Logistic Regression

INSTRUCTOR: HONGJIE CHEN
MAY 31ST 2022

Problem Setting

- Learning $f: X \rightarrow Y$
- X is a real-valued vector $\left[X_{1}, X_{2}, \ldots, X_{n}\right]$
- Y is boolean
- Assume conditional independence given Y
- Model $P\left(X_{i} \mid Y=y_{k}\right)$ as Gaussian $\sim \mathscr{N}\left(\mu_{i k}, \sigma_{i}\right)$
- Model $P(Y)$ as Bernoulli $\sim \pi$
- What's the parametric form of $P(Y \mid X)$

Parametric form of $P(Y \mid X)$

$$
P(Y=1 \mid X)=\frac{P(Y=1) P(X \mid Y=1)}{P(Y=1) P(X \mid Y=1)+P(Y=0) P(X \mid Y=0)}
$$

Law of total probability

Parametric form of $P(Y \mid X)$

$$
\begin{aligned}
P(Y=1 \mid X) & =\frac{P(Y=1) P(X \mid Y=1)}{P(Y=1) P(X \mid Y=1)+P(Y=0) P(X \mid Y=0)} \\
& =\frac{1}{1+\frac{P(Y=0) P(X \mid Y=0)}{P(Y=1) P(X \mid Y=1)}} \\
& =\frac{1}{1+\exp \left(\ln \frac{P(Y=0) P(X \mid Y=0)}{P(Y=1) P(X \mid Y=1)}\right)} \quad \ln \text { trick } \\
& =\frac{1}{1+\exp \left(\ln \frac{1-\pi}{\pi}+\sum_{i} \ln \frac{P\left(X_{i} \mid Y=0\right)}{P\left(X_{i} \mid Y=1\right)}\right)}
\end{aligned}
$$

Continue calculation 1

With $P\left(X_{i}=i \mid Y=y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} e^{-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{i}}}$

Continue calculation 2

$$
P\left(X_{i}=i \mid Y=y_{k}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} e^{-\frac{\left(x-\mu_{k}\right)^{2}}{2 \sigma_{i}^{2}}}
$$

$$
\begin{aligned}
\left.\sum_{i} \ln \frac{P\left(X_{i} \mid Y=0\right)}{P\left(X_{i} \mid Y=1\right)}\right) & =\sum_{i} \ln \frac{\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} e^{-\frac{\left(x-\mu_{i 0}\right)^{2}}{2 \sigma_{i}^{2}}}}{\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} e^{-\frac{\left(x-\mu_{i j}\right)^{2}}{2 \sigma_{i}^{2}}}} \\
& =\sum_{i} \ln e^{-\left(\frac{\left(x-\mu_{i 0}\right)^{2}}{2 \sigma_{i}^{2}}-\frac{\left(x-\mu_{i j}\right)^{2}}{2 \sigma_{i}^{2}}\right)} \\
& =\sum_{i}-\frac{\left(x^{2}-2 x \mu_{i 0}+\mu_{i 0}^{2}\right)-\left(x^{2}-2 x \mu_{i 1}+\mu_{i 1}^{2}\right)}{2 \sigma_{i}^{2}} \\
& =\sum_{i} \frac{2\left(\mu_{i 1}-\mu_{i 0}\right) x_{i}+\mu_{i 1}^{2}-\mu_{i 0}^{2}}{2 \sigma_{i}^{2}}=\sum_{i} \frac{\mu_{i 1}-\mu_{i 0}}{\sigma_{i}^{2}} x_{i}+\frac{\mu_{i 1}^{2}-\mu_{i 0}^{2}}{2 \sigma_{i}^{2}}
\end{aligned}
$$

Continue calculation 3

$$
\begin{aligned}
P(Y=1 \mid X) & =\frac{P(Y=1) P(X \mid Y=1)}{P(Y=1) P(X \mid Y=1)+P(Y=0) P(X \mid Y=0)} \\
& =\frac{1}{1+\exp \left(\ln \frac{1-\pi}{\pi}+\left(\sum_{i} \frac{\mu_{1}^{2}-\mu_{0}^{2}}{2 \sigma_{i}^{2}}\right)\right.}+\frac{\left(\sum_{i} \frac{\mu_{i 1}-\mu_{i 0}}{\sigma_{i}^{2}} x_{i}\right)}{\text { Optionally add } x_{0}=1 \text { to }} \\
& =\frac{1}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)} \quad \text { incoporate } w_{0} \text { into the sum }
\end{aligned}
$$

