard deviation 0.1 m/s.

For an opinion about a cow’s attributes, we will simply
categorize based on three beliefs, i.e., lower than normal,
normal, and higher than normal. The normal ranges of a
cow’s temperature, heart rate, and moving activity are given
[37.8, 39.2] in Celsius, [48, 84] number of beats per min., and
[1, 2] meters per sec., respectively. We consider the number
of uncertain evidence being three where each belief mass has
the same base rate (i.e., 1/3) [9].

We consider the whole monitoring session as 24 consecutive
hours. Each gateway takes an action to identify an optimal 𝑘
with the interval 𝑇𝑎 = 60 sec. We assume 5 HBS with initial
battery level 1 and 15 LBS with random initial battery levels in
[0, 𝑇𝑀 ]. All HBS have an update interval 𝑇𝑢 = 30 sec. to send



TABLE II
KEY DESIGN PARAMETERS, THEIR MEANINGS, AND DEFAULT VALUES

Param. Meaning Value
𝑇𝑀 A minimum battery level to transmit sensed

data by a sensor
30%

𝐿𝐵𝑆/𝐻𝐵𝑆 Low/High battery level sensors /
𝑃𝑚𝑣
𝑖

Cow 𝑖’s probability to move [0.3, 0.7]
𝑃𝐴 Probability for an attacker or a compromised

node to perform a certain attack (e.g.,
𝑃𝑁𝐶𝐴, 𝑃𝐼𝐷𝐴, 𝑃𝐸𝐷𝐴, 𝑃𝑀𝐷𝐴)

0.1

𝑛 Total number of cows (sensors) 20
𝐴 Area of a given smart farm 40 acres
𝑎 length of a given smart farm 402 m
𝜌 Uncertainty maximization threshold 0.05
𝑡0 Hyper-parameter used in sun model 0.2
𝑇𝑢 Time interval for a sensor to send sensed data 30 s
𝑇𝑎 Time interval for a gateway to take an action

to adjust 𝑘
60 s

𝜙 A constant factor to normalize freshness of a
received sensed data

0.01

their sensed data to gateways. All LBS could only broadcast
their own data to HBS via BLE. Each sensor can broadcast
at most two sets of sensed data to each LoRa gateway within
the wireless range per 𝑇𝑢. In this way, HBS can send its own
data and another sensor’s data if they receive a request from
LBS. Specifically, the gateway agents would firstly calculate
the consolidated priority list of received update lists from
gateways within its wireless range. Then the agents would
solve the maximum matching problem in bipartite sensor
networks by the Hopcroft–Karp algorithm [7] to ensure the
maximum number of transmissions being executed.

A sensor will consume about 2 𝑚𝑊 in sleep mode and 170
𝑚𝑊 × 𝑇𝑠 upon sending a packet with sensed data where 𝑇𝑠
refers to transmission time in sec. A sensor will be charged
with 200 𝑚𝑊 for outdoor solar and 2 𝑚𝑊 for indoor light.
Considering maximum 6 hours under direct sun, the sensor
can be charged 200 𝑚𝑊 × 6 ℎ = 4.32 𝑘𝑊𝑠.

For simplicity, we set all attack probabilities as 𝑃𝐴. For
inside attackers, we initially pick them among the total number
of sensors at random. For outside attackers (i.e., MIMAs),
we first pick a set of nodes at random transmitting mes-
sages intercepted by MIMAs with 𝑃𝐸𝐷𝐴(𝑃𝐴). We consider
false data injection attacks by outside attackers which insert
false temperature (e.g., [30, 50] in Celsius), heart beats (e.g.,
[30, 100]), and moving activities (e.g., [0, 5] meters per sec.),
where the false information exhibits deviated ranges from the
normal conditions. We summarize the key design parameters,
their meanings, and default values used in Table II.

