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1. INTRODUCTION

Many existing transaction database systems such as IBM’s
DB2 and RTI’s INGRES ensure serializable executions
[1, 2] by running a version of two-phase locking (2PL) [3] in
which a transaction consisting of a sequence of access
operations should obtain a lock before accessing a data item
controlled by the lock and should release all of the locks it
owns together when it terminates. A nice property of 2PL is
that it allows concurrent transaction executions to produce
the same output and have the same effect on the database as
some serial executions (where transactions are executed one
at a time) of the same set of transactions. However, because
of the use of locks in 2PL, lock conflicts may exist among
transactions, thus requiring the use of alock conflict
resolution method to order the execution of conflicting
transactions. Various 2PL lock conflict resolution methods
have been proposed in the literature in the past, including
those that can cause deadlocks, e.g. general waiting [2], and
those that are deadlock-free (due to selective transaction
aborts), e.g. running priority [4, 5], cautious waiting [6] and
wait-depth limited methods [5, 7]. If the system allows
deadlocks to exist, it requires the use of a deadlock detection
algorithm. One common strategy is to check the wait-for-
graph (WFG) whenever a transaction is blocked. If the
blocked transaction is involved in a deadlock cycle, then
one transaction in the cycle is aborted to break the deadlock.
Otherwise, the transaction waits until it gets its lock. This
method is termed ‘continuous deadlock detection’ in the
literature [8].

To model the behaviour of such a transaction database
system with continuous deadlock detection, previous
models [9–13] require several parameters to be estimated
a priori. One parameter is the probability of lock conflict
per lock request. Another parameter is the probability that a

transaction is deadlocked with other transactions when a
subsequent lock request is not granted. These two parameters
in theory can be estimated fairly accurately by first estimating
the number of locks owned by active transactions in the
system and then computing the probability that each event can
occur [9–12]. Another parameter needed is the wait time for a
lock by a blocked transaction. This ‘wait time per lock
conflict’ parameter is difficult to estimate accurately and
existing methods for estimating it are often controversial [14].
For example, Irani and Lin suggested that simulation or
empirical measurements be used to estimate its value [9]. Pun
and Belford estimated it as a function of the throughputs of
aborted and terminated transactions, which by themselves are
model outputs [10]. As a result, an iterative solution technique
is used to repeatedly execute the model until this wait time
parameter converges. Hartzman derived an analytical solution
for this parameter in an open database system [14]. However,
it is obtained based on the dubious assumption that deadlocks
never occur and it is not apparent how that approach can be
applied to a closed database system for which the population
of transactions is fixed.

Recently, Thomasian and Ryu derived an approximate,
non-iterative analytical solution for the wait time per lock
conflict parameter in closed and open 2PL systems with load
control [12, 13]. They ignored the effect of deadlocks in
their analysis because deadlock is considered a rare event in
typical database systems except in high-capacity systems in
which the increased throughput is achieved at the cost of a
higher degree of transaction concurrency, or in systems in
which hot-spot data items exist which create a high level of
data contention. They validated their analytical solution
against simulation results based on continuous deadlock
detection. However, deadlock detection overhead was not
considered in the simulation study and other alternatives for
deadlock detection were not investigated.
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Conceptually, for systems in which deadlocks occur
frequently, the WFG should be checkedcontinuouslywhen
a transaction is blocked so that deadlocked transactions are
not blocked for too long. On the other hand, for systems in
which deadlocks rarely occur (which is more typical),
deadlocks can be checked onlyperiodically after a few
edges have been added to the WFG so that the overhead
associated with deadlock detection can be minimized.
Kumar [15] in his simulation study concluded that in
dynamic locking, deadlocks need not be detected at each
blocking and the response time can be improved by periodic
rather than continuous deadlock detection. Agrawalet al.
[8] also compared the performance of continuous and
periodic deadlock detection by means of simulation. Under
restricted database environment settings and the assumption
that a fixed deadlock detection interval is used for periodic
detection, it was concluded that continuous detection can
perform better than periodic detection, especially when the
multiprogramming level is high and there is high contention
for data items. There are two potential problems in
Agrawal’s study. First, the assumption that the deadlock
detection interval is fixed for various database environment
settings is not justified because an optimal deadlock
detection interval should exist for every database environ-
ment (i.e. multiprogramming level) and this optimal interval
should be used when a comparison is made. Our view is that
for every database environment setting, there exists an
optimal deadlock detection interval and this optimal interval
is a function of the settings of the database environment
variables, including user workloads (e.g. the degree of
multiprogramming), resource requirements (e.g. disk and
CPU processing capabilities) and database characteristics
(e.g. the database size, transaction size, number of granules
in the database, locking policy and data accessing pattern).
Second, the execution time of deadlock detection was
ignored in their study, which can create a bias toward
continuous or periodic deadlock detection, depending on the
interval selected for performing periodic deadlock detection
and the frequency with which blocking occurs. In this paper,
we eliminate these potential problems. Our goal is to
develop an analytical tool rather than a simulation tool that
can help choosing the correct deadlock detection approach
for 2PL systems with dynamic locking (where locks are
requested on demand), when given a set of system
characteristics.

To achieve the goal, we develop our analytical model
based on stochastic Petri net (SPN) models [16]. There are
two salient features in our SPN model. First, although our
model still requires the probability of blocking and the
probability of deadlock be calculated as model inputs based
on system characteristics, unlike previous analytical model-
ing studies, it does not require the ‘wait time per lock
conflict’ parameter be calculateda priori as an input, thus
reducing the potential inaccuracy associated with estimating
the value of this parameter [14]. In our approach we
implicitly model the behavior of a blocked (but not
deadlocked) transaction by a Petri net description such
that the blocked transaction can simply migrate from one

place to another in the net when certain enabling conditions
are satisfied. This feature is made possible because a Petri
net can keep track of the state evolution of the system. This
allows us to dynamically determine the probability of a
blocked transaction getting its lock when a particular state
transition occurs. To achieve this, we differentiate blocked,
non-lock-owner transactions from blocked, lock-owner
ones in constructing our Petri net model to provide
more precise information on the number of lock owners in
the system as the system evolves over time. As a result,
unlike the queueing network models proposed in [10, 17],
our Petri net model can be solved non-iteratively and
efficiently.