Where $\left\{\begin{aligned} w_{0} & =\ln \frac{1-\pi}{\pi}+\sum_{i} \frac{\mu_{i 1}^{2}-\mu_{i 0}^{2}}{2 \sigma_{i}^{2}} \\ w_{i} & =\frac{\mu_{i 1}-\mu_{i 0}}{\sigma_{i}^{2}}\end{aligned}\right.$

Obtain Y directly from X with Parameters

$$
\begin{aligned}
& P(Y=1 \mid X)=\frac{1}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)} \\
& \Rightarrow P(Y=0 \mid X)=\frac{\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)} \\
& \Rightarrow \frac{P(Y=0 \mid X)}{P(Y=1 \mid X)}=\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right) \quad \text { Compared with } 1 \\
& \Rightarrow \ln \frac{P(Y=0 \mid X)}{P(Y=1 \mid X)}=w_{0}+\sum_{i=1}^{n} w_{i} x_{i} \quad \text { Compared with } 0
\end{aligned}
$$

Predict $Y \mid X$ in Short

Calculate $w_{0}+\sum^{n} w_{i} x_{i}$, predict $Y=0$ if the result value is
greater than 0 , otherwise predict $Y=1$

Logistic Regression (Generalized)

- Let's extend Y to contain more discrete values
- Previously $Y \in\{0,1\}$, now $Y \in\left\{y_{1}, y_{2}, \ldots, y_{R}\right\}$
- Learn $R-1$ sets of weights

For $k<R: P\left(Y=y_{k} \mid X\right)=\frac{\exp \left(w_{k 0}+\sum_{i=1}^{n} w_{k i} x_{i}\right)}{1+\sum_{j=1}^{R-1} \exp \left(w_{j 0}+\sum_{i=1}^{n} w_{j i} x_{i}\right)}$
For $k=R: P\left(Y=y_{k} \mid X\right)=\frac{1}{1+\sum_{j=1}^{R-1} \exp \left(w_{j 0}+\sum_{i=1}^{n} w_{j i} x_{i}\right)}$

Logistic Function

$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$

VIRGINIA TECH

Logistic Regression with MLE

- MLE?
- We have L training samples $\left\{\left(X^{1}, Y^{1}\right), \ldots,\left(X^{L}, Y^{L}\right)\right\}$

$$
\begin{aligned}
W_{M L E} & =\operatorname{argmax}_{W} P\left(\left(X^{1}, Y^{1}\right), \ldots,\left(X^{L}, Y^{L}\right) \mid W\right) \\
& =\operatorname{argmax}_{W} \prod_{l} P\left(\left(X^{\ell}, Y^{l}\right) \mid W\right)
\end{aligned}
$$

- Have W to generate pairs of (X, Y) ?

Logistic Regression MCLE

- Maximum Conditional Likelihood Estimation (MCLE)
- X is also conditioned

$$
W_{M C L E}=\operatorname{argmax}_{W} \prod_{l} P\left(Y^{l} \mid X^{l}, W\right)
$$

Estimate MCLE

$$
W_{M C L E}=\operatorname{argmax}_{W} \prod_{l} P\left(Y^{l} \mid X^{l}, W\right)
$$

- We are selecting good W (independent variable) to get highest $\prod P\left(Y^{l} \mid X^{l}, W\right)$ (dependent variable)

A function of W

- Again, assume Y is Boolean

$$
f(W)=\ln \prod_{l} P\left(Y^{l} \mid X^{l}, W\right)=\sum_{l} \ln P\left(Y^{l} \mid X^{l}, W\right)
$$

Express MCLE as a Function of W

$$
\begin{aligned}
& f(W)=\sum_{l} \ln P\left(Y^{l} \mid X^{l}, W\right) \\
& \quad P(Y=0 \mid X, W)=\frac{1}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)}
\end{aligned}
$$

Now we are taking the form and W is conditioned

$$
\begin{aligned}
& \text { With } \\
& \qquad \begin{aligned}
f(W) & =\sum_{l} Y^{l} \ln P\left(Y^{l}=1 \mid X, W\right)=\frac{\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)}{1+\exp \left(w_{0}+\sum_{i=1}^{n} w_{i} x_{i}\right)}+\left(1-Y^{l}\right) \ln P\left(Y^{l}=0 \mid X^{l}, W\right) \\
& =\sum_{l} Y^{l} \ln \frac{P\left(Y^{l}=1 \mid X^{l}, W\right)}{P\left(Y^{l}=0 \mid X^{l}, W\right)}+\ln P\left(Y^{l}=0 \mid X^{l}, W\right) \\
& =\sum_{l} Y^{l}\left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)\right)
\end{aligned}
\end{aligned}
$$

Gradient Ascent

. Gradient $\nabla f(\vec{w})=\left[\frac{\partial f}{\partial w_{0}}, \frac{\partial f}{\partial w_{1}}, \ldots, \frac{\partial f}{\partial w_{n}}\right]$, is a vector

- Parameter training rule: $\vec{w}^{(t+1)} \leftarrow \vec{w}^{(t)}+\eta \nabla f(\vec{w})$
. View from one feature dimension $\Delta w_{i}=\eta \frac{\partial f}{\partial w_{i}}$

- Questions: What does η imply? What if we have a big η value.

