Probability & Estimation

1

INSTRUCTOR: HONGJIE CHEN

MAY 26TH 2022

A Probabilistic Perspective

In supervised function approximation

- instead of learning a function $f: X \to Y$
- Learn P(Y|X)

Recall **Supervised Learning**: learning from labeled training data

Review Notations in Probability

- Random Variables in capital letter A, or R.V.
- values in lowercase letter a, P(A = a), or P(a) for shorthand
- $P(A \mid B)$, Conditional probability
- P(A, B), Joint probability
- P(AB) = P(A)P(B), independence
 P(AB | C) = P(A | C)P(B | C), conditional independence

Joint Probability Distribution

Steps for coming up with a joint distribution

- Make a table listing all combinations of values of R.V.
- Assign proabability for each combination
- By axioms of probability, all probability values sum to 1

A	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Probability Distribution

- Now that we have the distribution, we can calculate probability of
 - *P*(*A*)

- *P*(*AB*)
- $P(A \mid B)$

Α	В	С	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Inference with Joint Probability Distribution

• Suppose we want to learn the function $f(G, H) \rightarrow W$ or the probability distribution P(W|G, H) of the given data

• Calculate P(W = rich | G = female, H = 40.5)

• Can we solve P(Y|X) similarly? What do we need?

Exponential Growth of Table

- Learning P(Y|X) requires all combinations of all values of all random variables.
 - Regard a joint probability distrbution with 50 boolean features
 - How many rows?
 - Fraction of rows with zero training samples?

