Generative v.s. Discriminative Classifiers

1

INSTRUCTOR: HONGJIE CHEN

JUNE 2ND 2022

Generative v.s. Discriminative Classifiers

Training classifiers: f: X → Y or P(Y|X)
Generative classifiers (e.g., Naïve Bayes)

- Assumption on P(X | Y), P(Y)
- Estimates parameters of P(X | Y), P(Y) from training data
- Use Bayes rule to calculate P(Y|X)

Discriminative classifers (e.g., Logistic Regression)

- Assumption on P(Y|X)
- Estimates parameters of P(Y|X) directly from training data

Which one to use

- Restrictiveness of modeling assumption
 - NB assumes conditional independence

Learning curve

- Rate of convergence (in amount of training data) toward asympototic (infinite data) hypothesis
 - NB can converge faster if assumption is correct

Gaussian Naïve Bayes v.s. Logistic Regression

• Assume Boolean Y, continuous X_i , n features for X Number of parameters to estimate, or model size

Gaussian Naïve Bayes

 $P(X_i | Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_{ik})$

Gaussian Naïve Bayes, assume independent of Y

$$P(X_i \mid Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i)$$

Logistic Regression

$$P(Y = 1 | X, W) = \frac{1}{1 + exp(w_0 + \sum_{i=1}^{n} w_i x_i)}$$

Gaussian Naïve Bayes v.s. Logistic Regression

Assume Boolean *Y*, continuous *X_i*, *n* features for *X*Number of parameters to estimate, or model size

Gaussian Naïve Bayes

 $P(X_i | Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_{ik}), 1 + 2n + 2n = 4n + 1$

- Gaussian Naïve Bayes, assume independent of \boldsymbol{Y}

 $P(X_i | Y = y_k) \sim \mathcal{N}(\mu_{ik}, \sigma_i), 1 + 2n + n = 3n + 1$

Logistic Regression

$$P(Y = 1 | X, W) = \frac{1}{1 + exp(w_0 + \sum_{i=1}^{n} w_i x_i)}, n + 1$$

Asymptotic Comparison

Have infinite training samples

- When the conditional independence assumption is correct
 - Identical classifiers

- When the assumption is incorrect
 - Logistic Regression is less biased

Convergence Rate

Let $\epsilon_{Algo,m}$ refer to expected error of learning algorithm Algo after m steps

• Let n be the number of features for X

$$\epsilon_{LR,m} = \epsilon_{LR,\infty} + O(\sqrt{\frac{n}{m}})$$

$$\epsilon_{GNB,m} = \epsilon_{GNB,\infty} + O(\sqrt{\frac{\log n}{m}})$$