MCLE via Gradient Ascent

$$
\begin{aligned}
& f(W)=\sum_{l} Y^{l}\left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)\right) \\
& \frac{\partial f(W)}{\partial w_{i}}=\sum_{l} X_{i}^{l}\left(Y^{l}-\hat{P}\left(Y^{l}=1 \mid X^{l}, W\right)\right)
\end{aligned}
$$

- Gradient ascent algorithm: iterate until $\Delta w_{i}<\epsilon$
- $\forall i: w_{i} \leftarrow w_{i}+\eta \sum_{l} X_{i}^{l}\left(Y^{l}-\hat{P}\left(Y^{l}=1 \mid X^{l}, W\right)\right)$
- Incorporate w_{0} with an assumed $X_{0}=1$
- η is a hyperparameter: step size

Demo of Searching Best W

- https://yihui.org/animation/example/grad-desc/
- https://blog.skz.dev/gradient-descent

Batch v.s. Stochastic Gradient

- Batch gradient: use the entire training set D
- Repeat until $\Delta w<\epsilon$
. Compute the gradient: $\nabla f_{D}(\vec{w})=\left[\frac{\partial f_{D}}{\partial w_{0}}, \frac{\partial f_{D}}{\partial w_{1}}, \ldots, \frac{\partial f_{D}}{\partial w_{n}}\right]$
- Update parameters: $\vec{w}^{(t+1)} \leftarrow \vec{w}^{(t)}+\eta \nabla f_{D}(\vec{w})$
- Stochastic gradient: use a single sample $d \in D$ at a time
- Repeat until $\Delta w<\epsilon$
- Randomly Choose with replacement a training sample $d \in D$
. Compute the gradient: $\nabla f_{d}(\vec{w})=\left[\frac{\partial f_{d}}{\partial w_{0}}, \frac{\partial f_{d}}{\partial w_{1}}, \ldots, \frac{\partial f_{d}}{\partial w_{n}}\right]$
- Update parameters: $\vec{w}^{(t+1)} \leftarrow \vec{w}^{(t)}+\eta \nabla f_{d}(\vec{w})$
- Which do we pick when $|D|$ is large?

Hyperparameters in Gradient-based Optimization

- Epoch:
- An epoch referes to a full pass over the dataset
- Each sample is used to update parameters once
- The number of epochs is the number of full passes
- Can work together with an early stopping strategy
- Batch size:
- Batch size is the number of samples processed when the model is updated
- An epoch can contain one or more batches
- For example, 10 training samples, 2 epochs, batch size as 4
- 1st epoch
- 1st iteration: a batch containg sample [1,2,3,4]
- 2st iteration: a batch containg sample [5,6,7,8]
- 3st iteration: a batch containg sample $[9,10]$
- 2st epoch
- 1st iteration: a batch containg sample [1,2,3,4]
- 2st iteration: a batch containg sample [5,6,7,8]
- 3st iteration: a batch containg sample [9,10]

Conduct experiments to decide hyperparameters

M(C)LE is good, what about MAP?

- Choose a prior

$$
W_{M A P}=\operatorname{argmax}_{W} P(W) \prod P\left(Y^{l} \mid X^{l}, W\right)
$$

- Assume Gaussian prior: $W \sim \mathscr{N}(0, \sigma I)$

Weight Update with MAP

$$
\begin{aligned}
& W_{M A P}=\operatorname{argmax}_{W} P(W) \prod_{l} P\left(Y^{l} \mid X^{l}, W\right) \\
& w_{i} \leftarrow w_{i}-\eta \lambda w_{i}+\eta \sum_{l} X_{i}^{l}\left(Y^{l}-\hat{P}\left(Y^{l}=1 \mid X^{l}, W\right)\right)
\end{aligned}
$$

Regularization term

- Avoids overfitting especially for sparse data
- Keeps weights near zero with prior

Naïve Bayes v.s. Logistic Regression

- Naïve Bayes
- Assumption on $P(X \mid Y), P(Y)$
- Estimates parameters of $P(X \mid Y), P(Y)$ from training data
- Use Bayes rule to calculate $P(Y \mid X)$
- Logistic Regression
- Assumption on $P(Y \mid X)$
- Estimates parameters of $P(Y \mid X)$ directly from training data

