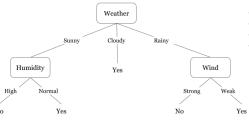


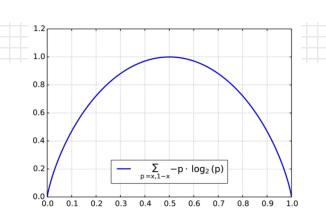
Acknowledgement: many slides are derived from those of Tom Mitchell, Pascal Poupart, Pieter Abbeel, Erir Eaton, Carlos Guestrin, William Cohen, and Andrew Moore

Decision Tree (ID3, C4.5, etc.)

- Top-down induction of decision trees
 - Set A = the "best" attribute to split current node
 - For each attribute value of A, create a branch
 - Divide current node into children node through branches
 - If children node are perfect or some criteria are met, stop, otherwise recursively repeat on children nodes
- Intuition: top-down **greedy** growth of decision tree using "best" attribute until all samples are perfectly classified.
- Question: How to pick "best" attribute?



Sample Entropy



Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

- S is a (sub)set of training samples
- p_{\oplus} is the porportion of positive samples in S
- p_{\ominus} is the porportion of negative samples in S
- Entropy measures the *impurity* of S $H(S) := -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$

Entropy as a Measure of Impurity

$$H(S) := -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

Impure case:

$$\begin{cases}
p_{\oplus} = 0.5 \\
p_{\Theta} = 0.5
\end{cases} \Rightarrow H(S) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1\\
p_{\Theta} = 0
\end{cases}$$
Pure case:

$$\begin{cases}
p_{\oplus} = 1 \\
p_{\Theta} = 0
\end{cases} \Rightarrow H(S) = -\log_2 1 = 0$$

Entropy

• Entropy H(X) of a random variable X is defined as: **Multi-class** $H(X) = -\sum P(X = i)\log_2 P(X = i)$ Y in this page is a R.V. • Specific conditional entropy H(X | Y = v) $H(X | Y = v) = -\sum_{i=1}^{n} P(X = i | Y = v) \log_2 P(X = i | Y = v)$ • Conditional entropy $H(X \mid Y)$ $H(X \mid Y) = \sum P(Y = v) H(X \mid Y = v)$ $v \in values(Y)$ Mutual information (a.k.a. information gain) of X and Y

$$I(X, Y) = H(X) - H(X | Y) = H(Y) - H(Y | X)$$

Information Gain

- Mutual information (a.k.a. information gain) of X and Y

• I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)

Information gain is the expected reduction in entropy of target variable Y for data sample S, in observance of variable A

• Gain(*S*, *A*) =
$$I_S(A, Y) = H_S(Y) - H_S(Y|A)$$

- Question: How to pick the best attribute?
- Answer: One that obtains the highest information gain, i.e., reducing entropy the most.

Highest Information Gain

- Gain $(S, A) = I_S(A, Y) = H_S(Y) H_S(Y|A)$ Highest
- $H_S(Y)$ is fixed
- $-H_{S}(Y|A)$
- $H_S(Y|A)$

Highest Lowest

- Low impurity, i.e., High purity
 - Split data that results the most skewed distribution.

More than Entropy

Given a (subset of) dataset *D* containing *C* classes
Entropy

Proportion for class
$$c$$
: $\hat{\pi}_c = \frac{1}{|D|} \sum_{l \in D} \mathbb{I}(y^l = c)$
Entropy error: $-\sum_{c=1}^C \hat{\pi}_c \log \hat{\pi}_c$

Misclassification rate

Assign prediction by the major class $\hat{y} = \operatorname{argmax}_c \hat{\pi}_c$

Error rate:
$$\frac{1}{|D|} \sum_{l \in D} \mathbb{I}(y^l \neq \hat{y}) = 1 - \hat{\pi}_{\hat{y}}$$

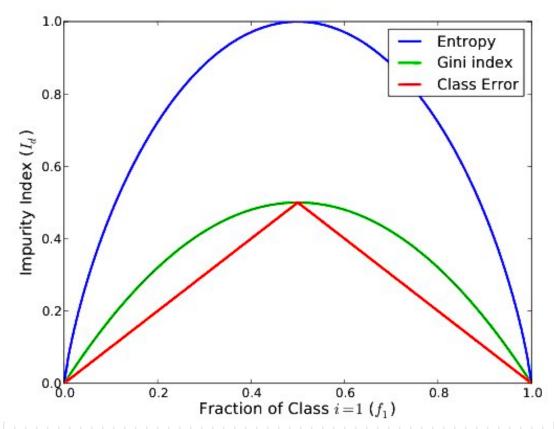
Gini index

Gini error:
$$\sum_{c=1}^{C} \hat{\pi}_{c}(1 - \hat{\pi}_{c}) = 1 - \sum_{c} \hat{\pi}_{c}^{2}$$

8 C Hongjie Chen | Machine Learning

Comparing Metrics

Assume boolean labels (two classes)