Second, two separate Petri net models are constructed
separately to evaluate the system performance of continuous
and periodic deadlock detection algorithms. These SPN
models can be solved easily by using a commercial software
package such as Stochastic Petri Net Package (SPNP)
[18, 19]. Previous performance models based on queueing
network [9, 10, 17] are non-trivial and difficult to apply. For
example, in [9, 10, 17], it involves the concept of changing
the customer class of a transaction during the transaction’s
life time as the transaction requests, acquires and releases
locks. Consequently, a special solution technique is used to
solve their queueing network models. In [10, 17], an
iterative solution technique is also used to solve their
models. The requirement of using special solution techni-
ques, rather than using a commercial software package (e.g.
SHARPE [20]), limits the general applicability of these
queueing network models. Although our SPN model
involves the concept of changing a transaction’s class
during a transaction’s life time as in [9, 10], the change of
customer classes is explicitly modeled by the migration of a
transaction from one place to another in the net. Conse-
quently, no special solution method is required to solve the
model.

The major contributions of the paper lies in the
development of non-iterative Petri net models that can
accurately estimate the wait time per lock conflict
automatically, taking into consideration the overhead for
continuously or periodically executing deadlock detection.
The result is that they can be used as an analysis tool in
providing guidelines for selecting a deadlock detection
strategy. With respect to the simulation model in [8, 15], our
Petri net model, being an analytical tool, is much easier to
construct and evaluate.

The rest of the paper is organized as follows. Section 2
discusses the background for deadlock detection in 2PL
database systems, states our model assumptions and defines
the notation to be used in the paper. Possible database
environment variables which must be considered in
performance assessment are defined. Section 3 develops
an iterative SPN model for 2PL databases with continuous
deadlock detection; it also requires the wait time for a lock
as a model input as in [10], thus requiring the SPN model to
be iteratively solved by SPNP in multiple runs until the wait
time converges. A technique for modeling a processor-
sharing CPU in the SPN model is described. The validity of
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the iterative SPN model is demonstrated by comparing the
model’s outputs in several database environment settings
with the results based on a queueing model [10]. In Section
4, modifications to the iterative SPN description are made
with the goal of removing the wait time for a lock as a model
input. We demonstrate that the new SPN model can greatly
improve solution efficiency with a potential of improving
solution accuracy. In Section 5, we develop a similar but
separate SPN model for analyzing the performance of 2PL
with periodic deadlock detection. We illustrate how to
identify the correct deadlock detection approach for a
system with 2PL dynamic locking using these two separate
SPN models, when given a set of system characteristics.
Section 6 summarizes the paper and outlines some future
research areas.

2. BACKGROUND, ASSUMPTION AND
NOTATION

2.1. Assumptions
1. The database is in a closed system in which the

multigramming level isMPL. The database contains
SZdb data items. Each transaction on the average accesses
SZtr data items. The unit of physical lock is called a
granule [21] which containsSZlock data items. If a
transaction locks a granule then it essentially locks all
the data items contained in the granule. Of course, when
SZlock � 1 each data item is a granule itself and has its
own separate lock, thus covering the special case
considered in [12, 13]. Not placing a separate lock on a
data item may be desirable for performance reasons for
certain transaction accessing patterns described below.
The database system being modeled is characterized by
dynamic locking policy and well-placed transaction
accessing pattern [21]. ‘Dynamic’ locking means that
locks are requested one at a time by a transaction as
they are needed and there is no pre-determined
sequence on the locks. ‘Well-placed accessing’ means
that the data items referenced by a transaction are
packed into as few granules as possible. This assumes
that a transaction accesses the data items sequentially
and that the granule boundaries are optimally located
for the transaction. Under well-placed accessing, ifSZtr

is the size (number of data items) of a transaction and
SZlock is the size of a granule, then the total number of
locks requested by a transaction, denoted byNL, is
given by

NL �
SZtr

SZlock

� �
�1�

We concentrate on well-placed instead of other transac-
tion accessing patterns such as worst-placed and random
because performance data for well-placed accessing
pattern under continuous deadlock detection are avail-
able for comparison [10]. (Worst placement is the
opposite of well placement: each transaction requires the
maximum number of granules possible. In this case,

NL � minimum (SZtr; SZdb= SZlock). Random placement
means that a transaction will access the database
randomly, with each data item being referenced with
equal probability. The expression ofNL for random
placement can be found in [10]). Other transaction
assessing patterns can be analyzed in a similar way by
our SPN model except a different equation needs to be
used for computingNL.

2. The system has one CPU and one data manager. The
data manager may keep more frequently accessed data
items in cache to minimize I/O overhead. A transaction
acquiresNL locks to accessSZtr data items in its lifetime.
Locks are maintained in the main memory and I/O
accesses are not required to get locks. Each lock
acquisition is followed by a visit to the data manager
to retrieveSZtr=NL data items controlled by the lock and
then a visit to the CPU to perform useful work based on
the data items retrieved. When a transaction terminates or
aborts, a new trans-action immediately enters the system so
that the total number of transactions in the system remains
MPL.

3. Every lock owner is assumed to owndNL=2e locks. This
assumption is introduced to avoid state space explosion
and is also used in previous models. However, we do not
assume the number of lock owners,NLO, as a constant
as in [10, 17]. In our (non-iterative) Petri net model,NLO
is computed dynamically as the system evolves.

Table 1 shows the list of input parameters to our model.
Other than these input parameters, there are also ‘compu-
table’ parameters which can be computed automatically by
our model from the input parameters. These computable
parameters are divided into two sets, i.e. ‘state-independent’
and ‘state-dependent’. The difference is that the value of a
state-dependent parameter can change dynamically as the
system goes from one state to another over time, while that of
a state-independent parameter remains constant. These two
sets of computable parameters are listed in Tables 2 and 3.

