
IEEETRANSACUONSON KNOWLEDGE ANDDATAENGINEERING,VOL,6,NO,6,DECEMBER 1994 883

Performance Evaluation o f Ru le Grouping on
a Rea l-T ime Expert System Architecture

Ing-Ray Chen, Member, IEEE, and Bryant L. Poole

Abstract- This paper uses a Markov process to model a
real-time expert system architecture characterized by message
passing and event-driven scheduling. The model is applied to
the performance evaluation of rule grouping for real-time expert
systems running on this architecture. An optimizing algorithm
based on Kernighan-Lin (KL) heuristic graph partitioning for
the real-time architecture is developed and a demonstration
system based on the model and algorithm has been developed
and tested on a portion of Advanced GPS Receiver (AGR) and
Manned Maneuvering Unit (MMU) knowledge bases.

Index Terms-Expert systems, real-time architectures, Markov
models, performance, rule-based systems, rule grouping, graph-
partitioning algorithms.

I. INTRODUCTION

T HE INCORPORATION of rule-based systems in real-
time control systems has emerged as a state-of-the-art

demand in recent years [11, [2], [111. One central issue
is how to make expert systems real-time, that is, how to
ensure that the timing and functional requirements of expert
systems are satisfied. This issue is interesting mainly because
the exponential search time behavior exhibited by rule-based
expert systems makes them difficult to apply to real-time
applications.

One strategy for using expert systems in real time involves
the Maintenance System for AI Knowledge Bases (SKRAM)
[7]. SKRAM uses a real-time expert system architecture, called
the Activation Framework (AF) [6], to support a dynamically
prioritized, message-based, distributed, real-time Ada run-time
environment. Under SKRAM, the user can specify groups of
expert system product ion rules using SKRAM’s Activation
Framework Language (AFL) syntax, or expert system shells
supported by SKRAM, such as the C Language Integrated
Production System (CLIPS) [S] and the Automated Reason-
ing Tool (ART) [171. These user-specif ied rule groups are
automatically translated by SKRAM’s translator into efficient
Ada run-time processes (with each process corresponding to a
rule group) which communicate with each other via message-
passing. To facilitate real-time computing, the priorities of
these rule groups are dynamically recomputed as follows:
whenever a new fact is generated and sent from one rule group
to others during run time, the priority of each receiving rule

Manuscript received September 23, 1991; revised July 9, 1992. This work
was supported in part by the AFOSR under the 1991 Summer Research
Program and the National Science Foundat ion under Grant CCR-91108 16.

I.-R. Chen is with the Institute of Information Engineering; National Cheng
Kung University; No. 1, University Road; Tainan, Taiwan ROC.

B. L. Poole is with the IBM Federal Sector, Boulder, CO 80301 USA.
IEEE Log Number 94 133 16.

group is calculated as a function of the global importance
of the rule group and the sum of the important levels of all
pending messages received by the rule group. Then the rule
group having the highest priority will be scheduled to run next.
The effect of this event-dr iven schedul ing mechanism is that it
guarantees that the most important process (or rule group) will
a lways be execut ing at any time, thereby guaranteeing timely
responses to the evolving real-time environment. Furthermore,
since a message is only sent to relevant rule groups instead
of all rule groups when a new fact is generated, this real-time
architecture also possesses an intelligent matching capability
similar to that of the Rete algorithm [4], except that a dis-
tributed strategy, rather than a central ized one, is adopted for
managing the pattern matching process. In the extreme case
when only one rule is al located to a group, the communicat ion
network connect ing all the groups is itself like a Rete network
[91.

This real-time expert system architecture, however, has a
discernible process-level overhead for carrying out the event-
dr iven schedul ing. First, the host processor is interrupted to
determine the most important process every time a message
is del ivered from one process to another process, or whenever
an I/O event occurs. (Note: a message is sent carrying the I/O
information when an I/O event occurs). Second, if the currently
execut ing process indeed becomes less important than some
other process, then the operat ing system must perform a
context switch to allow the most important process to run.
This introduces substantial overhead because the processor is
optimized to compute with register and cache data, which are
lost in a context switch.

This issue is further complicated by a rule grouping which
allocates rules to separate groups. If each rule is al located
to a separate group, then the process-level overhead within a
processor will be significant because the real-time operat ing
system has to deal with a large number of processes since
each group is a separate process. On the other hand, if many
rules are al located to a group, then, a l though the process-level
overhead is reduced (because there are fewer processes), the
overhead required for schedul ing rules within a single process
may be significant because a similar mechanism (e.g., the
Rete algorithm) has to be appl ied for schedul ing the execut ion
of rules within a group, thus introducing a lot of system
maintenance overhead for keeping track of which rules are
ready and which rule should be fired, etc. Both overheads, one
at the process level and the other at the rule level, degrade
the performance of the system since they increase the time
required for firing product ions rules. Therefore, the optimizing

10414347/94$04OO 0 1994 IEEE

884 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6. NO. 6, DECEMBER 1994

rule grouping should balance these two overheads, thereby
minimizing the total system overhead. It should be noted that
while the AF architecture also allows rule groups to run on
separate processors to increase product ion parallelism (similar
to that in [lo]), the paper will only focus on the process-
level and rule-level overheads which exist in a uniprocessor
real-time system.

