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Problem Setting

▪ Learning  

▪  is a real-valued vector  

▪  is boolean 

▪ Assume conditional independence given  

▪ Model  as Gaussian  

▪ Model  as Bernoulli  

▪ What’s the parametric form of 

f : X → Y
X [X1, X2, …, Xn]
Y

Y
P(Xi |Y = yk) ∼ 𝒩(μik, σi)
P(Y ) ∼ π

P(Y |X)
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Parametric form of P(Y |X)

P(Y = 1 |X) =
P(Y = 1)P(X |Y = 1)

P(Y = 1)P(X |Y = 1) + P(Y = 0)P(X |Y = 0)

3

Law of total probability
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Parametric form of P(Y |X)

 

P(Y = 1 |X) =
P(Y = 1)P(X |Y = 1)

P(Y = 1)P(X |Y = 1) + P(Y = 0)P(X |Y = 0)

=
1

1 + P(Y = 0)P(X |Y = 0)
P(Y = 1)P(X |Y = 1)

=
1

1 + exp(ln P(Y = 0)P(X |Y = 0)
P(Y = 1)P(X |Y = 1) )

=
1

1 + exp(ln 1 − π
π + ∑i ln P(Xi |Y = 0)

P(Xi |Y = 1) )
4

 trickln
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Continue calculation 1

 

With 

∑
i

ln
P(Xi |Y = 0)
P(Xi |Y = 1)

=

P(Xi = i |Y = yk) =
1

2πσ2
i

e
− (x − μik)2

2σ2
i

5



© Hongjie Chen | Machine Learning

Continue calculation 2

∑
i

ln
P(Xi |Y = 0)
P(Xi |Y = 1)

) = ∑
i

ln

1

2πσ2
i

e
− (x − μi0)2

2σ2
i

1

2πσ2
i

e
− (x − μi1)2

2σ2
i

= ∑
i

ln e
−( (x − μi0)2

2σ2
i

− (x − μi1)2

2σ2
i

)

= ∑
i

−
(x2 − 2xμi0 + μ2

i0) − (x2 − 2xμi1 + μ2
i1)

2σ2
i

= ∑
i

2(μi1 − μi0)xi + μ2
i1 − μ2

i0

2σ2
i

= ∑
i

μi1 − μi0

σ2
i

xi +
μ2

i1 − μ2
i0

2σ2
i
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P(Xi = i |Y = yk) =
1

2πσ2
i

e
− (x − μik)2

2σ2
i

wixi Constant
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Continue calculation 3

 

Where 

P(Y = 1 |X ) =
P(Y = 1)P(X |Y = 1)

P(Y = 1)P(X |Y = 1) + P(Y = 0)P(X |Y = 0)

=
1

1 + exp(ln 1 − π
π + ∑i

μ2
i1 − μ2

i0

2σ2
i

+ ∑i
μi1 − μi0

σ2
i

xi)

=
1

1 + exp(w0 + ∑n
i=1 wixi)

w0 = ln 1 − π
π + ∑i

μ2
i1 − μ2

i0

2σ2
i

wi =
μi1 − μi0

σ2
i
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Optionally add  to 
incoporate  into the sum

x0 = 1
w0
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Obtain  directly from  with ParametersY X

P(Y = 1 |X) =
1

1 + exp(w0 + ∑n
i=1 wixi)

⇒ P(Y = 0 |X) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

⇒
P(Y = 0 |X)
P(Y = 1 |X)

= exp(w0 +
n

∑
i=1

wixi)

⇒ ln
P(Y = 0 |X)
P(Y = 1 |X)

= w0 +
n

∑
i=1

wixi
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Compared with 1

Compared with 0
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Predict  in ShortY |X

Calculate , predict  if the result value is 

greater than 0, otherwise predict 

w0 +
n

∑
i=1

wixi Y = 0

Y = 1
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Logistic Regression (Generalized)

▪ Let’s extend  to contain more discrete values 

▪ Previously , now  

▪ Learn  sets of weights 

▪
For :   

▪
For :  

Y
Y ∈ {0,1} Y ∈ {y1, y2, …, yR}

R − 1

k < R P(Y = yk |X) =
exp(wk0 + ∑n

i=1 wkixi)

1 + ∑R−1
j=1 exp(wj0 + ∑n

i=1 wjixi)

k = R P(Y = yk |X) =
1

1 + ∑R−1
j=1 exp(wj0 + ∑n

i=1 wjixi)
10
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Logistic Function

σ(x) =
1

1 + e−x
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Logistic Regression with MLE

▪ MLE? 
▪ We have  training samples  

 

▪ Have  to generate pairs of ?