It should be emphasized that the effect of a well-placed
transaction accessing pattern is reflected in the value ofNL
for the state-dependent parameter set andNL � SZtr covers
the special case when each data item has its own separate
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TABLE 1. Input parameters

MPL total number of transactions (i.e. multiprogramming
level)

SZdb size of (i.e. number of data items in) the database
SZtr size of (i.e. number of data items in) a transaction
SZlock size of (i.e. number of data items in) a granule or

number of data items controlled by a lock
DCPU total service demand of CPU by a transaction (in sec)
Ddm total service demand of data manager by a

transaction (in sec)
SCPU;lreq service demand of CPU for processing a lock

request (in sec)
SCPU;lset service demand of CPU for setting a lock (in sec)
SCPU;lrel service demand of CPU for releasing a lock (in sec)
SCPU;node service demand of CPU for checking a node in the WFG



lock. Other than NLO and Dlock, all state-dependent
parameters can be estimatedaccurately by using simple
probability arguments. Here,Pg1, Pg2 andPd are estimated
as suggested in [10]. OnceDlock is known, we can use an

infinite service center with no queueing and a service time
of Dlock to hold all blocked transactions [22].

As stated before, methods for estimatingDlock are often
controversial. One way to estimateDlock [10] is based on the
observation that in the steady state, when a transaction
terminates or aborts, a blocked transaction will be
unblocked so that the number of lock owners in the
system remains the same, i.e.

Dlock � �N ÿ NLO� � Tint

where Tint represents the time interval between which a
transaction terminates or aborts andNLO represents the
average number of lock owners in the system. The
methods for estimatingNLO will be described later. Since
Tint is an output of the queueing network model, this
method requiresTint to be solved repeatedly until it
converges. Another way is to estimateDlock as a function
of the transaction response time [17]. Since the response
time is also a model output, an iterative solution technique
is again required.

In Section 3, we develop aniterativePetri net model that
adopts the same method for estimatingDlock as in [10], thus
requiring Tint to be solved iteratively until it converges.
However, unlike the queueing network model in [10], our
iterative Petri net model does not require any special
solution technique. A software package such as SPNP [18]
can solve it.NLO in this case is approximated as a constant
as in [10], i.e.

NLO� min N;
NLdb

bNL=2c

� �

In Section 4, we then develop anon-iterativePetri net model
to eliminate imprecise and error-prone methods for
estimatingNLO andDlock. By slightly modifying the Petri
net description, we keep track of the value ofNLO as the
system evolves over time. This is achieved by explicitly
describing the behavior of a blocked lock-owner or non-
lock-owner transaction in the Petri net such that whether or
not a blocked transaction can get a lock (when another
transaction terminates or aborts) can be determined
dynamically as a function of the system state.

Table 4 defines the performance metrics considered in the
paper. They can be computed by assigning reward rates to
‘states’ in an SPN model. One performance metric,UCPU, is
as defined in [10] and is used in the paper only for validating
our SPN models. The other performance metric, the system
throughputX , is used by the paper as a basis for evaluating
system performance.

3. AN ITERATIVE SPN MODEL FOR 2PL WITH
CONTINUOUS DEADLOCK DETECTION

Figure 1 shows our iterative SPN modeling a 2PL database
system with continuous deadlock detection. A transaction is
modeled by a token. There are altogether 13 places and 17
transitions, of which nine are timed (with small rectangular
boxes in Figure 1) and eight are immediate (with solid
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TABLE 2. State-independent computable parameters

NLdb total number of locks (i.e. number of granules) in
the database system

NLdb �
SZdb

SZlock

� �

NL total number of locks demanded by a
transaction� total number of visits to CPU and data
manager each

NL �
SZtr

SZlock

� �

SCPU service demand of CPU per visit by a transaction (in
sec)

SCPU �
DCPU

NL

Sdm service demand of data manager per visit by a
transaction (in sec)

Sdm �

Ddm

NL

DCPU;lrel service demand of CPU for releasing allNL locks
(in sec)

DCPU;lrel � NL� SCPU;lrel

Dcontinuous
CPU;deadlock service demand of CPU for executing a

continuous deadlock detection algorithm (in sec)

Dcontinuous
CPU;deadlock� N � SCPU;node

Dperiodic
CPU;deadlock service demand of CPU for executing a periodic

deadlock detection algorithm (in sec)

Dperiodic
CPU;deadlock� N2

� SCPU;node

Pexit probability that after a transaction completes a visit
to CPU, the transaction terminates

Pexit � 1=NL

TABLE 3. State-dependent computable parameters

NLO number of lock owners in the system– each lock
owner on the average owns one half of the locks it
needs, i.e.bNL=2c locks

Dlock wait time for a lock by a blocked transaction (in sec)
Pg1 probability that when a (non-lock-owner) transaction

requests its first lock, the lock is granted

Pg1 �
NLdb ÿ NLO� bNL=2c

NLdb

1ÿ Pg1 probability of blocking for first lock
Pg2 probability that when a (lock-owner) transaction requests

a subsequent lock, the lock is granted

Pg2 �
�NLdb ÿ bNL=2c� ÿ �NLOÿ 1� � bNL=2c

NLdb ÿ bNL=2c

1ÿ Pg2 probability of blocking for a subsequent lock
Pd probability of deadlock

Pd �
1ÿ PbNL=2cÿ 1

g2

NLOÿ 1



lines). Tables 5 and 6 give the meanings of the nine places
with timed transitions from the viewpoint of a transaction.

This SPN enables a transition when the input place
contains one or more tokens. If an enabled transition is an
immediatetransition, it will fire immediately. If it is atimed
transition, it will fire after an amount of time elapsed
determined by a random sample from the associated
distribution with the transition. Table 7 gives the transition
probabilities associated with immediate transitions. To
simplify our analysis, the firing times of timed transitions
are assumed to be exponentially distributed, thus rendering
the Petri net stochastic in nature and susceptible to solution
techniques provided by SPNP [18, 19]. The approach
described here can be easily extended to Extended
Stochastic Petri Net (ESPN) [23] models in which firing
times are general distributions.