Current research investigations of rule grouping for expert
systems [12], [16] are not tied in with real-time architectures
and thus do not consider this design tradeoff. The basic
approach of these rule grouping algorithms is to select a
distance metric between each pair of rules and, after allocating
each rule to a separate group, iteratively merge groups with
the minimum inter-group distance until a stopping condit ion
is met. These algorithms stop either after a predetermined
number of groups is obtained [16] or the inter-group dis-
tance between the next two groups to be combined is no
longer positive [12]. These rule-grouping algorithms are not
applicable to expert systems running on real-time architectures
because there is no provision for balancing the process-level
and rule-level overheads.

Another class of algorithms [3], [131, [151 deals with a more
general graph-partit ioning problem as follows: given a graph
G with costs on its nodes and edges, partition the nodes of
G into k subsets of specif ied sizes, ~1, ~2,. ‘. , Sk, so as to
minimize the total cost of the edges cut. The problem can be
related to rule grouping as follows: a) each node corresponds
to a rule with its cost proport ional to the size of that rule; b)
each edge going from rule i to rule j is ass igned a cost of one
if rule j uses a fact generated by rule i, or zero otherwise; and
c) minimizing the total cost of the edges cut when the graph
is partit ioned into Ic subsets of specif ied sizes corresponds
to minimizing the message flow between these k subsets,
thereby reducing the process-level overhead. Therefore, for a
selected (Ic, ~1, sz, . . , Sk), these graph-partit ioning algorithms
may be utilized as subrout ines to optimize the performance of
the system since they produce partitions that will minimize
the process-level overhead. The quest ion that remains is how
to determine the best (Ic, ~1, ~2,. . . , Sk). Our approach is
first to use model ing techniques, rather than experimental
evaluation (which is more laborious and expensive) to capture
the essential characteristics of the real-time architecture, taking
into account the tradeoff between the rule-level and process-
level overheads. Under this methodology, a quantitative model
is constructed, it is parameter ized to reflect the selection of
(k Sl,S2,‘.., Sk) under study utilizing a graph-partit ioning
algorithm as a routine, and then the model is evaluated to
determine the performance of the system under the selection.
Finally, the model is val idated and verified by compar ing
the model outputs with per formance measures obtained from
empirical data.

The purpose of this paper is to estimate the performance
of various rule groupings of a real-time, rule-based system.
Thus a system can be optimized using the appropriate parti-
tioning. While current research is helpful in developing this
rule-grouping algorithm, the research does not address key
characteristics specific to the AF architecture. In particular, no
existing rule-grouping algorithm can balance the tradeoff be-

tween rule-level and AFO-level overheads. Section II presents
a Markov model for estimating the performance of expert
systems running on this real-time architecture with a single
processor. The model accounts for the process-level and rule-
level overheads. A performance equat ion is der ived from the
Markov model and is used to estimate the performance of an
expert system which has been partit ioned and optimized by a
rule grouping algorithm. Section III d iscusses techniques for
obtaining the model parameters. In Section IV, an optimizing
rule-grouping algorithm is developed using the Kemighan-Lin
(KL) algorithm as its core. Section V demonstrates the fea-
sibility of the model and algorithm by applying them to
the Advanced GPS (Global Positioning Systems) Receiver
(AGR) [7] and the Manned Maneuver ing Unit (MMU) [14]
knowledge bases. Finally, Section VI summarizes the paper
and outl ines some future research areas.

II. MODEL
In the construction of the model for describing the run-

time behavior of expert systems running on the real-time
architecture, we first distinguish the following two classes
of processes: a) Application Code Objects (ACO’s), each of
which corresponds to a group of product ion rules, and b) Sys-
tem Code Objects (SCO) which perform I/O functions such as
sensing, actuating and displaying. W e assume that there exist
I /O-processing devices for interfacing with sensors, actuators,
and display devices (as real-time systems should have). The
host processor runs ACO’s most of the time, but can be
temporari ly interrupted by an I/O-processing device when an
I/O event occurs. In the latter case, the SC0 corresponding to
the particular I/O event will be scheduled to run.

W e use a continuous-t ime Markov model’ to descr ibe the
real-time architecture. W ith the Markov model, the system
execut ion is considered as a progression through the following
states:

l ACO: in this state an AC0 is scheduled to run. The AC0
may perform useful work, e.g., firing a rule, generat ing
some new fact, etc., or it may use the CPU time for the
rule-level overhead which includes determining a) which
rules are ready by applying a match algorithm such as the
Rete algorithm for saving the states of the rules within a
single ACO; and b) which rules should be fired among
all ready rules.

l OS: in this state, the operat ing system takes control. This
state models part of the process-level overhead due to
event-dr iven schedul ing. The operat ing system gets con-
trol because the currently execut ing AC0 sent a message
(i.e., new fact) to other processes. The CPU power is
used to deliver the message, calculate the priorities of
the receiving ACO’s, and compare the priorities of the
sending and receiving ACO’s to determine which AC0
should be scheduled to run next.

