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Performance Evaluation o f Ru le Grouping on 
a  Rea l-T ime Expert System Architecture 

Ing-Ray Chen, Member,  IEEE, and Bryant L. Poole 

Abstract- This paper uses a Markov process to model a 
real-time expert system architecture characterized by message 
passing and event-driven scheduling. The model is applied to 
the performance evaluation of rule grouping for real-time expert 
systems running on this architecture. An optimizing algorithm 
based on Kernighan-Lin (KL) heuristic graph partitioning for 
the real-time architecture is developed and a demonstration 
system based on the model and algorithm has been developed 
and tested on a portion of Advanced GPS Receiver (AGR) and 
Manned Maneuvering Unit (MMU) knowledge bases. 

Index Terms-Expert systems, real-time architectures, Markov 
models, performance, rule-based systems, rule grouping, graph- 
partitioning algorithms. 

I. INTRODUCTION 

T HE INCORPORATION of rule-based systems in real- 
time control systems has  emerged as a  state-of-the-art 

demand  in recent years [ 11, [2], [ 111.  One  central issue 
is how to make expert  systems real-time, that is, how to 
ensure that the timing and  functional requirements of expert  
systems are satisfied. This issue is interesting mainly because 
the exponential  search time behavior exhibited by  rule-based 
expert  systems makes them difficult to apply to real-time 
applications. 

One  strategy for using expert  systems in real time involves 
the Maintenance System for AI Knowledge Bases (SKRAM) 
[7]. SKRAM uses a  real-time expert  system architecture, called 
the Activation Framework (AF) [6], to support  a  dynamically 
prioritized, message-based,  distributed, real-time Ada run-time 
environment. Under  SKRAM, the user can specify groups of 
expert  system product ion rules using SKRAM’s Activation 
Framework Language  (AFL) syntax, or expert  system shells 
supported by  SKRAM, such as  the C Language  Integrated 
Production System (CLIPS) [S] and  the Automated Reason-  
ing Tool (ART) [ 171.  These user-specif ied rule groups are 
automatically translated by  SKRAM’s translator into efficient 
Ada run-time processes (with each  process corresponding to a  
rule group) which communicate with each  other via message-  
passing. To  facilitate real-time computing, the priorities of 
these rule groups are dynamically recomputed as  follows: 
whenever  a  new fact is generated and  sent from one  rule group 
to others during run time, the priority of each  receiving rule 
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group is calculated as  a  function of the global importance 
of the rule group and  the sum of the important levels of all 
pending messages received by  the rule group. Then  the rule 
group having the highest priority will be  scheduled to run next. 
The  effect of this event-dr iven schedul ing mechanism is that it 
guarantees that the most important process (or rule group) will 
a lways be  execut ing at any  time, thereby guaranteeing timely 
responses to the evolving real-time environment. Furthermore, 
since a  message is only sent to relevant rule groups instead 
of all rule groups when  a  new fact is generated,  this real-time 
architecture also possesses an  intelligent matching capability 
similar to that of the Rete algorithm [4], except  that a  dis- 
tributed strategy, rather than a  central ized one,  is adopted for 
managing the pattern matching process. In the extreme case 
when  only one  rule is al located to a  group, the communicat ion 
network connect ing all the groups is itself like a  Rete network 
[91. 

This real-time expert  system architecture, however,  has  a  
discernible process-level overhead for carrying out the event- 
dr iven schedul ing. First, the host processor is interrupted to 
determine the most important process every time a  message 
is del ivered from one  process to another process, or whenever  
an  I/O event  occurs. (Note: a  message is sent carrying the I/O 
information when  an  I/O event  occurs). Second,  if the currently 
execut ing process indeed becomes less important than some 
other process, then the operat ing system must perform a  
context switch to allow the most important process to run. 
This introduces substantial overhead because the processor is 
optimized to compute with register and  cache data, which are 
lost in a  context switch. 

This issue is further complicated by  a  rule grouping which 
allocates rules to separate groups. If each  rule is al located 
to a  separate group, then the process-level overhead within a  
processor will be  significant because the real-time operat ing 
system has  to deal with a  large number  of processes since 
each  group is a  separate process. On  the other hand,  if many  
rules are al located to a  group, then, a l though the process-level 
overhead is reduced (because there are fewer processes),  the 
overhead required for schedul ing rules within a  single process 
may be  significant because a  similar mechanism (e.g., the 
Rete algorithm) has  to be  appl ied for schedul ing the execut ion 
of rules within a  group, thus introducing a  lot of system 
maintenance overhead for keeping track of which rules are 
ready and  which rule should be  fired, etc. Both overheads,  one  
at the process level and  the other at the rule level, degrade 
the performance of the system since they increase the time 
required for firing product ions rules. Therefore, the optimizing 
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rule grouping should balance these two overheads,  thereby 
minimizing the total system overhead.  It should be  noted that 
while the AF architecture also allows rule groups to run on  
separate processors to increase product ion parallelism (similar 
to that in [lo]), the paper  will only focus on  the process- 
level and  rule-level overheads which exist in a  uniprocessor 
real-time system. 