3.1. Description of the iterative SPN model

3.1.1. Places and transitions

There are two modeling concepts in our SPN model. First,

we consider the nine places with timed transitions as system
service centers in which transactions must get their requests
serviced. Placesp1 , p2 , p3 , p4 , p5 , p6 andp7 are seven
queuing centers for the CPU,p11 is a queueing center for
the data manager, andp12 is an infinite service center with
no queueing for holding blocked transactions. Unlike other
places, placep12 is not a resource center (i.e. not for CPU
or data manager). It can service all of its tokens with a
service demand ofDlock because a transaction gets its lock in
Dlock time regardless whether there are also other transac-
tions waiting for their locks. On the other hand, all other
places can only service their tokens one at a time since they
model physical resources and are queueing centers. We note
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TABLE 4. Performance measurements

X system throughput, i.e. number of transactions
completed/sec

UCPU percentage of CPU used for doing useful computation
on data items (unit : %), excluding that required for
requesting, setting and releasing locks, and for
executing deadlock detection code

FIGURE 1. An iterative Petri net model for DBS with continuous deadlock detection.

TABLE 5. Meanings of places with respect to a transaction

Place Meaning

p1 the transaction is requesting for the first lock
p2 the transaction is requesting for a subsequent lock
p3 the transaction is setting a lock
p4 the transaction is waiting during the execution of a

deadlock detection algorithm
p5 the transaction is releasing all of the locks it owns upon

completion
p6 the transaction is releasing all of the locks it owns upon

abortion
p7 the transaction is doing useful computation between lock

requests
p11 the transaction is retrieving data items controlled by a lock
p12 the transaction is waiting for a lock to be released by other

transactions



that in the SPN when a transition is fired, one or more tokens,
depending on themultiplicity of the asso-ciated input arc, will
be removed from the input place, and one or more tokens,
depending on themultiplicity of the associated output arc, will
be added to each output place. Therefore, to model the no
queueing behaviour of placep12 , we can define two arcs
having multiplicity greater than 1, i.e. the input and output
arcs of transitiont12 both have multiplicity equal to the
number of tokens in placep12 . Table 8 defines the
multiplicities of these two arcs in our iterative SPN model.
All other arcs only have multiplicity of 1 (which is the default)
to model the fact that only one transaction will be serviced at a
time in a queueing center.

The second modeling concept concerns the fact that
placesp1 throughp7 all request the service of the CPU.
Since the extent of CPU sharing is reflected by the number
of tokens in these places, we model this CPU sharing
concept [22] by defining the transition rates oft1 through
t7 as shown in Table 6 where#�p1� means the number of
tokens (transactions) in place 1 and#�p1�
p2 � p3 � p4 � p5 � p6 � p7� means the total number

of tokens in placesp1 throughp7 . These transition rates
must be defined this way to model the fact that the CPU
service rate of each place (p1 throughp7) is deteriorated by
the ratio of the number of transactions in one place to the
total number of transactions in all of the places simulta-
neously requesting the service of the CPU.

3.1.2. Life profile of a transaction

To better understand the SPN model, we can trace the life
profile of a transaction (a token) in the Petri net. To keep our
discussion simple, when referring to the time needed by a
transaction at a queueing center, we only mention the
transaction’s service demand: the waiting time and the
inflated service demand are implicitly understood.

A token is initially put in placep1 to get its first lock with
a service demand ofSCPU;lreq. At this point, one of the
following two events can occur, i.e. with probabilityPg1

(via transitiont1to3 ), it successfully gets its first lock, or
with probability 1ÿ Pg1 (via transition t1to12 ), it is
blocked because another transaction owns the lock. In the
former case (it gets its first lock), the token enters placep3
to set the lock. In the latter case, the token first enters place
p12 to wait for another transaction to release the lock
before entering placep3 .

A transaction sets a lock in placep3 with a service
demand ofSCPU;lset. Then it enters placep11 with a service
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TABLE 6. Transition rate functions

Transistion Rate function

t1
1

SCPU;lreq
�#�p1�=#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t2
1

SCPU;lreq
�#�p2�=#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t3
1

SCPU;lset
�#�p3�=#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t4
1

Dcontinuous
CPU;deadlock

�#�p4�=#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t5
1

DCPU;lrel
�#�p5�=#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t6
2

DCPU;lrel
�#�p6�=#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t7
1

SCPU
�#�p7�#�p1 � p2 � p3 � p4 � p5 � p6 � p7�

t11
1

Sdm

t12
1

Dlock

TABLE 7. Transition probability functions

Transition Probability function

t1to3 Pg1

t1to12 1ÿ Pg1

t2to3 Pg2

t2to4 1ÿ Pg2

t4to6 Pd

t4to12 1ÿ Pd

t7to2 1ÿ Pexit

t7to5 Pexit

TABLE 8. Arc multiplicity functions

Arc Arc multiplicity

p12 ! t12 #�p12 �
t12 ! p3 #�p12 �



time of Sdm to retrieve the data items controlled by the new
lock. It subsequently enters placep7 with a service demand
of SCPU to do useful CPU computation based on the data
items just retrieved. Then, one of two events can occur: with
probability 1ÿ Pexit (via transitiont7to2 ), it enters place
p2 to request a subsequent lock, or with probabilityPexit

(via transition t7to5 ), it terminates successfully and
therefore enters placep5 to release all of the locks it owns.