‘A continuous-time Markov chain is a stochastic process {s(t), t > 0}
taking on values in the set of nonnegat ive integers such that the conditional
distribution of the future state ,Y(t + .s) given the present S(S) and the past
S(U), 0 5 u < .s, depends only on the present and is independent of the past
states [18).

CHEN AND POOLE: RULE GROUPING ON A REAL-TIME EXPERT SYSTEM ARCHITECTURE 885

l SW: in this state, the operating system performs a context
switch by saving the states of the sending AC0 (or the
AC0 which just returned to AF) and allocating the CPU
to the AC0 having the highest priority. This state models
part of the process-level overhead.

. SCO: in this state, an input or output SC0 takes over due
to an I/O event (viz, an alarm event). The CPU power
is used for performing a) a context switch to transfer the
control to the SC0 corresponding to the I/O event; b)
an I/O write or read operation; and c) a context switch to
transfer the control to the AC0 having the highest priority
after the I/O operation is done. This state also models part
of the process-level overhead.

l T: the termination state.
Fig. 1. shows the model which is constructed as follows:
1) When the system is in the AC0 state, the CPU is

used by an AC0 for processing an arriving fact, i.e.,
determining which rules are ready to fire due to the
arrival of the new fact, and selecting one to fire among
the set of ready rules, if any. Firing a rule may generate
new facts which may a) instantiate other rules within
the same ACO, thus requiring the AC0 to process the
new fact again, or b) instantiate rules in other ACO’s,
thus requiring the AC0 to send a message carrying
the fact to other ACO’s. The time required for the
AC0 to process an arriving fact is assumed to be
exponentially distributed with a constant rate X. The
probability of termination, executing the same AC0
again, and returning the control to the operating system
when a new fact is generated are q, r, and 1 - r - q
(or r - q), respectively. In Fig. 1 these correspond to the
horizontal transition at rate qX, self-looping transition at
rate rX (not shown in the figure), and diagonal transition
at rate (T - q)X, respectively.

2) When the operating system takes over (i.e., in state OS),
the time that is required for the operating system to
deliver a message from the sending AC0 to another
AC0 and to re-compute the importance levels of these
two ACO’s to determine which one has the higher
priority is assumed to be exponentially and randomly
distributed with a constant service rate p. Assume that
the average number of AC0 connections for each rule
having at least one AC0 connection is m. Then, the
overall rate for the operating system to deliver a message
and re-compute the importance levels of all involved
ACO’s is p/m. Further, assume that with probability
p, the control will be transferred to a new ACO. Hence,
with probability p the sending AC0 will retain the CPU.
These events correspond to the diagonal transitions at
rate (pp)/m if the CPU is allocated to a new ACO, or
at rate @)/m if the CPU is retained by the sending
ACO, respectively.

3) When the operating system allocates the CPU to a
new ACO, the system is in the SW state. The CPU
time is used for performing a context switch. The
time for performing a context switch is assumed to be
exponentially and randomly distributed with a constant

(‘-4) /,“” % A

Fig. 1. The
processor.

Markov model for the real time architecture single

context-switching rate 8. After the context switch is
performed, the CPU is allocated to a new AC0 and the
system is again in state ACO. This event corresponds
to the horizontal transition at rate 8.

4) If the list of SCO’s to be checked by the operating
system at regular intervals exists, then state SC0 exists.
In this case, whenever an I/O event occurs, the control is
passed (by a context switch) to the SC0 corresponding
to the I/O event. The interarrival time for I/O events is
assumed to be exponentially distributed with a constant
alarm rate 0. The event corresponds to the vertical
transition at rate 0 from state AC0 to state SC0 .
When the system is in state SCO, the time required for
the system to return to state AC0 is assumed to be
exponentially distributed with a constant rate cy. This
quantity includes the time required for SCO’s to read
from or write to some buffer in I/O-processing devices
as well as that required for performing a context switch
twice: one to switch from state AC0 to SC0 and
one to switch back from SC0 to AC0 . This event
corresponds the vertical transition at rate cr from state
SC0 to state ACO.

5) The system continues to perform state transitions until
it reaches state T.

The performance measure of interest in this model (Fig. 1)
is the mean time to termination (MTTT), i.e., the mean time
required for the system to transit to state T from state ACO.
This measure reflects the average time required for a rule
system to terminate. Thus, the design goal in this case is to
minimize the MTTT.

A simplifying model is the case in which a rule system
never terminates (e.g., it runs an infinite loop in an embedded
process-control system). This is shown in Fig. 2. In this case,
the performance metric of interest is the effective production
rate, namely, XP~co(c0). This performance metric measures
the number of facts generated (and thus correspondingly the
number of rules fired) per time unit. This performance metric
accounts for the tradeoff between the process-level and rule-
level overheads by considering the proportion of time the
system stays at state AC0 (which accounts for the process-
level overhead) and the rate at which the system fires a rule
given that the system is in state AC0 (which accounts for

886 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

the rule-level overhead). An important observation is that x
decreases as more rules are grouped within one AC0 because
more time is spent within an AC0 for handling a new arriving
fact over a larger pattern matching network.