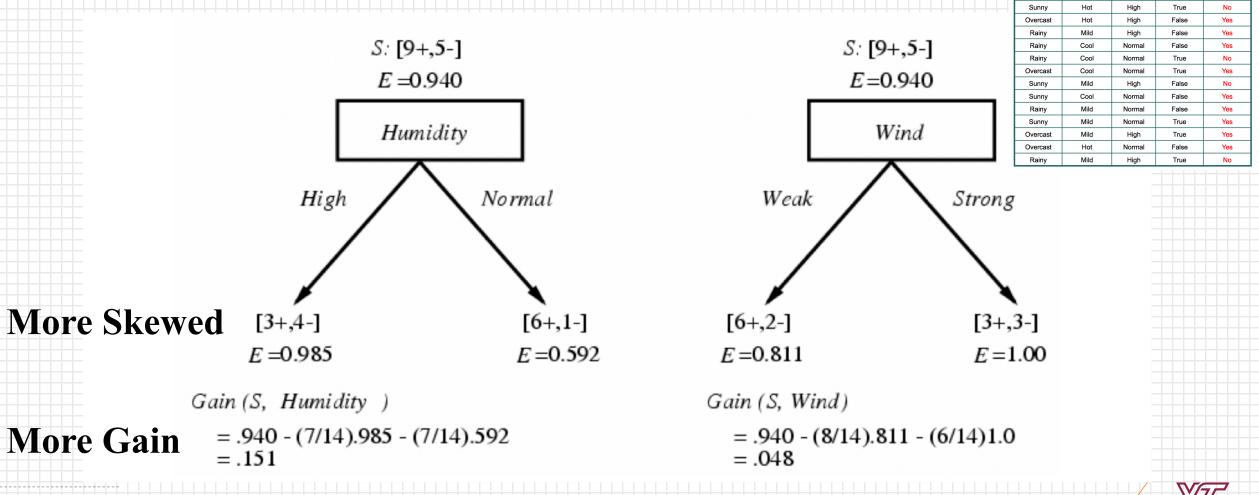


Example Data

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

10 © Hongjie Chen | Machine Learning

Select the Best Attribute



Outlool

Sunny

[emperature

Hot

Humidity

High

Windy

False

PlayTenni

No

What if Features are Continuous

Test the splitting of each unique feature value

HW1

Open-ended Questions

- Is there more than one decision tree that perfectly infers the data labels?
- If so, which one do you choose and why?
 - Deep v.s. Shallow
 - More branches v.s. Less branches

Do we always want a perfect decision tree? Why?
Think about what a perfect decision tree implies

Thoughts

There are more than one possible perfect decision trees.

- We typically favor a shallow and simple decision tree rather than a more complicated one, if the latter achieves the same performance or even performs slightly better.
 - Generalization
 - Time and space complexity
- A perfect decision tree can (sometimes) indicate overfitting.
 - Imagine memorizing all training samples but failing to infer a new testing sample that is never met before.

Decesion Tree Learning

- Recall the set of function hypotheses: $H : \{h \mid h : X \to Y\}$
- Now we want to obtain a good h, a good decision tree.

Which tree in the hypotheses should we obtain?

Inductive Inference

- Data-driven
- From specific observations to general rules
 - Generalization cannot go beyond the training data
 - Which decision tree h to pick depends on the training data

Occam's Razor

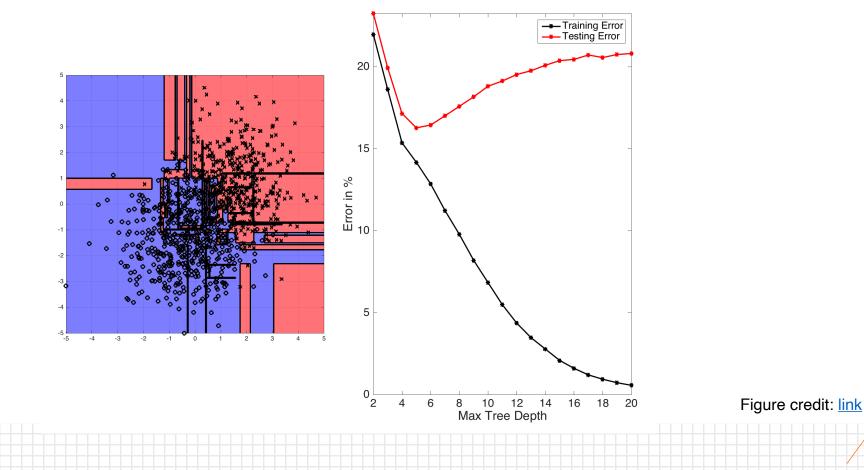
Choose the simplest hypothesis that fits the data

- Stop the top-down greedy growth of decision tree at smallest acceptable tree.
 - How to know we could stop at a node?
 - When the samples in the node are ...

What if we don't stop?

Overfitting in Decision Tree Learning

Another example on real valued data



VIRGINIA TECH

18 C Hongjie Chen | Machine Learning -

Strategies to avoid overfitting

Do not pursue perfect decision tree with the training data

- Stop growing the tree when information gain is trivial
- Grow full tree, then post-prune

How to select the "best" tree?

- Measure performance on training dataset
- Measuer performance on standalone validation dataset
- Validation data: Data that are not used to train the model, but are evaluated to see how well the model is trained, and usually serve the purpose hyperparameters tuning.

Reduce-error Pruning with Validation Data

- Split data into training and validation sets
 - Create a perfect decision tree on the training set
- Repeat until further pruning is harmful:
 - For each possible node, evaluate the impact on the validation set after pruning it. By pruning, it means removing the subtree at that node, make it a leaf and assign the most common class at that node
 - Greedily remove the one that results most accuracy improvement on the validation set.
- Q: What if two nodes results the same best accuracy improvement?

Occam's Razor

Random Forests

Boostrap Aggregation (Bagging)

- Train multiple decision trees (thus, forests)
 - Randomly make a subset of datasets
 - Train a decision tree on the subset

For a new sample

- Gain a prediction from each decision tree
- Use average or majority vote as the final prediction
- Also randomly subsample features
- Reduce variance without changing bias*