When a transaction requests its subsequent lock in
place p2 with a service demand ofSCPU;lreq, one of two
events can happen. Either it gets the lock with probability
Pg2 (via transition t2to3 ), or it is blocked with
probability 1ÿ Pg2 (via transition t2to4 ). In the
former case, it enters placep3 and then follows the
same flow pattern as previously discussed. In the latter
case, it is blocked and enters placep4 , and a deadlock
detection algorithm is then executed to check whether the
transaction is deadlocked with other transactions. The
reason that the transaction may be deadlocked with other
transactions at this point is that a transaction in placep2
already owns at least one lock while requesting a
subsequent lock. After the deadlock detection algorithm
is executed with an average time ofDcontinuous

CPU;deadlock, one of
two events can happen, i.e. with probabilityPd (via
transition t4to6 ), the transaction is deadlocked with
other transactions, in which case the transaction is aborted
and the token enters placep6 to release all of the locks it
owns, or with probability 1ÿ Pd (via transitiont4to12 ),
the transation is not deadlocked with others. In the latter
case, the transaction is blocked and enters placep12
waiting for its lock to be released by another transaction.

When a transaction is in placep5 (the transaction
terminates successfully), all of the locks it owns are released
with a service demand ofDCPU;lrel. Then the token transits to
placep1 so that a new transaction can immediately take its
place. A similar situation occurs for a token in placep6 (the
transaction is aborted due to deadlock) except that the
average service demand isDCPU;lrel=2 instead ofDCPU;lrel

because an aborted transaction on average owns only one
half of the locks.

3.2. Reward assignments to states of the SPN

The state of the SPN is characterized by the distribution of
tokens in the places, called amarkingof the SPN. Initially, a
number of tokens corresponding to the degree of multi-
programming is placed in placep1 to start the SPN
execution, thus marking the initial state of the system (see
Figure 1). Then, as tokens move from one place to another
characterized by the distributions of the transition firing
times and arc multiplicities of the SPN model, the system
migrates from one state to another. Eventually, a steady
state is established in which there exists a finite number of
states each having a steady state probability.

3.2.1. Calculations of performance measures

In the following, we describe how to compute system

performance measures by applying the concept of reward
rate assignments [19].

. X andTint: The time interval between which a transaction
terminates or aborts,Tint, can be computed as in [10] by
the reciprocal of the sum of the throughputs of
terminating and aborting transactions, i.e.

Tint �
1

X � Xabort

where X and Xabort represent the throughputs of
terminating and aborting transactions respectively.
These two quantities can be computed by associating
reward rates with markings of the SPN model.
Specifically, for computing the throughput of terminat-
ing transactions,X , we assign: (a) a reward rate equal to
that of the rate function oft5 (see Table 6) to those
markings in which placep5 is non-empty and (b) a
reward rate of 0 to all other markings. Then, the average
throughput oft5 , representing the average throughput
of terminating transactions, can be computed as the
expected reward rate weighted by marking probabilities.
For computing the throughput of aborting transactions
due to the deadlock,Xabort, a similar reward rate
assignment is used, except thatt5 is replaced witht6 .
OnceTint is obtained this way in one run, it can be used
as an input to the iterative SPN model for the next run
until the difference of its values in two successive runs is
within 1%. It should be noted that we only need to
specify the reward rate assignments as part of the SPN
description [17]. The solving of the steady state reward
rates is automatically performed by SPNP which first
converts the Petri net description into a continuous
Markov chain [19] and then solves the Markov chain
numerically. OnceX is obtained, the average response
time of terminating transactions can be computed based
on Little’s law [22], i.e. R � N=X where MPL is the
multiprogramming level of the system.

. UCPU: The useful CPU utilization of the database system
can be computed as a model output by assigning a reward
of#�p7�=#�p1 � p2 � p3 � p4 � p5 � p6� p7� to
those markings in which placep7 is non-empty and 0
otherwise. Similar toX, UCPU is computed as the expected
reward weighted by marking probabilities.

3.3. Results and comparison

Figures 2 and 3 show the model output forUCPU as a
function of NLdb � SZdb=SZlock for SZtr � 250 and
SZtr � 5, respectively, withMPL varying from 2 to 6
(MPL from 2 to 6 is chosen to allow comparison to the
result reported in [10]). The far left side of these figures
represents the case in which the whole database has only
one granule and thus there is only one lock in the system,
while the far right represents that each data item is a
separate granule itself and thus has its own separate lock.
Figures 2 and 3 match remarkably well with the data
reported in [10] (labeled with ‘Queueing’ in Figures 2 and
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3). There are two results implied in Figures 2 and 3. The
first result concerns the effect of locking on system
performance. At the one extreme (far right in Figures 2
and 3) where each data item is a granule, the probability
of deadlocks among transactions is very high because each
transaction must obtain a large number of locks (250 locks
for each transaction in Figure 2). The consequence is that
most transactions are aborted and must later be restarted,
resulting in a lowUCPU. At the other extreme (far left in
Figures 2 and 3), where the whole database has only one
lock or just a few locks, only one or two transactions are
allowed to execute at a time andUCPU is low due to a
very low level of concurrency. The optimal point therefore
exists somewhere between these two extremes.

The second result concerns the effect of transaction
size. Figures 2 and 3 show that, whenSZtr is smallerUCPU

is less sensitive to the size of a granule. This implies that
when the transaction sizeSZtr is small, the probability of
deadlocks is low even when each data item has its own
separate lock. In fact, Figure 3 shows that whenSZtr is
small, UCPU is higher when each data item requires a lock
(far right) than when there are only a few locks for the
entire database (far left), due to a higher level of
transaction concurrency.

4. NON-ITERATIVE PETRI NET: REMOVING
Dlock AS INPUT

In the last section, we developed an iterative Petri net model
with a computational procedure similar to that used in [10]
for their queueing network model, i.e.Dlock is required as a
model input. The difference is that our model does not
require any special solution technique — SPNP was the
software package used for generating the data in Figures 2
and 3. In this section, we further refine our iterative SPN
model so thatDlock is no longer required as a model input.

The assumption used for computingDlock in our iterative
SPN model (adopted from [10]) is that in the steady state,
when a transaction terminates or aborts, a blocked transac-
tion will be unblocked so that the number of lock owners in
the system remains the same. This assumption in general is
not justified because a blocked transaction may or may not be
a lock owner itself.