This performance metric can be computed by first solving
for Pact from the following set of linear equations
describing the Markov model in Fig. 2 [181:

pACO(m) +&CO(m) + pSW(m) + pOS(m) = 1

&h(m) = f=ApACO(m)

@PSW(~> = p;Pos(o)

aPSCO(m) = aPACO(m).

This yields

and therefore the equation for the effective production rate is
given by

x, =
x

1+0; mXr k*’ (1)
a CL 0

This performance equation has two important implications.
1) For a balanced k-way partition (e.g., k = 1 means

that there is only one group), the system performance
increases as X, 8, ~1, or (Y increases, and as f, p, m, or
cr decreases. Since 6, p, CY, and o do not change from
one partition to another partition, a graph-partitioning
algorithm for generating the balanced k-way partition
should minimize r, p, and m and maximize X in order
to optimize the system performance.

2) To improve the performance of the system, it is desirable
to decrease F, p, and m by selecting a lower k value (thus
minimizing the process-level overhead); however, this
would decrease X (i.e., increasing the rule-level overhead
as there are more rules in a group) which will adversely
degrade the system performance. Therefore, the goal
is to select a best balanced k-way partition which can
balance these two opposite effects.

In light of these implications, the optimizing rule grouping
algorithm should a) utilize a graph-partitioning algorithm to
minimize r, p, and m and maximize X for a selected k value;
and b) vary k from 1 to N so as to select the best balanced
k-way partition (from implication 2). Section IV will present
an optimizing rule grouping algorithm based on this approach.

III. PARAMETERIZATIONOF MODEL
Equation (1) can serve as a basis for predicting the per-

formance of the system when all parameters are quantified
after a particular graph-partitioning algorithm has been applied
to partition the production rules into groups. Some of these
parameters are machine-dependent but insensitive to the use
of graph-partitioning algorithms. These are called statistically
measurable parameters. Others are sensitive to the utilization
of graph-partitioning algorithms and the way a group processes
a new fact. These are called computable parameters. This

OS
rx Ect 82 m

A

n-4

co e SW

u a It
9-l
SC0
w

Fig. 2. The Markov model with no termination state.

section discusses techniques for quantifying these two types
of parameters using an 80386-based machine as an example.

A. Statistically Measurable Parameters

Statistically Measurable Parameters include 8, CL, CJ, and IX
These are discussed next.

l 0 denotes the average number of times per second the
CPU is capable of performing a context switch (dedicated
for that purpose). For an 80386 machine loaded with
AF, for example, the average time required for the AF
operating system to perform a context switch is about 2
ms [19]. Therefore, 0 M 500 s-l.

l ,u denotes the average number of times per second the
CPU is capable of a) delivering a message from an AC0
to another AC0 and (b) re-computing the priorities of
these two ACO’s to determine which one has the higher
priority. For an 80386 machine loaded with AF, the
average time required for the AF to perform this service
is about 1.5 ms [19]. Therefore, p M 700 s-l.

l 0 denotes the average number of times per second the
execution of the rule system is interrupted by I/O events.
For example, if it is measured that there are about five
data-sensing and five display operations per second, then
0 = 10 s-l.

l Q denotes the average number of times per second the
CPU is capable of performing I/O activities, given that
every time an I/O activity occurs, the execution of the rule
system is interrupted. Since the time required to service
an I/O event includes the time for the system to switch
back and forth between states AC0 and SC0 as well as
that required to service an I/O operation,

1
ck!M

P+$+D

with D representing the average time required for an SC0
to input/output the data to/from an I/O-processing device.
D is a statistically measurable quantity, e.g., D z 20 ms
for an 80386-based disk read/write operation.

B. Computable Parameters
Computable parameters include T, m, p, and X. These

parameters are sensitive to the use of graph-partitioning algo-

CHEN AND POOLE: RULE GROUPING ON A REAL-TIME EXPERT SYSTEM ARCHITECTURE 887

rithms. In addition, X is sensitive to the Rete-like mechanism
with which each rule group (or ACO) processes a new arriving
fact.

W e first define some data structures used by graph-
partitioning algorithms. Then, we explain how to com-
pute these parameters using these data structures. Let
A[1 . . . N, 1. .. N] be the adjacency matrix that shows the
connectivity of product ion rules, i.e., aii = 0 for all i
and a;j = 1 if rule j uses a fact generated by rule i; 0
otherwise. Let B[l . . . N] be the output partition vector of a
particular graph partitioning algorithm which has been appl ied
to partition the rule product ion rules into k ba lanced groups,
such that if b[i] = j then rule i is al located to the jth group.
In the following we discuss techniques for comput ing T, p,
m, and X.

l T denotes the probability that when an AC0 generates a
fact, the fact will instantiate rules within the same ACO,
rather than instantiating rules in other ACO’s. W e can
approximate r by

