Probability \& Estimation

INSTRUCTOR: HONGJIE CHEN
MAY 26TH 2022

A Probabilistic Perspective

- In supervised function approximation
- instead of learning a function $f: X \rightarrow Y$
- Learn $P(Y \mid X)$
- Recall Supervised Learning: learning from labeled training data

Review Notations in Probability

- Random Variables in capital letter A, or R.V.
- values in lowercase letter $a, P(A=a)$, or $P(a)$ for shorthand
- $P(A \mid B)$, Conditional probability
- $P(A, B)$, Joint probability
- $P(A B)=P(A) P(B)$, independence
- $P(A B \mid C)=P(A \mid C) P(B \mid C)$, conditional independence

Joint Probability Distribution

- Steps for coming up with a joint distribution
- Make a table listing all combinations of values of R.V.
- Assign proabability for each combination
- By axioms of probability, all probability values sum to 1

\mathbf{A}	\mathbf{B}	\mathbf{C}	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Using the Joint Probability Distribution

- Now that we have the distribution, we can calculate probability of
- $P(A)$
- $P(A B)$
- $P(A \mid B)$

A	B	C	Prob
0	0	0	0.30
0	0	1	0.05
0	1	0	0.10
0	1	1	0.05
1	0	0	0.05
1	0	1	0.10
1	1	0	0.25
1	1	1	0.10

Inference with Joint Probability Distribution

- Suppose we want to learn the function $f(G, H) \rightarrow W$ or the probability distribution $P(W \mid G, H)$ of the given data

- Calculate $P(W=$ rich $\mid G=$ female, $H=40.5-)$
- Can we solve $P(Y \mid X)$ similarly? What do we need?

Exponential Growth of Table

- Learning $P(Y \mid X)$ requires all combinations of all values of all random variables.
- Regard a joint probability distrbution with 50 boolean features
- How many rows?
- Fraction of rows with zero training samples?
- Data Sparsity