With Petri net modeling, we can do a more precise
modeling of the behavior of a blocked transaction. We first
remove the transitiont12 from the iterative SPN so that
Dlock is no longer needed as an input parameter. We then
create a new placep10 to hold only blocked, non-lock-
owner transactions, that is, those that are still waiting for
their first locks to be released. Blocked, lock-owner
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transactions, as before, are held in placep12 . The
purpose of creating placep10 in the non-iterative SPN
model is to differentiate blocked, non-lock-owner trans-
actions from blocked, lock-owner ones, thereby providing
a more precise information on the number of lock
owners NLO in the system as the system evolves over
time. With the addition of placep10 , NLO can be
dynamically determined as

NLO� MPLÿ (total number of tokens in placesp1 andp10 ).

The behavior of a blocked, lock-owner transaction is
modeled as follows. Whenever a transaction terminates
or aborts, we allow a token in placep12 , if any, to
migrate to placep3 with an unblocking probability that
is computable as a function of the number of lock
owners in the system. This unblocking probability varies
on-the-fly as a token in placep12 is considered at a
time. Let P0

12 (P00

12) be this unblocking probability for a
token in place p12 when a transaction terminates
(aborts, respectively). Then

P0

12 �
NL

NL� �NLOÿ 2�
dNLe

2

and

P00

12 �

dNLe
2

dNLe
2

� �NLOÿ 2�
dNLe

2

�

1
NLOÿ 1

where, for each probability, the numerator stands for the
number of newly released locks by a terminated (aborted)
transaction and the denominator stands for the number of
locks owned by all transactions in the system except for those
owned by the blocked transaction being considered and the
transaction that just terminated (aborted, respectively). The
unblocking probability is therefore the probability that one of
the locks released is the one awaited by a blocked, lock-owner
transaction in placep12 . (It is possible to do an even more
precise calculation of these unblocking probabilities by
updating the number of released locks available to a blocked
transaction (the numerator term) by conditioning on the
probability that some released locks are already allocated to
other blocked transactions. However, this would increase the
complexity of the model. We plan to study that effect in the
near future.) It should be noted that the number of lock owners,
NLO, is equal toMPL minus the number of tokens in places
p1 andp10 , and is dynamically computed by the SPN.

The behavior of a blocked, non-lock-owner transaction
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waiting in placep10 can also be modeled in a similar way.
Let P0

10 (P00

10) be the unblocking probability for a token in
place p10 when a transaction terminates (aborts, respec-
tively). Then

P0

10 �
NL

NL� �NLOÿ 1�
dNLe

2

and

P00

10 �

dNLe
2

dNLe
2

� �NLOÿ 1�
dNLe

2

�

1
NLO

where the denominator term is changed to reflect the fact

that a blocked, non-lock-owner transaction does not hold
any lock at all, and therefore it has a higher unblocking
probability than a blocked, lock-owner transaction which
itself holdsdNLe=2 locks.

Figure 4 shows this non-iterative SPN model incorpor-
ating the modeling concepts described above. Compared
with Figure 1, transactiont12 and its associated input
and output arcs are removed from the net description in
Figure 4. Two new input arcs from placesp12 and p10
to transitiont5 , and two new output arcs from transition
t5 to placesp12 0 andp10 0, respectively, are added. This
is to model that when a transaction terminates from place
p5 throught5 , a blocked, lock-owner transaction in place
p12 (a blocked, non-lock-owner transaction in placep10 ,
respectively) can be unblocked and migrates to placep3 .
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Similarly, two new input arcs from placesp12 and p10
to transitiont6 , and two new output arcs from transition
t6 to p12 00 and p10 00, respectively, are added so that
when a transaction aborts, a blocked, lock-owner transac-
tion in placep12 (a blocked, non-lock-owner transaction

in place p10 , respectively) can be unblocked and
migrates to placep3 . The unblocking probabilities of
these blocked transactions in placesp12 0, p12 00, p10 0

and p10 00, areP0

12, P00

12, P0

10 and P00

10, respectively. Table
9 gives the transition probabilities associated with the
non-iterative SPN model. It replaces Table 7.

Another modeling concept of this non-iterative Petri net
is noteworthy. Because the state of the system evolves
over time, when a transaction terminates or aborts, places
p12 andp10 may not necessarily contain a transaction to
be unblocked. This situation is modeled by allowing the
eight new arcs to have multiplicity equal to the number of
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TABLE 9. Transition probability functions

Transition Probability function

t1to3 Pg1

t1to12 1ÿ Pg1

t2to3 Pg2

t2to4 1ÿ Pg2

t4to6 Pd

t4to12 1ÿ Pd

t7to2 1ÿ Pexit

t7to5 Pexit

t12to3 0 P 0

12

t12to12 0 1ÿ P 0

12

t12to3 00 P 00

12

t12to12 00 1ÿ P 00

12

t10to3 0 P 0

10

t10to10 0 1ÿ P 0

10

t10to3 00 P 00

10

t10to10 00 1ÿ P 00

10

TABLE 10. Arc multiplicity functions

Arc Arc multiplicity

p12 ! t5 #�p12 �
t5 ! p12 0 #�p12 �
p12 ! t6 #�p12 �
t6 ! p12 00 #�p12 �
p10 ! t5 #�p10 �
t5 ! p10 0 #�p10 �
p10 ! t6 #�p10 �
t6 ! p10 00 #�p10 �

FIGURE 5. Comparing queueing and non-iterative SPN models for large transaction size.



tokens in their input places. This allows transitiont5
(t6 ) to fire as long as there is a token in placep5 (p6 ,
respectively) regardless of whether there is a token in
place p12 or p10 . However, if at the moment when a
transaction terminates or aborts, placep12 or p10 is not
empty, then the blocked transactions in these two places
can be unblocked and migrated to placep3 based on their
individual unblocking probabilities computed dynamically.
Table 10 defines the multiplicities of these eight new arcs
in the non-iterative SPN. It replaces Table 8. Again, all
other arcs in the modified SPN have a multiplicity of 1.