G TX---Z
C

L L
*=I ,=I

b[j]=b[i]
Uij

5 Eaij
i=lj=l

(2)

where C stands for the total number of connect ions in the
connect ion matrix and Ci stands for the total number of
internal connect ions for all k groups after the partition.
When there are fewer groups, r -+ 1 and, conversely,
when there are many groups, T + 0. For a given k, a
graph partitioning algorithm should maximize r (thereby
minimizing T) as much as possible to reduce the process-
level overhead.

l m denotes the average number of external groups that
a rule connects to. This can be estimated in three steps:
a) computing, for each rule having at least one external
connect ion, the number of groups it connects to, b)
accumulat ing the total count for all such rules, and c)
dividing the result in b) by the number of all such rules.
Hence, the average number of external AC0 connect ions
per rule is an output of a graph partitioning algorithm.
Obviously, m increases as the number of groups increases
and, as a result, the process-level overhead involved for
sending a message from an AC0 to all its connect ing
ACO’s increases, a behavior which has been accounted
for by the Markov model.

l p represents the probability that the operat ing system
will perform a context switch after servicing a message
delivery. If we assume that, when servicing a message
delivery for an ACO, the operat ing system inspects each
connect ing AC0 in succession to determine whether or
not the CPU should be switched to that connect ing AC0
with a success probability p,, then the probability that
the operat ing system will perform a context switch is
proport ional to m as follows:

P = FPoCl - pay.
i=l

(3)

This approach gives a reasonable of p since it can well
explain why p M 1 when there are many groups.

l X denotes the rate at which a new fact is generated by
a rule group. The magni tude of this parameter largely
depends on how many rules there are in each group. For
that purpose, let Xj denote this rate when there are j rules
in each group. Furthermore, let Xj relate to Xr (the new
fact generat ion rate when each AC0 contains exactly one
rule) by the following equation:

Xl -IL--
4

- 77j

where qj s tands for the number of rules that have to be
processed by a group containing j rules when a new
fact arrives. The advantage of relating Xj with Xr is
that Ar is a measurable quantity and therefore Xj can
be computed from Xr as long as ~j can be estimated
properly. For example, for 80386 machines loaded with
AF with 1-Mflops processing capability, if each rule
contains approximately 500 machine language (floating-
point) instructions, then

Xl z 2000 s-l.

To properly estimate qj, we distinguish the following two
mechanisms with which each group handles a new fact.

Non-Data-Driven Mechanism: In this scheme, all j rules
within a group are encoded as a succession of if - then
code blocks. Therefore, the processing time required to
generate a new fact is about j t imes as large as when
there is only one rule per group because all j code
blocks must be examined before one is selected to fire.
Under this non-data-dr iven scheme

Consequent ly, for a ba lanced k-way partition, since
j = N/k

x=x11;
N

for non-data-dr iven mechanism

where N is the number of rules in the rule system.
Data-Driven Mechanism: In this scheme, each group
maintains a pattern matching network (e.g., consisting
of RTGO, BFO, and RO data structure objects in [8])
with a size proport ional to the number of rules in
each group. When a new fact is processed, instead of
inspecting all j rules, only a port ion of the rules in the
pattern matching network is inspected before the most
important rule is selected to run. The number of rules
that are inspected when a new fact is processed, i.e.,
rlj, may be estimated by analyzing the following two
cases: a) if the fact was generated by a rule within the
same group (which occurs with probability r), then qj
is the average number of internal connect ions per rule;
b) if the fact was generated by a rule in another group
(which occurs with probability T), then vj is the average
number of incoming connect ions per external rule, a
quantity that is equal to the average number of external,

888 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

No. of Rules Fired Per Sec.
‘I

700 -

4 XI = 4000
0 = = 2000
. n = 1000
+ ” = 250
0 ” = 100

Fig. 3. Model outputs for the AGR system under the data-driven scheme.

Q A, = 5000

No. of R&s Fired Per Sec.

t aq

0 n-= 2000
. ” = 1000
0 ” = 500

1GO

t
a + X1 = 2000, initial partition

0
I I I I 1 I ,

2 4 6 8 10 12 14k

Fig. 4. Model outputs for the MMU system under the data-driven scheme.

outgoing connect ions per rule in the rule set divided by
k - 1. (Note that when there is only one group, i.e.,
k = 1, case b) does not contribute to 77j since r = 0.)
Thus under the data-driven scheme, when k > 1

(
G ce 71j=max l,rxT+Tx N(k-I)

)
where Ci stands for the total number of internal connec-
tions for all k groups as def ined in (2) and C, = C - C;,
standing for the total number of external connect ions.
(C is the total number of connect ions of the input
connectivity matrix.) The max operator is used to make
sure that at least one rule will be affected when a new
fact is processed. In summary, for a ba lanced k-way
partition

f ” NX1 ifk=l
A=

tit
Xl

max (I,++-) otherwise

for data-driven mechanism.

IV. THE OPTIMIZING RULE GROUPING ALGORITHM

In this section we present an optimizing rule grouping
algorithm with a goal of determining the best ba lanced k-way
partition for optimizing the system performance.

Input: adjacency matrix A [l . . . N, 1. . . N], 8, p, u, X1, D,
and p,.