Current research investigations of rule grouping for expert  
systems [12], [16] are not tied in with real-time architectures 
and  thus do  not consider this design tradeoff. The  basic 
approach of these rule grouping algorithms is to select a  
distance metric between each  pair of rules and,  after allocating 
each  rule to a  separate group, iteratively merge groups with 
the minimum inter-group distance until a  stopping condit ion 
is met. These algorithms stop either after a  predetermined 
number  of groups is obtained [16] or the inter-group dis- 
tance between the next two groups to be  combined is no  
longer positive [12]. These rule-grouping algorithms are not 
applicable to expert  systems running on  real-time architectures 
because there is no  provision for balancing the process-level 
and  rule-level overheads.  

Another class of algorithms [3], [ 131,  [ 151  deals with a  more 
general  graph-partit ioning problem as follows: given a  graph 
G  with costs on  its nodes  and  edges,  partition the nodes  of 
G  into k subsets of specif ied sizes, ~1, ~2,. ‘. , Sk, so  as  to 
minimize the total cost of the edges  cut. The  problem can be  
related to rule grouping as  follows: a) each  node  corresponds 
to a  rule with its cost proport ional to the size of that rule; b) 
each  edge  going from rule i to rule j is ass igned a  cost of one  
if rule j uses a  fact generated by  rule i, or zero otherwise; and  
c) minimizing the total cost of the edges  cut when  the graph 
is partit ioned into Ic subsets of specif ied sizes corresponds 
to minimizing the message flow between these k subsets, 
thereby reducing the process-level overhead.  Therefore, for a  
selected (Ic, ~1, sz, . . , Sk), these graph-partit ioning algorithms 
may be  utilized as  subrout ines to optimize the performance of 
the system since they produce partitions that will minimize 
the process-level overhead.  The  quest ion that remains is how 
to determine the best (Ic, ~1, ~2,. . . , Sk). Our  approach is 
first to use  model ing techniques, rather than experimental 
evaluation (which is more laborious and  expensive) to capture 
the essential characteristics of the real-time architecture, taking 
into account  the tradeoff between the rule-level and  process- 
level overheads.  Under  this methodology, a  quantitative model  
is constructed, it is parameter ized to reflect the selection of 
(k Sl,S2,‘.., Sk) under  study utilizing a  graph-partit ioning 
algorithm as a  routine, and  then the model  is evaluated to 
determine the performance of the system under  the selection. 
Finally, the model  is val idated and  verified by  compar ing 
the model  outputs with per formance measures obtained from 
empirical data. 

The  purpose of this paper  is to estimate the performance 
of various rule groupings of a  real-time, rule-based system. 
Thus a  system can be  optimized using the appropriate parti- 
tioning. While current research is helpful in developing this 
rule-grouping algorithm, the research does  not address key 
characteristics specific to the AF architecture. In particular, no  
existing rule-grouping algorithm can balance the tradeoff be-  

tween rule-level and  AFO-level overheads.  Section II presents 
a  Markov model  for estimating the performance of expert  
systems running on  this real-time architecture with a  single 
processor.  The  model  accounts for the process-level and  rule- 
level overheads.  A performance equat ion is der ived from the 
Markov model  and  is used  to estimate the performance of an  
expert  system which has  been  partit ioned and  optimized by  a  
rule grouping algorithm. Section III d iscusses techniques for 
obtaining the model  parameters. In Section IV, an  optimizing 
rule-grouping algorithm is developed using the Kemighan-Lin 
(KL) algorithm as its core. Section V demonstrates the fea- 
sibility of the model  and  algorithm by applying them to 
the Advanced GPS (Global Positioning Systems) Receiver 
(AGR) [7] and  the Manned  Maneuver ing Unit (MMU) [14] 
knowledge bases.  Finally, Section VI summarizes the paper  
and  outl ines some future research areas. 

II. MODEL 
In the construction of the model  for describing the run- 

time behavior of expert  systems running on  the real-time 
architecture, we first distinguish the following two classes 
of processes: a) Application Code  Objects (ACO’s), each  of 
which corresponds to a  group of product ion rules, and  b) Sys- 
tem Code  Objects (SCO) which perform I/O functions such as  
sensing, actuating and  displaying. W e  assume that there exist 
I /O-processing devices for interfacing with sensors, actuators, 
and  display devices (as real-time systems should have).  The  
host processor runs ACO’s most of the time, but can  be  
temporari ly interrupted by  an  I/O-processing device when  an  
I/O event  occurs. In the latter case, the SC0 corresponding to 
the particular I/O event  will be  scheduled to run. 

