

INSTRUCTOR: HONGJIE CHEN

MAY 23RD 2022

About Hongjie Chen

- Nicknamed Jeff, a doctoral student in CS
- 4 years research experience
- Time-series and Graphs
 - FUN
- Working towards my degree

My homepage: https://people.cs.vt.edu/~jeffchan/

Important Links

- Homepage: <u>https://people.cs.vt.edu/~jeffchan/teaching/</u> <u>CS4824/index.html</u>
- Piazza: <u>https://piazza.com/class/l2gnhof3rrz3ax</u>
- Class zoom: <u>https://virginiatech.zoom.us/j/89545716672</u>
- Office hour zoom: <u>https://virginiatech.zoom.us/j/2023032020</u>
- TA office hour zoom: <u>https://virginiatech.zoom.us/my/aahuja</u>
- Canvas:
 - <u>https://canvas.vt.edu/courses/151640</u> (CS 4824)

<u>https://canvas.vt.edu/courses/151551</u> (ECE 4424)

Welcome Again!

- What is Machine Learning?
- Logistics
- How to succeed in this class?

Discussion

5-C Hongjie Chen | Machine Learning

What are some machine learning applications?

Discussion

What are some machine learning applications?

For example

- The face recognition function of the camera on your phone
- Friends/News/Products/Videos Recommendation
- Hey Siri/Alexa

Definition: Machine Learning

 A computer program: learn from experience *E* with respect to some class of tasks *T* and performance measure *P*, if its performance at tasks in *T*, as measured by *P*, improves with experience *E*. (*Machine Learning, Tom Mitchell, McGraw Hill,* 1997)

For example...

Building a face recognition program

Logistic

- What this course covers: fundamental topics in Machine Learning by introducing key problems, intuitions to solutions, mathematical foundations, and realistic applications.
 - **Goal:** After this course, students should be able to understand, recognize, analyze, explain, implement, and apply the covered models for research or industrial use.

This class DOES NOT target

Teaching the most edge-cutting ML methods and models;

- Advanced Machine Learning class does
- 5000/6000 level

Teaching specific softwares or libraries for ML implemetation;

- scikit-learn
- Tensorflow, Keras, DL4J, CNTK, Pytorch, MXNet, …

Topics*

*Tentative and subject to change

- Basics of Statistical Learning: Loss functions, MLE, MAP, Bayesian estimation, bias-variance tradeoff, overfitting, regularization, cross-validation
- Supervised Learning: Decision Trees, Naïve Bayes, Logistic Regression, Kernels and Kernel Regression, Support Vector Machines, Neural Networks
- Unsupervised Learning: EM, Clustering (K-means, Gaussian Mixture)
- Graphical Models: Bayesian Networks, Hidden Markov Models
- Deep Learning: Convolutional Neural Networks, Recurrent Neural Networks, Attention and Transformer Networks, Autoencoders, Variational Autoencoders, Generative Adversarial Networks
- Reinforcement Learning: Markov Decision Process, Value Iteration, Policy Iteration, Q-Learning
- Machine Learning Applications: Time-series, Graph Machine Learning

Textbooks

- Not requried.
- Optional reference books (free available online)
 - <u>Machine Learning: a Probabilistic Perspective</u>, Kevin Murphy, MIT Press, 2012
 - <u>Pattern Recognition and Machine Learning</u>, Christopher Bishop, Springer, 2006
 - <u>The Elements of Statistical Learning</u>, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer, 2009
 - <u>Deep Learning</u>, Ian Goodfellow, Yoshua Bengio, and Aaron Courville, MIT Press, 2016
 - <u>Reinforcement Learning: An Introduction</u>, Richard S. Sutton and Andrew G. Barto, MIT Press, 2018

Prerequisites

- Ability to deal with abstract mathematical concepts.
- Probability and Statistics (Get a reference book)
 - Basic concepts of probability including random variables, expectation, chain rule conditional distribution, Bayes rule, likelihood, prior probability, densities, marginalization, moments, etc.
- Calculus and Linear Algebra (Get a reference book)
 - Matrix multiplication, multivariate derivatives, chain rule.
- Algorithms
 - Basic data structures, complexity analysis.
- Programming
 - Heavy on Python, but not hard :)

Homework Assignments and Grading

HW assignments

- 5 individual coding assignements (19% x 5 = 95%).
- Python, Jupyter Notebook, (Google Colab)
- Late submission with no penalty, one ticket, once used it's gone
- Late submission with panlty (50% off if submitting before next midnight), otherwise 0pt
- For late submission, students must reach out to the instructor Hongjie Chen
- HW 5 must be submitted on time
- *Start early! Due at ET 11:59pm Last minute submission
- Class participation (5%)
 - Contribute to discussions on Piazza
 - Engage in class: Q & A
- Final letter grade
 - A: 93.3%–100%, A-: 90.0%–93.3%, B+:86.6%–90.0%, B:83.3%–86.6%
 - B-:80.0%-83.3%, C+:76.6%-80.0%, C:73.3%-76.6%, C-:70.0%-73.3%
 - D+:66.6%-70.0%, D:63.3%-66.6%, D-:60.0%-63.3%, F:00.0%-60.0%

Policies

- Regrading Request
 - If you find a grading error, email TA within 3 days of the grade release day.
- Honor Code
 - All assignments are individual assignments
 - Zero-tolerance on plagiarism. Honor Code Council.
- Principles of Community
 - Because the course will include in-class discussions, we will adhere to Virginia Tech Principles of Community.
- Accessibility
 - If any student needs special accommodations because of any disabilities, please contact the instructor during the first week of classes.
 - Such students are encouraged to work with The Office of Services for Students with Disabilities to help coordinate accessibility arrangements.

Stay in touch

- Office hours*: Tuesday 10:00 am noon at Personal Zoom
 TA office hours: Wed & Fri 3:00 pm 4:30 pm
- Piazza: <u>https://piazza.com/class/l2gnhof3rrz3ax</u>
 - Must not post answer
- Email: <u>jeffchan@vt.edu</u>

Suggestions

- Take notes, recommend writing them down
- Don't hesistate to ask for clarification, in class or after class
- Start doing homework early
- Preview and review

Have questions? Ask.

Todo

Check the course webpage: <u>https://people.cs.vt.edu/</u> ~jeffchan/teaching/CS4824/index.html

Login to Piazza: <u>https://piazza.com/class/l2gnhof3rrz3ax</u>

Let me know if you have any questions