4 -

3 -

2 -

1 -

o Model
l Expetiment

I I I I I I J

1 2 3 4 5 6 7k

Fig. 5. Model outputs versus experimental results for the AGR system.

Output: the best ba lanced k-way partit ion vector (I? [l . . N.])
Steps:

1) determine N from the input adjacency matrix,
2) set k = 1,
3) while k 5 N do

a) parameter ize r, p, m, and X based on the
balanced k-way partition generated by the KL
algorithm,

b) compute the performance metric of the system
using (I),

cl @the system performance is the greatest so far,
record this value; also record the best k and
the resulting k-way partition in the variable
B[l . . . N],

d) k=k+l.

4) output the best k and B[l ’ . N].

This optimizing rule grouping algorithm utilizes the KL
algorithm [13] as a subrout ine for k-way partitioning rules so
as to minimize the total external cost on edge cuts, thereby
minimizing r, p, and m and, consequent ly, optimizing the
system performance. W ith k varying linearly from 1 to N,
this optimizing algorithm runs about 10 s for a rule system of
size 7 (e.g., AGR) and about 5 min for a rule size of 92 (e.g.,
MMU) on an 80386-based machine loaded with AF.

V. EXAMPLES

In the following, the optimizing rule grouping algorithm is
appl ied to the AGR and MMU knowledge bases. The objective
is to identify the best k-way partition which can maximize
the effective product ion rate (i.e., system performance) as a
function of Al. Both systems run on an 80386-based ma-
chine loaded with AF with which the following performance
measurement data are observed:

:;
x 700 s-l;
x 500 s-1;

CHENANDPOOLE:RULEGROUPINGON AREAL-TIMEEXPERTSYSTEMARCHITECTURE 889

(defrule jamming-levels-increasing
(rx~state 5)
(current-cno ?cno)
(cm-trend ?trend)
(test(< ?cno 25))
(test(< ?trend -1))
(jamming-threat 1)
(jamming-threat-trend 1)

=>
(assert(rr-state 3))

" jamming increasing -> state 3"

;; "as (?asv cllrrent~cno ?cno)
;; "as (?asv &o-trend ?trend)
;; cno < 25 db-hz
;; cno trend < -1 db-hz/iO sets

(dafrule signal-decreasing
(rrstate 5)
(current-cno ?cno)
(cno-trend ?trend)
(test(c ?cno 20))
(test(< ?trend 0))

=>
(assert(rx-state 3))

“cno decreasing -> state 3"

;; was (?asv current-cm ?cno)
;; was (?asv cno-trend ?trend)
;; cno < 20 db-hz
;; cno trend < 0 db-hz/iO sets

(defruls dynamics-levels-increasing "dynamics increasing -> State 3"
(rr-state-recovery 5) ;; vas (rx-state 5 ?)
(acceleration ?a&)
(jerk ?j)
(test(> ?acc 3))
(test(> ?j 10))

=>
(assert(rx-state 3))

1

(d&rule cno-meas-improving
(rx-state 3)
(currant-cno ?cno)
(cno-trend ?trend)
(test(> ?cno 25))
(test(> ?trend 0))

=>
(assert(rx-state 5))

)

Fig. 6. An example AGR rule group in CLIPS format.

TABLE I
~.w.p AND X ASA FUNCTIONOF li FOR THE AGR SYSTEM

[kJT ImJp) X (data-driven) X (non data-driven)

:;
M 10 s-l;

1 x 2000 s-l;
l D M 0.02 s;
00. M 1

?+$+D = 35 s-1.

A. Model Outputs
By applying the KL algorithm on the AGR rule system, it

is observed that r, m, p, and X (under data-driven as well
as non-data-driven scheme) are related to lc (1 5 k 5 7) as
shown in Table I when X1 = 2000.

Fig. 3 shows that for the AGR knowledge base when the
data-driven scheme is used to process arriving facts, the best

;; acceleration > 3 g
;; jerk > lOg/sec

"cno meas available => tracking svs"

;; YQS (?asv current-cm ?cno)
;; was (?a~ cno-trend'?trend)
;; cno > 25 db-hz
;; cno trend > 0 db-hz/lO set

value of k depends on the magnitude of Xi (which reflects
the degree of the rule-level overhead). The figure shows that,
if X1 is in the same order of magnitude as 6’ or p (which
occurs when each rule contains many instructions), then the
best partition favors a high Ic. Conversely, if X1 is an order of
magnitude higher than 0 or ~1 (which occurs when each rule
contains only a few instructions), then the best partition favors
a low k. The physical interpretation is as follows: in the latter
case the time required for the operating system to schedule
ACO’s is an order of magnitude longer than that required for
an AC0 to process an arriving fact, select a rule, and fire
the rule. Consequently, the system performance is improved
by shifting the time-consuming scheduling work from the
operating system to within an ACO. An important observation
from this figure is that, for each X1 value, there exists a k value
under which the system performance is maximized. Since it
is estimated A1 z 2000 for the AGR knowledge-base system,
our model suggests that the best partition should group all
rules together when the data-driven scheme is used.