W e  use a  continuous-t ime Markov model’ to descr ibe the 
real-time architecture. W ith the Markov model, the system 
execut ion is considered as  a  progression through the following 
states: 

l ACO: in this state an  AC0 is scheduled to run. The  AC0 
may perform useful work, e.g., firing a  rule, generat ing 
some new fact, etc., or it may use the CPU time for the 
rule-level overhead which includes determining a) which 
rules are ready by  applying a  match algorithm such as  the 
Rete algorithm for saving the states of the rules within a  
single ACO; and  b) which rules should be  fired among  
all ready rules. 

l OS: in this state, the operat ing system takes control. This 
state models part of the process-level overhead due  to 
event-dr iven schedul ing. The  operat ing system gets con- 
trol because the currently execut ing AC0 sent a  message 
(i.e., new fact) to other processes. The  CPU power  is 
used  to deliver the message,  calculate the priorities of 
the receiving ACO’s, and  compare the priorities of the 
sending and  receiving ACO’s to determine which AC0 
should be  scheduled to run next. 

‘A continuous-time Markov chain is a  stochastic process {s(t), t >  0} 
taking on  values in the set of nonnegat ive integers such that the conditional 
distribution of the future state ,Y(t +  .s) given the present S(S) and  the past 
S(U), 0  5  u  <  .s, depends only on  the present and  is independent  of the past 
states [ 18). 
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l SW: in this state, the operating system performs a context 
switch by saving the states of the sending AC0 (or the 
AC0 which just returned to AF) and allocating the CPU 
to the AC0 having the highest priority. This state models 
part of the process-level overhead. 

. SCO: in this state, an input or output SC0 takes over due 
to an I/O event (viz, an alarm event). The CPU power 
is used for performing a) a context switch to transfer the 
control to the SC0 corresponding to the I/O event; b) 
an I/O write or read operation; and c) a context switch to 
transfer the control to the AC0 having the highest priority 
after the I/O operation is done. This state also models part 
of the process-level overhead. 

l T: the termination state. 
Fig. 1. shows the model which is constructed as follows: 
1) When the system is in the AC0 state, the CPU is 

used by an AC0 for processing an arriving fact, i.e., 
determining which rules are ready to fire due to the 
arrival of the new fact, and selecting one to fire among 
the set of ready rules, if any. Firing a rule may generate 
new facts which may a) instantiate other rules within 
the same ACO, thus requiring the AC0 to process the 
new fact again, or b) instantiate rules in other ACO’s, 
thus requiring the AC0 to send a message carrying 
the fact to other ACO’s. The time required for the 
AC0 to process an arriving fact is assumed to be 
exponentially distributed with a constant rate X. The 
probability of termination, executing the same AC0 
again, and returning the control to the operating system 
when a new fact is generated are q, r, and 1 - r - q 
(or r - q), respectively. In Fig. 1 these correspond to the 
horizontal transition at rate qX, self-looping transition at 
rate rX (not shown in the figure), and diagonal transition 
at rate (T - q)X, respectively. 

2) When the operating system takes over (i.e., in state OS), 
the time that is required for the operating system to 
deliver a message from the sending AC0 to another 
AC0 and to re-compute the importance levels of these 
two ACO’s to determine which one has the higher 
priority is assumed to be exponentially and randomly 
distributed with a constant service rate p. Assume that 
the average number of AC0 connections for each rule 
having at least one AC0 connection is m. Then, the 
overall rate for the operating system to deliver a message 
and re-compute the importance levels of all involved 
ACO’s is p/m. Further, assume that with probability 
p, the control will be transferred to a new ACO. Hence, 
with probability p the sending AC0 will retain the CPU. 
These events correspond to the diagonal transitions at 
rate (pp)/m if the CPU is allocated to a new ACO, or 
at rate @)/m if the CPU is retained by the sending 
ACO, respectively. 

3) When the operating system allocates the CPU to a 
new ACO, the system is in the SW state. The CPU 
time is used for performing a context switch. The 
time for performing a context switch is assumed to be 
exponentially and randomly distributed with a constant 

(‘-4) /,“” %  A 

Fig. 1. The 
processor. 

Markov model for the real time architecture single 

context-switching rate 8. After the context switch is 
performed, the CPU is allocated to a new AC0 and the 
system is again in state ACO. This event corresponds 
to the horizontal transition at rate 8. 