L {(X1, Y1), …, (XL, YL)}
WMLE = argmaxWP((X1, Y1), …, (XL, YL) |W )

= argmaxW∏
l

P((Xl, Yl) |W )

W (X, Y )

12
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Logistic Regression MCLE

▪ Maximum Conditional Likelihood Estimation (MCLE) 
▪  is also conditioned X

WMCLE = argmaxW∏
l

P(Yl |Xl, W )

13
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Estimate MCLE

 

▪ We are selecting good  (independent variable) to get 
highest  (dependent variable) 

▪ Again, assume  is Boolean 

WMCLE = argmaxW∏
l

P(Yl |Xl, W )

W

∏
l

P(Yl |Xl, W )

Y
f(W ) = ln∏

l

P(Yl |Xl, W ) = ∑
l

ln P(Yl |Xl, W )
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A function of W
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Express MCLE as a Function of W
 

With   

f (W ) = ∑
l

ln P(Yl |Xl, W )

P(Y = 1 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 0 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)

f (W ) = ∑
l

Yl ln P(Yl = 1 |Xl, W ) + (1 − Yl)ln P(Yl = 0 |Xl, W )

= ∑
l

Yl ln
P(Yl = 1 |Xl, W )
P(Yl = 0 |Xl, W )

+ ln P(Yl = 0 |Xl, W )

= ∑
l

Yl(w0 +
n

∑
i

wiXl
i ) − ln(1 + exp(w0 +

n

∑
i

wiXl
i ))
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Now we are taking the 
form and  is conditionedW

P(Y = 0 |X, W ) =
1

1 + exp(w0 + ∑n
i=1 wixi)

P(Y = 1 |X, W ) =
exp(w0 + ∑n

i=1 wixi)

1 + exp(w0 + ∑n
i=1 wixi)
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Gradient Ascent

▪ Gradient , is a vector 

▪ Parameter training rule:  

▪ View from one feature dimension  

▪ Questions: What does  imply? What if we have a big  value.

∇f ( ⃗w ) = [
∂f

∂w0
,

∂f
∂w1

, …,
∂f

∂wn
]

⃗w (t+1) ← ⃗w (t) + η∇f ( ⃗w )

Δwi = η
∂f

∂wi

η η
16
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MCLE via Gradient Ascent

 

 

▪ Gradient ascent algorithm: iterate until   

▪ :  

▪ Incorporate  with an assumed  

▪  is a hyperparameter: step size

f(W ) = ∑
l

Yl(w0 +
n

∑
i

wiXl
i) − ln(1 + exp(w0 +

n

∑
i

wiXl
i))

∂f(W )
∂wi

= ∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W ))

Δwi < ϵ
∀i wi ← wi + η∑

l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W ))

w0 X0 = 1
η
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Demo of Searching Best  W

▪ https://yihui.org/animation/example/grad-desc/ 

▪ https://blog.skz.dev/gradient-descent

18

https://yihui.org/animation/example/grad-desc/
https://blog.skz.dev/gradient-descent
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Batch v.s. Stochastic Gradient

▪ Batch gradient: use the entire training set  

▪ Repeat until  

▪ Compute the gradient:  

▪ Update parameters:  

▪ Stochastic gradient: use a single sample  at a time 

▪ Repeat until  

▪ Randomly Choose with replacement a training sample  

▪ Compute the gradient:  

▪ Update parameters:  

▪ Which do we pick when  is large?

D
Δw < ϵ

∇fD( ⃗w ) = [
∂fD
∂w0

,
∂fD
∂w1

, …,
∂fD
∂wn

]

⃗w (t+1) ← ⃗w (t) + η∇fD( ⃗w )
d ∈ D

Δw < ϵ
d ∈ D

∇fd( ⃗w ) = [
∂fd
∂w0

,
∂fd
∂w1

, …,
∂fd
∂wn

]

⃗w (t+1) ← ⃗w (t) + η∇fd( ⃗w )
|D |
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Hyperparameters in Gradient-based Optimization

▪ Epoch: 
▪ An epoch referes to a full pass over the dataset 
▪ Each sample is used to update parameters once 
▪ The number of epochs is the number of full passes 
▪ Can work together with an early stopping strategy 

▪ Batch size: 
▪ Batch size is the number of samples processed when the model is updated 
▪ An epoch can contain one or more batches 

▪ For example, 10 training samples, 2 epochs, batch size as 4 
▪ 1st epoch 

▪ 1st iteration: a batch containg sample [1,2,3,4] 
▪ 2st iteration: a batch containg sample [5,6,7,8] 
▪ 3st iteration: a batch containg sample [9,10] 

▪ 2st epoch 
▪ 1st iteration: a batch containg sample [1,2,3,4] 
▪ 2st iteration: a batch containg sample [5,6,7,8] 
▪ 3st iteration: a batch containg sample [9,10]

20

Conduct experiments to 
decide hyperparameters



© Hongjie Chen | Machine Learning

M(C)LE is good, what about MAP?

▪ Choose a prior 

 

▪ Assume Gaussian prior: 

WMAP = argmaxWP(W )∏
l

P(Yl |Xl, W )

W ∼ 𝒩(0,σI)

21
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Weight Update with MAP

 

 

Regularization term 
▪ Avoids overfitting especially for sparse data 
▪ Keeps weights near zero with prior

WMAP = argmaxWP(W )∏
l

P(Yl |Xl, W )

wi ← wi − ηλwi + η∑
l

Xl
i(Y

l − ̂P(Yl = 1 |Xl, W ))
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Naïve Bayes v.s. Logistic Regression

▪ Naïve Bayes 
▪ Assumption on  

▪ Estimates parameters of  from training data 

▪ Use Bayes rule to calculate  

▪ Logistic Regression 
▪ Assumption on  

▪ Estimates parameters of  directly from training data

P(X |Y ), P(Y )
P(X |Y ), P(Y )

P(Y |X)

P(Y |X)
P(Y |X)

23