Remark: We also observed a similar trend for the case when
the non-data-driven scheme is used to process arriving facts,
except that the latter case requires a higher value of X1 for
the best partition to favor a low k value because more rules

890 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO, 6, DECEMBER 1994

RCO example-rule-group IS
DECLARE

acceleration IS INTEGER;
current-cno IS INTEGER;
cno-trend IS INTEGER;
jamming-threat IS INTEGER;
jamming-threat-trend IS INTEGER;
jerk IS INTEGER;
rx-state IS INTEGER;
rx-state-recovery IS INTEGER;

RECEIVE acceleration,current_cno.cno,cno~trsnd,jsmming~tkrsat,
j~ing_threat_trend,jerk.rx_state,rx-stats-recovery;

SEND rx-state;

BEGIN
-- jamming levels increasing

IF rx-state = 5 AND current-cno < 25 AND cno-trend < 88
AND jamming-threat = 1 AND jamming_threat-trend = 1

THEN rx-state := 3;
-- signal decreasing

IF rx-state = 5 AND current-cno < 20 AND cno-trend < 0
TEEN rx-state := 3;

-- dynamic levels increasing
IF rx-state-recovery = 5 AND acceleration > 3 AND jerk > 10
TEEN rx-state := 3;

-- cno meas improving
IF rx-state = 3 AND current-cno > 25 AND cno-trend > 0
THEN rx-state := 5;

END;

Fig. 7. An example AGR rule group in AFL format.

have to be inspected when a new fact arrives. As a result,
k = 3 is the best number of groups under the non-data-dr iven
scheme for the AGR rule system as opposed to k = 1 under
the data-driven scheme.

A similar procedure is appl ied to the MMU system. Fig. 4
shows the model outputs for the MMU system under the data-
driven scheme. The result shows that k = 4 is the best number
of groups for X1 = 2000. All curves in Fig. 4 are due to
partitions generated by the KL graph-partit ioning algorithm
except for the one labeled with initial partition which is formed
by arbitrarily assigning rule 1 to group 1, rule 2 to group 2,
and so on, in a round-robin fashion until all rules have been
assigned. This initial partition has been used by the KL graph-
partitioning algorithm as the starting partition. It is easily
seen that the KL graph-partit ioning algorithm can generate
a more optimized k-way partition than the initial partition for
X1 = 2000, al though they both predict k = 4 is the best
number of groups for the MMU system.

B. Experimental Results

Fig. 5 compares the model outputs with the experimental
results for the AGR system with the y-coordinate represent ing
the performance ratio between the one-group case and the
k-group case with the z-coordinate varying k from 1 to 7.
This experimental result is obtained by encoding the AGR
rules in the form of Activation Framework Language (AFL)
rule groups based on the output generated by the optimizing
rule-grouping algorithm and having the AFL translator [9]
automatically translate them into groups of C program modules
incorporating the data-driven mechanism as descr ibed in [8].
Figs. 6 and 7 show an instance of an AGR rule group
consisting of 4 rules encoded in CLIPS and APL formats,

respectively. These translated C program modules (with each
module corresponding to a rule group) are subsequent ly l inked
with test modules and the Activation Framework For C Lan-
guage (AFC) run-time libraries into one executable program.
To ensure that no injected data are lost, the times at which data
are injected into the system are manual ly adjusted (separately
for each k value) in the input file such that the execut ion
order of rules is repeated, e.g., rule 2 first, fol lowed by rule
6 and then by rule 3, etc. The times required for the AGR
system to output an expected sequence of logging records in
the output file are measured for all k values and are used as
the performance standard with which the model outputs are
compared. It was observed that, including the disk operat ion
overhead required to inject and log the data, 7.19 s are needed
for seven groups, 3.3 s are needed for two groups, and 2.3 s
are needed for one group for the expected execut ion order to
be observed.

Fig. 5 shows that, for the data-driven scheme, the model
outputs correlate well with the experimental results. The result
that one group is the best selection for the AGR system is not
surprising because the AGR system consists of only seven
rules and therefore the rule-level overhead is not significant
when compared with the process-level overhead, especially
when the data-driven mechanism is utilized. However, for
a system of moderate size, e.g., the MMU system with 92
rules, one group is not necessari ly the best selection. As the
the number of rules increases, the rule-level overhead also
increases significantly, especially when all 92 rules are put
into one group. As a result, for the MMU system, k = 4
becomes the best selection.

VI. SUMMARY

W e have developed a model for evaluating rule grouping on
a real-time expert system architecture character ized by event-
dr iven schedul ing and message-passing. Based on the model,
we derived the system performance equat ion and developed
an optimizing rule-grouping algorithm utilizing the KL graph-
partitioning heuristic for k-way partitioning the rule system
and for optimizing the system performance. Our results show
that the best k-way partition is a tradeoff between the rule-
level and process-level overheads: if the rule-level overhead
dominates the process-level overhead (e.g., when there are a
lot of rules, or a lot of instructions per rule, and/or the non-
data-driven mechanism is used), a high number of groups is
favored; conversely, if the process-level overhead dominates
the rule-level overhead (e.g., each rule is simple) then a low
number of groups is favored. Using The Activation Framework
as an example architecture, we demonstrated the applicability
of the model by compar ing the model outputs with empirical
results for the AGR and MMU knowledge bases.