4) If the list of SCO’s to be checked by the operating 
system at regular intervals exists, then state SC0 exists. 
In this case, whenever an I/O event occurs, the control is 
passed (by a context switch) to the SC0 corresponding 
to the I/O event. The interarrival time for I/O events is 
assumed to be exponentially distributed with a constant 
alarm rate 0. The event corresponds to the vertical 
transition at rate 0 from state AC0 to state SC0 . 
When the system is in state SCO, the time required for 
the system to return to state AC0 is assumed to be 
exponentially distributed with a constant rate cy. This 
quantity includes the time required for SCO’s to read 
from or write to some buffer in I/O-processing devices 
as well as that required for performing a context switch 
twice: one to switch from state AC0 to SC0 and 
one to switch back from SC0 to AC0 . This event 
corresponds the vertical transition at rate cr from state 
SC0 to state ACO. 

5) The system continues to perform state transitions until 
it reaches state T. 

The performance measure of interest in this model (Fig. 1) 
is the mean time to termination (MTTT), i.e., the mean time 
required for the system to transit to state T from state ACO. 
This measure reflects the average time required for a rule 
system to terminate. Thus, the design goal in this case is to 
minimize the MTTT. 

A simplifying model is the case in which a rule system 
never terminates (e.g., it runs an infinite loop in an embedded 
process-control system). This is shown in Fig. 2. In this case, 
the performance metric of interest is the effective production 
rate, namely, XP~co(c0). This performance metric measures 
the number of facts generated (and thus correspondingly the 
number of rules fired) per time unit. This performance metric 
accounts for the tradeoff between the process-level and rule- 
level overheads by considering the proportion of time the 
system stays at state AC0 (which accounts for the process- 
level overhead) and the rate at which the system fires a rule 
given that the system is in state AC0 (which accounts for 
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the rule-level overhead). An important observation is that x  
decreases as more rules are grouped within one AC0 because 
more time is spent within an AC0 for handling a new arriving 
fact over a larger pattern matching network. 

This performance metric can be computed by first solving 
for Pact from the following set of linear equations 
describing the Markov model in Fig. 2 [ 181: 

pACO(m) +&CO(m) + pSW(m) + pOS(m) = 1 

&h(m) = f=ApACO(m) 

@PSW(~> = p;Pos(o) 

aPSCO(m) = aPACO(m). 

This yields 

and therefore the equation for the effective production rate is 
given by 

x, = 
x 

1+0; mXr k*’ (1) 
a CL 0 

This performance equation has two important implications. 
1) For a balanced k-way partition (e.g., k  = 1 means 

that there is only one group), the system performance 
increases as X, 8, ~1, or (Y increases, and as f, p, m, or 
cr decreases. Since 6, p, CY, and o do not change from 
one partition to another partition, a graph-partitioning 
algorithm for generating the balanced k-way partition 
should minimize r, p, and m and maximize X in order 
to optimize the system performance. 

2) To improve the performance of the system, it is desirable 
to decrease F, p, and m by selecting a lower k value (thus 
minimizing the process-level overhead); however, this 
would decrease X (i.e., increasing the rule-level overhead 
as there are more rules in a group) which will adversely 
degrade the system performance. Therefore, the goal 
is to select a best balanced k-way partition which can 
balance these two opposite effects. 

In light of these implications, the optimizing rule grouping 
algorithm should a) utilize a graph-partitioning algorithm to 
minimize r, p, and m and maximize X for a selected k value; 
and b) vary k from 1 to N so as to select the best balanced 
k-way partition (from implication 2). Section IV will present 
an optimizing rule grouping algorithm based on this approach. 

III. PARAMETERIZATIONOF MODEL 
Equation (1) can serve as a basis for predicting the per- 

formance of the system when all parameters are quantified 
after a particular graph-partitioning algorithm has been applied 
to partition the production rules into groups. Some of these 
parameters are machine-dependent but insensitive to the use 
of graph-partitioning algorithms. These are called statistically 
measurable parameters. Others are sensitive to the utilization 
of graph-partitioning algorithms and the way a group processes 
a new fact. These are called computable parameters. This 
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co e SW 
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9-l 
SC0 
w 

Fig. 2. The Markov model with no termination state. 

section discusses techniques for quantifying these two types 
of parameters using an 80386-based machine as an example. 

A. Statistically Measurable Parameters 

Statistically Measurable Parameters include 8, CL, CJ, and IX 
These are discussed next. 

l 0 denotes the average number of times per second the 
CPU is capable of performing a context switch (dedicated 
for that purpose). For an 80386 machine loaded with 
AF, for example, the average time required for the AF 
operating system to perform a context switch is about 2 
ms [19]. Therefore, 0 M 500 s-l. 

l ,u denotes the average number of times per second the 
CPU is capable of a) delivering a message from an AC0 
to another AC0 and (b) re-computing the priorities of 
these two ACO’s to determine which one has the higher 
priority. For an 80386 machine loaded with AF, the 
average time required for the AF to perform this service 
is about 1.5 ms [19]. Therefore, p M 700 s-l. 

l 0 denotes the average number of times per second the 
execution of the rule system is interrupted by I/O events. 
For example, if it is measured that there are about five 
data-sensing and five display operations per second, then 
0 = 10 s-l. 

l Q  denotes the average number of times per second the 
CPU is capable of performing I/O activities, given that 
every time an I/O activity occurs, the execution of the rule 
system is interrupted. Since the time required to service 
an I/O event includes the time for the system to switch 
back and forth between states AC0 and SC0 as well as 
that required to service an I/O operation, 

1 
ck!M 

P+$+D 

with D representing the average time required for an SC0 
to input/output the data to/from an I/O-processing device. 
D is a statistically measurable quantity, e.g., D  z 20 ms 
for an 80386-based disk read/write operation. 