Figures 5 and 6 show how the non-iterative SPN fares, for
large and small transaction sizes, respectively, when its
outputs are compared with those by a queueing network
model [10]. The time needed to generate a data point in these
figures is reduced by a factor of about 5 when compared with
the iterative SPN model developed in Section 3. For all
arbitrarily selected database environment settings that we
have tested, the outputs generated by the non-iterative SPN
model correlate well with those by the iterative SPN model,
except that a small discrepancy is observed when the number
of locks in the system is very large, i.e. when each data item
requires a lock. We therefore conclude that the non-iterative
SPN model can greatly improve solution efficiency.

5. NON-ITERATIVE SPN FOR 2PL WITH
PERIODIC DEADLOCK DETECTION

In this section, we model 2PL with periodic deadlock
detection. With periodic deadlock detection, the system
does not check for deadlocks whenever a transaction’s
subsequent lock request is not granted. Rather, the system
checks deadlocks only periodically and, when it does so, it
detects and breaksall deadlocks.

5.1. Model

Figure 7 shows the periodic SPN model. There are several
new modeling concepts. In the following, we illustrate these
concepts by explaining the differences between the periodic
and continuous SPN models.

. The CPU time required to execute a periodic deadlock
detection algorithm (e.g. Warshall algorithm for transi-
tive closure [24]) is of complexityO�N2

�, rather than just
O�N� as in the continuous case. This fact is reflected by
definingDperiodic

CPU;deadlock� N � Dcontinuous
CPU;deadlock.

. When a transaction in placep2 requests a subsequent
lock, there are three possible transitions instead of two,
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i.e. (a) the lock is granted and thus the transaction goes
to place p3 ; (b) the lock is not granted because the
transaction is deadlocked with other transactions, in
which case the transaction goes to placep4 ; and (c)
the lock is not granted because another transaction is
holding the lock, in which case the transaction goes to
place p12 . These three state transitions (t2to3 ,
t2to12 and t2to4 in Figure 7) occur with
probabilities of Pg2, (1ÿ Pg2)(1ÿ Pd) and
(1ÿ Pg2)Pd, respectively. Table 10 gives the transition
probabilities of the periodic SPN model. It is the same
as Table 9 for the continuous SPN model except that
t4to6 is eliminated andt2to4 and t2to12 have
different probability functions.

. Deadlocks are checked only periodically. Therefore,
deadlocked transactions in placep4 will stay there for
a time period until a deadlock detection algorithm is
executed. This is modeled by associating a transition
rate of 1=Tperiod with t4 0, whereTperiod stands for the
average time period (in sec) between two successive
executions of the deadlock detection algorithm. After
a period ofTperiod elapses, all deadlocked transactions
in place p4 then migrate to placep4 0 at which a

periodic deadlock detection algorithm is then executed
with a CPU service demand ofDperiodic

CPU;deadlock (via t4 ).
Then, one half of the transactions are aborted and go
to place p6 , while one half of the transactions get
their locks and go to placep3 (based on the
assumption that deadlocks are of cycle 2).

. The execution of a periodic deadlock detection algorithm
is a single CPU task, regardless of the number of
deadlocked transactions waiting to be resolved inp4 0. As
a result, the rate functions oft1 throught7 are changed
as shown in Table 11. This is due to the fact that
(deadlocked) transactions in placep4 0 are not being
processed one at a time as in other CPU places, i.e.p1–
p3 andp5–p7 .

. In addition to the eight arcs in Table 10, the periodic
SPN model has five more arcs that have multiplicity
not equal to 1. Table 13 lists the arc multiplicity
functions of the periodic SPN model. One modeling
concept that is noteworthy concerns the multiplicity
functions of arcs p4 ! t4 0, t4 0

! p4 0 and
p4 0

! t4 . While a deadlock detection time interval
(via t4 0) must elapse even if placep4 contains no
token, the execution of a periodic deadlock detection
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algorithm (via t4 ), on the other hand, must be
executed sequentially following the deadlock detection
interval. Consequently, transitiont4 0 must be inhibited
when the deadlock detection algorithm is being
executed via transitiont4 . To model this behavior:
(a) the arc multiplicity ofp4 ! t4 0 is the same as the
number of tokens in placep4 ; (b) the arc multiplicity
of t4 0

! p4 0 is equal to the number of tokens in
placep4 plus 1; (c) the arc multiplicity ofp4 0

! t4
is equal to the number of tokens in placep4 0 minus 1;
and (d)t4 0 is disabled as long as there is at least one
token in placep4 0. This modeling technique allows
the elapse of a deadlock detection interval and the
execution of the deadlock detection algorithm to
occur in a sequential and cyclic manner, even when
p4 contains no tokens.

5.2. Comparison to continuous deadlock detection

We ran the periodic SPN model under various database
environment settings from which we observed the
following two results. First, for each database environ-
ment setting, we found that there indeed exists an
optimal periodic deadlock detection interval (between
two successive executions of the deadlock detection
algorithm) for which the system performance is opti-
mized. Second, based on our model outputs, periodic
deadlock detection can provide better system perfor-
mance than continuous deadlock detection only when the
deadlock probability is small (i.e. less contention) and
the level of multiprogramming is low, in which case
since transactions are rarely involved in deadlocks, the
system is better off by breaking off rare deadlocks
periodically. We also found that even when periodic
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TABLE 12. Transition probability functions

Transition Probability function

t1to3 Pg1

t1to10 1ÿ Pg1

t2to3 Pg2

t2to4 �1ÿ Pg2�Pd

t2to12 �1ÿ Pg2��1ÿ Pd�

t7to2 1ÿ Pexit

t7to5 Pexit

t12 0to3 P 0

12

t12 0to12 1ÿ P 0

12

t12 00to3 P 00

12

t12 00to12 1ÿ P 00

12

t10 0to3 P 0

10

t10 0to10 1ÿ P 0

10

t10 00to3 P 00

10

t10 00to10 1ÿ P 00

10

TABLE 13. Arc multiplicity functions

Arc Arc multiplicity

p4 ! t4 0 #�p4�
t4 0

! p4 0 #�p4� � 1
p4 0

! t4 #�p4 0

� ÿ 1
t4 ! p6 d�#�p4 0

� ÿ 1�=2e
t4 ! p3 b�#�p4 0

� ÿ 1�=2c
p12 ! t5 #�p12 �
t5 ! p12 0 #�p12 �
p12 ! t6 #�p12 �
t6 ! p12 00 #�p12 �
p10 ! t5 #�p10 �
t5 ! p10 0 #�p10 �
p10 ! t6 #�p10 �
t6 ! p10 00 #�p10 �

TABLE 11. Transition rate functions

Transition Rate function

t1
1

SCPU;lreq
�#�p1�=�#�p1 � p2 � p3 � p5 � p6 � p7� � n�

t2
1

SCPU;lreq
�#�p2�=�#�p1 � p2 � p3 � p5 � p6 � p7� � n�

t3
1

SCPU;lset
�#�p3�=�#�p1 � p2 � p3 � p5 � p6 � p7� � n�

t4
1

Dperiodic
CPU;deadlock

� 1=�#�p1 � p2 � p3 � p5 � p6 � p7� � 1�

t5
1

DCPU;lrel
�#�p5�=�#�p1 � p2 � p3 � p5 � p6 � p7� � n�

t6
2

DCPU;lrel
�#�p6�=�#�p1 � p2 � p3 � p5 � p6 � p7� � n�



deadlock detection at optimizing intervals is better than
continuous deadlock detection, the improvement in
system performance is often insignificant.

Figure 8 displays the model outputs for the system
throughput as a function of the selection of the deadlock
detection interval (Tperiod) and size of each transaction (SZtr)
for the case when the multiprogramming level is 6
(MPL � 6) and the database size is 200. Other cases exhibit
similar trends. Figure 8 shows that asSZtr increases, the
contention of transactions increases and consequently the
deadlock probability increases, in which case the system is
better off by performing the deadlock detection more
frequently. As a result, the optimal intervalTperiod shifts from
1000 to 5 sec asSZtr increases from 2 to 5.

Figure 9 compares two 2PL systems with periodic
and continuous deadlock detections in terms of
the throughput difference in the two systems. They
coordinate represents the throughput percentage
improvement of systems using periodic deadlock detec-
tion at optimizing intervals over systems using con-
tinuous deadlock detection. We choose they coordinate
this way to ease the presentation of the results because
different database environments may yield significantly
different system throughputs possibly by an order of
magnitude. Thex coordinate represents the size of a
transaction (the number of transaction isMPL � 6) to
analyze the effect of transaction size. As can be seen in
Figure 9, even for conditions under which periodic
deadlock detection is better than continuous deadlock
detection (e.g. whenSZdb � 5000 and SZtr � 5), the
improvement in system throughput over continuous

deadlock detection is relatively small. Conversely, for
the conditions under which continuous deadlock detec-
tion is better than periodic deadlock detection, the
difference in system throughput is much more notice-
able. This result suggests that periodic deadlock
detection may not improve system performance by too
much in a centralized database system even at
optimizing deadlock detection intervals possibly because
the cost of continuous deadlock detection in centralized
systems is relatively small (as compared to distributed
database systems) and therefore for database environ-
ment settings for which there is a reasonable level of
data contention (e.g. whenSZdb � 5000 andSZtr � 50
for MPL � 6 transactions), the system throughput can
only be improved by resolving deadlocks as soon as
possible by using continuous deadlock detection. Never-
theless, Figure 9 demonstrates that when the deadlock
probability is low, systems with periodic deadlock
detection can still perform better than systems with
continuous deadlock detection, although the improve-
ment in performance is less significant. In general, the
SPN models developed in the paper can help a system
designer determine the conditions under which periodic
deadlock detection can perform better than continuous
deadlock detection.

6. SUMMARY

In this paper, we have developed Petri net models to
analyze the behavior of 2PL database systems with
continuous and periodic deadlock detection. Our object-
ive is to simplify the computational procedure required
for obtaining system performance measures as model
outputs. As opposed to existing performance models, our
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FIGURE 8. Optimizing time intervals under periodic deadlock
detection.

FIGURE 9. Difference in throughput percentage for periodic and
continuous deadlock detection policies.



Petri net model can be defined and solved easily by
using a commercial software product such as SPNP
which has been used for generating the data in this
paper. An important feature of our Petri net model is that
the wait time for a lock can be implicitly described in
the Petri net definition. This eliminates the need to use
an iterative procedure to ensure that the estimate of the
wait time must eventually converge. We have demon-
strated that this saving in computation time in our non-
iterative SPN model (for 2PL with continuous deadlock
detection) does not compromise solution accuracy by
comparing its outputs with those reported in [10] based
on a queueing model. Furthermore, because our SPN
model computes the unblocking probability of a blocked
transaction dynamically as a function of the system state
without making any ad hoc assumption, it is likely that
the behavior of a blocked transaction can be modeled
more precisely.

For 2PL database systems with periodic deadlock
detection, our analysis indicated that there indeed exists
a best deadlock detection interval under which the
system performance is optimized, and that periodic
deadlock detection can perform better than continuous
deadlock detection in 2PL database systems when the
deadlock probability is low. We suggest that our SPN
models be considered as a prediction tool to help
determine the exact condition under which periodic
deadlock detection is better than continuous deadlock
detection or vice versa. A possible application of the
tool is to use it to design a database system that can
dynamically switch between continuous and periodic
deadlock detection policies based on a priori knowledge
on the workload distribution of the system in a time
cycle (e.g. 24 h in a day with a distribution of peak and
slow hours) so as to optimize the performance of the
system.

The comparison result between periodic deadlock
detection and continuous deadlock detection based on
the model outputs suggests that continuous deadlock
detection be used for database systems for which some
contention of data items is expected. The reason is
that the cost of continuous deadlock detection in
centralized systems is small. One possible future
research area is therefore to apply the modeling
concepts developed in the paper to compare the
performances of continuous and periodic deadlock
detection algorithms in distributed 2PL database
systems where the cost of continuous deadlock
detection is high.
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