Some possible future research directions include a) inves-
tigating whether an unbalanced k-way partition can perform
better than a balanced k-way partition by refining the model to
accommodate groups of different size; b) refining the model ing
of the data-driven mechanism by considering the overhead
required for execut ing different conflict resolution algorithms;

CHEN ANDPOOLE:RULEGROUPlNGONAREAL-TIMEEXPERTSYSTEMARCHITE~URE 891

and c) developing and validating a model for real-time expert 1141
system architectures with multiple processors.

[I51

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers [I61

for their many useful criticisms and suggestions. Their detailed
comments have greatly improved the quality of the paper. The [171

authors also thank Dr. P. E. Green and his supporting staff ~181
at the Real-Time Intelligent Systems Corp., Worcester, for
providing needed help on the Activation Framework software. [191

[II
VI

[31

[41

[51

161

[71

PI

191

[lOI

[Ill

[I21

[131

m

REFERENCES

System Environment, Users Manual, AFC Version 2.6, Aug. 1991.
Worcester Polytechnic Institute, Knowledge Representation into Ada
Methodology, Project Review Meeting, May 1991.

6th Int. Co@ on Applications of AI in Eng., Oxford, UK, July 1991.
3rd IFAC Int. Workshop on AI in Real Time Control, Sonoma Valley,
CA, Sept. 1991. r Ing-Ray Chen (S’86-M’90) received the B.S. de-
E. R. Barnes, “An algorithm for partitioning the nodes of a graph” gree from the National Taiwan University in 1978,
SIAM J. Algebraic and Discrete Methods, vol. 3, no. 4, pp. 541-550, and the M.S. and Ph.D. degrees in computer science
Dec. 1982. from the University of Houston, University Park, in
C. L. Forgy, “Rete: A fast algorithm for the many pattern/many object , 1985 and 1988, respectively.
pattern match problem,” Artifcial InteN., pp. 17-37, 1982. He was an Associate Professor of Computer and
J. L. Giarratano, CLIPS User’s Guide, Artificial Intelligence Section, Information Sciences at the University of Missis-
Lyndon B. Johnson Space Center, Houston, TX, June 1988.
P. E. Green, “AF: A framework for real-time distributed cooperative ”

sippi. He is now an Associate Professor at the

problem solving,” Distributed Artificial Intelligence,Michael N. Huhns,
Institute of Information Engineering at the National

Ed. New York: Morgan Kaufmann, 1987, pp. 153-176.
Cheng Kung University, Tainan, Taiwan. His re-

P. E. Green, J. Duckworth, L. Becker, and S. Cotterill, “Maintenance
search interests are in reliability and performance

system for AI knowledge bases, Phase I-Final report: Design of the
analysis and real-time intelligent systems.

Dr. Chen is a member of ACM.

D. G. Lawler and L. J. F. Williams, “MMU FDIR automation task,”
Tech. Rep. NAS9-17650, McDonell Douglas Astronautics-Engineering
Services, Houston, TX, Feb. 1988.
C. H. Lee, C. I. Park, and M. Kim, “Efficient algorithm for
graph-partitioning problem using a problem transformation method,”
Computer-Aided Des., vol. 21, no. 10, pp. 611-618, Dec. 1989.
M. Mehrotra, “Rule groupings: a software engineering approach towards
verification of expert systems,” NASA Contract NASI-18585, Final
Rep., Feb. 1991.
W. Mettrey, “A comparative evaluation of expert system tools,” IEEE
Computer, Feb 1991.
S. M. Ross, Inrroduction to Probability Models, 4th ed. New York:
Academic Press, 1989.
“The real-time intelligent systems, ” in Activation Framework Operating

SKRAM system,” Contract F33615-90-C-1470, Feb. 1991.
P. E. Green, “A data-driven mechanism for the execution of production
rules in real-time computer based systems,” The Real-Time lnteffigent
Systems Cooperation, June 199 1.

AFL Users Manual, Version 1.5, The Real-Time Inrelligent
systems Cooperation, Aug. 1991.
A. Gupta, Parallelism in Production Systems. New York: Morgan
Kaufmann, 1987.
IFIP Working Conf. on Dependability of AI Systems, Vienna, Austria,
May 1991.
R. J. K. Jacob and J. N. Froscher, “A software engineering methodology
for rule-based systems,” IEEE Trans. Knowledge and Dara Eng.. vol. 2,
no. 2, June 1990.
B. W. Kemighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Be/I Sysr. Tech. J., vol. 49, pp. 291-307, 1970.

Bryant L. Poole received the B.M. degree in music
and the M.S. degree in computer science from the
University of Mississippi, University, MS, in 1985
and 1992.

He is an Associate Programmer at the IBM Fed-
eral Sector in Boulder, CO. His research interests
include artificial intelligence and computer music

Mr. Poole is a member of the Association of
Computing Machinery.