B. Computable Parameters 
Computable parameters include T, m, p, and X. These 

parameters are sensitive to the use of graph-partitioning algo- 
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rithms. In addition, X is sensitive to the Rete-like mechanism 
with which each  rule group (or ACO) processes a  new arriving 
fact. 

W e  first define some data structures used  by  graph- 
partitioning algorithms. Then,  we explain how to com- 
pute these parameters using these data structures. Let 
A[1 . . . N, 1. .. N] be  the adjacency matrix that shows the 
connectivity of product ion rules, i.e., aii =  0  for all i 
and  a;j =  1  if rule j uses a  fact generated by  rule i; 0  
otherwise. Let B[l . . . N] be  the output partition vector of a  
particular graph partitioning algorithm which has  been  appl ied 
to partition the rule product ion rules into k ba lanced groups, 
such that if b[i] =  j then rule i is al located to the jth group. 
In the following we discuss techniques for comput ing T, p, 
m, and  X. 

l T denotes the probability that when  an  AC0 generates a  
fact, the fact will instantiate rules within the same ACO, 
rather than instantiating rules in other ACO’s. W e  can 
approximate r by  

G TX---Z 
C 

L L 
*=I ,=I 

b[j]=b[i] 
Uij 

5 Eaij 
i=lj=l 

(2) 

where C stands for the total number  of connect ions in the 
connect ion matrix and  Ci stands for the total number  of 
internal connect ions for all k  groups after the partition. 
When  there are fewer groups, r -+ 1  and,  conversely, 
when  there are many  groups, T + 0. For a  given k, a  
graph partitioning algorithm should maximize r ( thereby 
minimizing T) as  much as possible to reduce the process- 
level overhead.  

l m  denotes the average number  of external groups that 
a  rule connects to. This can be  estimated in three steps: 
a) computing, for each  rule having at least one  external 
connect ion, the number  of groups it connects to, b) 
accumulat ing the total count  for all such rules, and  c) 
dividing the result in b) by  the number  of all such rules. 
Hence,  the average number  of external AC0 connect ions 
per  rule is an  output of a  graph partitioning algorithm. 
Obviously, m  increases as  the number  of groups increases 
and,  as  a  result, the process-level overhead involved for 
sending a  message from an  AC0 to all its connect ing 
ACO’s increases, a  behavior which has  been  accounted 
for by  the Markov model. 

l p represents the probability that the operat ing system 
will perform a  context switch after servicing a  message 
delivery. If we  assume that, when  servicing a  message 
delivery for an  ACO, the operat ing system inspects each  
connect ing AC0 in succession to determine whether or 
not the CPU should be  switched to that connect ing AC0 
with a  success probability p,, then the probability that 
the operat ing system will perform a  context switch is 
proport ional to m as follows: 

P = FPoCl - pay. 
i=l 

(3) 

This approach gives a  reasonable of p since it can  well 
explain why p M  1  when  there are many  groups. 

l X denotes the rate at which a  new fact is generated by  
a  rule group. The  magni tude of this parameter largely 
depends  on  how many  rules there are in each  group. For 
that purpose,  let Xj denote this rate when  there are j rules 
in each  group. Furthermore, let Xj relate to Xr (the new 
fact generat ion rate when  each  AC0 contains exactly one  
rule) by  the following equation: 

Xl -IL-- 
4  

- 77j 

where qj s tands for the number  of rules that have  to be  
processed by  a  group containing j rules when  a  new 
fact arrives. The  advantage of relating Xj with Xr is 
that Ar is a  measurable quantity and  therefore Xj can  
be  computed from Xr as  long as  ~j can  be  estimated 
properly. For example, for 80386  machines loaded with 
AF with 1-Mflops processing capability, if each  rule 
contains approximately 500  machine language (floating- 
point) instructions, then 

Xl z 2000  s-l. 

To  properly estimate qj, we distinguish the following two 
mechanisms with which each  group handles a  new fact. 