Comparing Schemes: (1) Multi-Agent Deep Q-Learning
(MADQN) [17]: DQN [12] utilizes neural networks param-
eterized by 𝜽 to represent an action-value function (i.e., Q-
function). It assumes that the agent can fully observe the
environment. By assigning a local Q-function to each agent,
we can easily extend DQN to a Multi-Agent DRL algorithm,
namely MADQN. We consider two types of MADQN with and
without using uncertainty maximization (UM). We name them
MADQN-UM and MADQN-NUM, respectively; (2) Multi-
Agent Proximal Policy Optimization (MAPPO): MAPPO
extends the PPO [15] to a multi-agent environment to mitigate

non-stationarity (i.e., uncertainty) from the environments when
multiple agents share their actions and rewards to minimize
the changes in the policy. This method deploys a central
critic value function with stochastic policies. We consider two
variants of MAPPO using UM or not and name them MAPPO-
UM and MAPPO-NUM, respectively; (3) Greedy: It makes
greedy choices by looking one-step ahead at each step and
choosing 𝑘 returning a maximum reward; and (4) Random: It
is a baseline model where agents select optimal 𝑘 at random.

Metrics: (1) Accumulated reward (R) is the average value
of the final accumulated rewards observed in each DRL agent
at the end of the simulation; (2) Monitoring error (ME)
estimates the mean difference between the aggregated data of
each animal’s condition at each gateway and the ground truth
data of the corresponding animal’s condition; (3) Overload
(OL) evaluates the system overload by the fraction of the
failed requests over all sent requests from LBS; (4) Battery
maintenance level (BML) as given by 𝑓 (b̂l𝑖𝑡 ) in Eq. (2)
measures the difference between the recommended battery
(𝑇𝑀 ) and the current battery (bl𝑖𝑡 ) levels; (5) Uncertainty
(U) is the average uncertainties (i.e., vacuity and dissonance)
of sensed data of all animals’ conditions; and (6) Freshness
(FR) as given by f̂r𝑖𝑡 in Eq. (2) measures sensor data freshness.

VII. EXPERIMENTAL RESULTS AND ANALYSIS

We conducted all experiments with 100 simulations on
randomly generated farm environments based on Section VI
where each data point represents the average of the simulation
runs. For MADQN, we use 500 as batch size, 0.02 as learning
rate. For MAPPO, we use 500 as batch size, 0.08 and 0.008
as learning rates for critic and actor networks, respectively.

Fig. 2 compares the six schemes with respect to DRL
training episodes. Greedy and random schemes have flat
learning curves since they are non-DRL schemes. We observe
that MAPPO-UM and MADQN-UM outperform their corre-
sponding NUM counterparts with respect to the accumulated
reward (R), monitoring error (ME), and overload (OL). This
is because uncertainty maximization (UM) can update the
uncertainty information from time to time, which reflects the
sensor network status in a timely manner. As a result, MAPPO-
UM and MADQN-UM also have the highest uncertainties (U)
in Fig. 2 (e). Our proposed uncertainty measures can estimate
the update priority by considering the number of history
updates for each sensor in a sensor network with acceptable
dynamics. The proposed MADQN-based and greedy schemes
fail to learn the effective monitoring policies. This is due to
the non-stationary environment in the training phase of each
agent [17]. Our proposed MAPPO-UM leverages uncertainty
information in the stationary decision process and achieves
the best performance among all comparing schemes. Note
that MAPPO-UM also achieves the best battery efficiency
(BML) compared to other schemes in Fig. 2 (d). The overall
performance order of the considered schemes is: MAPPO-
UM ≥ MADQN-UM ≈ MAPPO-NUM ≥ MADQN-NUM≥
Greedy ≥ Random.



(a) Accumulated reward (R) (b) Monitoring error (ME) (c) Overload (OL)

(d) Battery maintenance level (BML) (e) Uncertainty (U) (f) Freshness (FR)

Fig. 2. Performance of comparing schemes with respect to training episodes.

Since our multi-objective function has two conflict goals,
different schemes could have very different policies. For
example, MADQN-NUM and Greedy choose to minimize
overload as their primary goals, as shown in Fig. 2 (b) and (c).
Thus, they have the lowest overloads and highest monitoring
error. Since low freshness records only come from LBS, they
also have the highest freshness (FR) in Fig. 2 (f) due to
minimum transmissions from LBS to HBS, as in Fig. 2 (d).

VIII. CONCLUSIONS

From this study, we obtained the following key findings: (1)
our proposed MAPPO-UM shows its strong resilience against
attacks by achieving the best monitoring quality and minimum
system overload; (2) our proposed MAPPO-UM intelligently
leverages the uncertainty information and achieves the best
energy maintenance level; and (3) the uncertainty maximiza-
tion technique greatly enhances performance as it effectively
updates the overall system uncertainty allowing the system to
better balance the monitoring energy and monitoring quality.
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