Non-Data-Driven Mechanism: In this scheme, all j rules 
within a  group are encoded  as a  succession of if - then 
code blocks. Therefore, the processing time required to 
generate a  new fact is about  j t imes as  large as  when  
there is only one  rule per  group because all j code  
blocks must be  examined before one  is selected to fire. 
Under  this non-data-dr iven scheme 

Consequent ly,  for a  ba lanced k-way partition, since 
j =  N/k 

x=x11; 
N 

for non-data-dr iven mechanism 

where N is the number  of rules in the rule system. 
Data-Driven Mechanism: In this scheme, each  group 
maintains a  pattern matching network (e.g., consisting 
of RTGO, BFO, and  RO data structure objects in [8]) 
with a  size proport ional to the number  of rules in 
each  group. When  a  new fact is processed,  instead of 
inspecting all j rules, only a  port ion of the rules in the 
pattern matching network is inspected before the most 
important rule is selected to run. The  number  of rules 
that are inspected when  a  new fact is processed,  i.e., 
rlj, may be  estimated by  analyzing the following two 
cases: a) if the fact was generated by  a  rule within the 
same group (which occurs with probability r), then qj 
is the average number  of internal connect ions per  rule; 
b) if the fact was generated by  a  rule in another group 
(which occurs with probability T), then vj is the average 
number  of incoming connect ions per  external rule, a  
quantity that is equal  to the average number  of external, 
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Fig. 3. Model  outputs for the AGR system under the data-driven scheme. 
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0 ” = 500 

1GO 

t 
a + X1 = 2000, initial partition 

0  
I I I I 1  I , 

2 4 6 8 10 12 14k 

Fig. 4. Model  outputs for the MMU system under the data-driven scheme. 

outgoing connect ions per  rule in the rule set divided by  
k - 1. (Note that when  there is only one  group, i.e., 
k  =  1, case b) does  not contribute to 77j since r =  0.) 
Thus under  the data-driven scheme, when  k >  1  

( 
G ce 71j=max l,rxT+Tx N(k-I) 

) 
where Ci stands for the total number  of internal connec-  
tions for all k  groups as  def ined in (2) and  C, =  C - C;, 
standing for the total number  of external connect ions. 
(C is the total number  of connect ions of the input 
connectivity matrix.) The  max operator is used  to make 
sure that at least one  rule will be  affected when  a  new 
fact is processed.  In summary,  for a  ba lanced k-way 
partition 

f ” NX1 ifk=l 
A= 

tit 
Xl 

max (I,++-) otherwise 

for data-driven mechanism. 

IV. THE OPTIMIZING RULE GROUPING ALGORITHM 

In this section we present an  optimizing rule grouping 
algorithm with a  goal of determining the best ba lanced k-way 
partition for optimizing the system performance. 

Input: adjacency matrix A [l . . . N, 1. . . N], 8, p, u, X1, D, 
and  p,. 

4  - 

3  - 

2  - 

1  - 

o  Model  
l Expetiment 

I I I I I I J 

1  2  3  4  5  6  7k  

Fig. 5. Model  outputs versus experimental results for the AGR system. 

Output: the best ba lanced k-way partit ion vector (I? [l . . N.]) 
Steps: 

1) determine N from the input adjacency matrix, 
2) set k =  1, 
3) while k 5  N do  

a) parameter ize r, p, m, and  X based  on  the 
balanced k-way partition generated by  the KL 
algorithm, 

b) compute the performance metric of the system 
using (I), 

cl @the system performance is the greatest so far, 
record this value; also record the best k and  
the resulting k-way partition in the variable 
B[l . . . N], 

d) k=k+l. 

4) output the best k and  B[l ’ . N]. 

This optimizing rule grouping algorithm utilizes the KL 
algorithm [13] as  a  subrout ine for k-way partitioning rules so 
as  to minimize the total external cost on  edge  cuts, thereby 
minimizing r, p, and  m and,  consequent ly,  optimizing the 
system performance. W ith k varying linearly from 1  to N, 
this optimizing algorithm runs about  10  s for a  rule system of 
size 7  (e.g., AGR) and  about  5  min for a  rule size of 92  (e.g., 
MMU) on  an  80386-based machine loaded with AF. 

V. EXAMPLES 

In the following, the optimizing rule grouping algorithm is 
appl ied to the AGR and  MMU knowledge bases.  The  objective 
is to identify the best k-way partition which can maximize 
the effective product ion rate (i.e., system performance) as  a  
function of Al. Both systems run on  an  80386-based ma- 
chine loaded with AF with which the following performance 
measurement  data are observed:  

:; 
x  700  s-l; 
x  500  s-1; 
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(defrule jamming-levels-increasing 
(rx~state 5) 
(current-cno ?cno) 
(cm-trend ?trend) 
(test(< ?cno 25)) 
(test(< ?trend -1)) 
(jamming-threat 1) 
(jamming-threat-trend 1) 

=> 
(assert(rr-state 3)) 

" jamming increasing -> state 3" 

;; "as (?asv cllrrent~cno ?cno) 
;; "as (?asv &o-trend ?trend) 
;; cno < 25 db-hz 
;; cno trend < -1 db-hz/iO sets 

(dafrule signal-decreasing 
(rrstate 5) 
(current-cno ?cno) 
(cno-trend ?trend) 
(test(c ?cno 20)) 
(test(< ?trend 0)) 

=> 
(assert(rx-state 3)) 

“cno decreasing -> state 3" 

;; was (?asv current-cm ?cno) 
;; was (?asv cno-trend ?trend) 
;; cno < 20 db-hz 
;; cno trend < 0 db-hz/iO sets 

(defruls dynamics-levels-increasing "dynamics increasing -> State 3" 
(rr-state-recovery 5) ;; vas (rx-state 5 ?) 
(acceleration ?a&) 
(jerk ?j) 
(test(> ?acc 3)) 
(test(> ?j 10)) 

=> 
(assert(rx-state 3)) 

1 

(d&rule cno-meas-improving 
(rx-state 3) 
(currant-cno ?cno) 
(cno-trend ?trend) 
(test(> ?cno 25)) 
(test(> ?trend 0)) 

=> 
(assert(rx-state 5)) 

) 

Fig. 6. An example AGR rule group in CLIPS format. 

TABLE I 
~.w.p AND X ASA FUNCTIONOF li FOR THE AGR SYSTEM 

[kJT ImJp ) X (data-driven) X (non data-driven) 

:; 
M  10 s-l; 

1 x 2000 s-l; 
l D  M 0.02 s; 
00. M 1 

?+$+D = 35 s-1. 

A. Model Outputs 
By applying the KL algorithm on the AGR rule system, it 

is observed that r, m, p, and X (under data-driven as well 
as non-data-driven scheme) are related to lc (1 5 k 5 7) as 
shown in Table I when X1 = 2000. 

Fig. 3 shows that for the AGR knowledge base when the 
data-driven scheme is used to process arriving facts, the best 

;; acceleration > 3 g 
;; jerk > lOg/sec 

"cno meas available => tracking svs" 

;; YQS (?asv  current-cm ?cno) 
;; was (?a~ cno-trend'?trend) 
;; cno > 25 db-hz 
;; cno trend > 0 db-hz/lO set 

value of k  depends on the magnitude of Xi (which reflects 
the degree of the rule-level overhead). The figure shows that, 
if X1 is in the same order of magnitude as 6’ or p (which 
occurs when each rule contains many instructions), then the 
best partition favors a high Ic. Conversely, if X1 is an order of 
magnitude higher than 0 or ~1 (which occurs when each rule 
contains only a few instructions), then the best partition favors 
a low k. The physical interpretation is as follows: in the latter 
case the time required for the operating system to schedule 
ACO’s is an order of magnitude longer than that required for 
an AC0 to process an arriving fact, select a rule, and fire 
the rule. Consequently, the system performance is improved 
by shifting the time-consuming scheduling work from the 
operating system to within an ACO. An important observation 
from this figure is that, for each X1 value, there exists a k value 
under which the system performance is maximized. Since it 
is estimated A1 z 2000 for the AGR knowledge-base system, 
our model suggests that the best partition should group all 
rules together when the data-driven scheme is used. 

Remark: We also observed a similar trend for the case when 
the non-data-driven scheme is used to process arriving facts, 
except that the latter case requires a higher value of X1 for 
the best partition to favor a low k value because more rules 
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RCO example-rule-group IS 
DECLARE 

acceleration IS INTEGER; 
current-cno IS INTEGER; 
cno-trend IS INTEGER; 
jamming-threat IS INTEGER; 
jamming-threat-trend IS INTEGER; 
jerk IS INTEGER; 
rx-state IS INTEGER; 
rx-state-recovery IS INTEGER; 

RECEIVE acceleration,current_cno.cno,cno~trsnd,jsmming~tkrsat, 
j~ing_threat_trend,jerk.rx_state,rx-stats-recovery; 

SEND rx-state; 

BEGIN 
-- jamming levels increasing 

IF rx-state =  5  AND current-cno <  25  AND cno-trend <  88  
AND jamming-threat =  1  AND jamming_threat-trend =  1  

THEN rx-state := 3; 
-- signal decreasing 

IF rx-state =  5  AND current-cno <  20  AND cno-trend <  0  
TEEN rx-state := 3; 

-- dynamic levels increasing 
IF rx-state-recovery =  5  AND acceleration >  3  AND jerk >  10  
TEEN rx-state := 3; 

-- cno meas improving 
IF rx-state =  3  AND current-cno >  25  AND cno-trend >  0  
THEN rx-state := 5; 

END; 

Fig. 7. An example AGR rule group in AFL format. 

have to be  inspected when  a  new fact arrives. As a  result, 
k  =  3  is the best number  of groups under  the non-data-dr iven 
scheme for the AGR rule system as opposed  to k =  1  under  
the data-driven scheme. 

A similar procedure is appl ied to the MMU system. Fig. 4  
shows the model  outputs for the MMU system under  the data- 
driven scheme. The  result shows that k =  4  is the best number  
of groups for X1 = 2000.  All curves in Fig. 4  are due  to 
partitions generated by  the KL graph-partit ioning algorithm 
except  for the one  labeled with initial partition which is formed 
by arbitrarily assigning rule 1  to group 1, rule 2  to group 2, 
and  so on, in a  round-robin fashion until all rules have  been  
assigned. This initial partition has  been  used by  the KL graph- 
partitioning algorithm as the starting partition. It is easily 
seen that the KL graph-partit ioning algorithm can generate 
a  more optimized k-way partition than the initial partition for 
X1 = 2000,  al though they both predict k =  4  is the best 
number  of groups for the MMU system. 

B. Experimental Results 

Fig. 5  compares the model  outputs with the experimental 
results for the AGR system with the y-coordinate represent ing 
the performance ratio between the one-group case and  the 
k-group case with the z-coordinate varying k from 1  to 7. 
This experimental result is obtained by  encoding the AGR 
rules in the form of Activation Framework Language  (AFL) 
rule groups based  on  the output generated by  the optimizing 
rule-grouping algorithm and  having the AFL translator [9] 
automatically translate them into groups of C program modules 
incorporating the data-driven mechanism as descr ibed in [8]. 
Figs. 6  and  7  show an  instance of an  AGR rule group 
consisting of 4  rules encoded  in CLIPS and  APL formats, 

respectively. These translated C program modules (with each  
module corresponding to a  rule group) are subsequent ly  l inked 
with test modules and  the Activation Framework For C Lan-  
guage  (AFC) run-time libraries into one  executable program. 
To  ensure that no  injected data are lost, the times at which data 
are injected into the system are manual ly adjusted (separately 
for each  k value) in the input file such that the execut ion 
order of rules is repeated, e.g., rule 2  first, fol lowed by rule 
6  and  then by  rule 3, etc. The  times required for the AGR 
system to output an  expected sequence of logging records in 
the output file are measured for all k  values and  are used  as  
the performance standard with which the model  outputs are 
compared.  It was observed that, including the disk operat ion 
overhead required to inject and  log the data, 7.19 s are needed  
for seven groups, 3.3 s are needed  for two groups, and  2.3 s 
are needed  for one  group for the expected execut ion order to 
be  observed.  

Fig. 5  shows that, for the data-driven scheme, the model  
outputs correlate well with the experimental results. The  result 
that one  group is the best selection for the AGR system is not 
surprising because the AGR system consists of only seven 
rules and  therefore the rule-level overhead is not significant 
when  compared with the process-level overhead,  especially 
when  the data-driven mechanism is utilized. However,  for 
a  system of moderate size, e.g., the MMU system with 92  
rules, one  group is not necessari ly the best selection. As the 
the number  of rules increases, the rule-level overhead also 
increases significantly, especially when  all 92  rules are put 
into one  group. As a  result, for the MMU system, k =  4  
becomes the best selection. 

VI. SUMMARY 

W e  have developed a  model  for evaluating rule grouping on  
a  real-time expert  system architecture character ized by  event- 
dr iven schedul ing and  message-passing.  Based on  the model, 
we derived the system performance equat ion and  developed 
an  optimizing rule-grouping algorithm utilizing the KL graph- 
partitioning heuristic for k-way partitioning the rule system 
and  for optimizing the system performance. Our  results show 
that the best k-way partition is a  tradeoff between the rule- 
level and  process-level overheads:  if the rule-level overhead 
dominates the process-level overhead (e.g., when  there are a  
lot of rules, or a  lot of instructions per  rule, and/or the non-  
data-driven mechanism is used),  a  high number  of groups is 
favored; conversely, if the process-level overhead dominates 
the rule-level overhead (e.g., each  rule is simple) then a  low 
number  of groups is favored. Using The  Activation Framework 
as  an  example architecture, we demonstrated the applicability 
of the model  by  compar ing the model  outputs with empirical 
results for the AGR and  MMU knowledge bases.  

Some possible future research directions include a) inves- 
tigating whether an  unbalanced k-way partition can perform 
better than a  balanced k-way partition by  refining the model  to 
accommodate groups of different size; b) refining the model ing 
of the data-driven mechanism by considering the overhead 
required for execut ing different conflict resolution algorithms; 
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and c) developing and validating a model for real-time expert 1141 
system architectures with multiple processors. 
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