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Extend  from Discrete to ContinuousY

▪ Classification: 
 where  is discrete 

▪ Regression: 
 where  is continuous 

▪ For example…

P(Y |X) Y

P(Y |X) Y
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Problem setting

▪ Learn a function ,  

▪ Approach: 
▪ Choose some parameterized form for  where  

is called a parameter vector. 
▪ Estimate  via MLE or MAP

f : X → Y Y ∈ ℛ

P(Y |X, θ) θ

θ
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Parameterized Form for P(Y |X, θ)

▪ Assume  is some deterministic , plus random noise 

▪ , where  

▪ Therefore  

▪ Expectation: 

Y f(X)
y = f(x) + ϵ ϵ ∼ 𝒩(0,σ)

p(y |x) = 𝒩( f(x), ϵ)
𝔼[Y ] = f(X)
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Figure credit: link

https://juanitorduz.github.io/gaussian_process_reg/
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Where we were last time

▪ Review the logistic regression model 
▪ Distinguish generative models and discriminative models 
▪ Generative models describe how data are generated 
▪ Discriminative models distinguish data by boundaries 

▪ Regression model 

▪ HW1, HW2, HW3
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Linear Regression

▪  

▪ Assume  is a linear function 

 

▪ Make parameters explicit 

▪  

▪

p(y |x) = 𝒩( f(x), ϵ)

f(x)
p(y |x) = 𝒩(w1x + w0, σ)
𝔼(y |x) = w1x + w0

W = [w1, w0]
p(y |x, W ) = 𝒩(w1x + w0, σ)
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Training Linear Regression Model

▪ MCLE 

 

Where , 

WMCLE = argmaxW∏
l

P(Yl |Xl, W )

WMCLE = argmaxW ∑
l

ln P(yl |xl, W )

P(y |x, W ) =
1

2πσ2
e− (y − μ)2

2σ2 μ = f(x, W )
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Log likelihood
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Simplify

 P(y |x, W ) =
1

2πσ2
e− (y − f (x, W ))2

2σ2

WMCLE = argmaxW ∑
l

ln P(yl |xl, W )

= argmaxW ∑
l

ln
1

2πσ2
+ (−

(yl − f (xl, W ))2

2σ2
)

= argmaxW −
1

2σ2 ∑
l

(yl − f (xl, W ))2

= argminW
1

2σ2 ∑
l

(yl − f (xl, W ))2

= argminW ∑
l

(yl − (w1xl + w0))2
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Constant
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Gradient Descent

▪  

▪ Gradient , is a vector 

▪ Training rule:  

▪ View from one feature dimension 

WMCLE = argminW ∑
l

(yl − f(xl, W ))2

∇E( ⃗w ) = [
∂E
∂w0

,
∂E
∂w1

, …,
∂E
∂wn

]

⃗w (t+1) ← ⃗w (t) − η∇E( ⃗w )

Δwi = − η
∂E
∂wi
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E
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Calculate Derivative

▪  

▪  

▪

E = ∑
l

(yl − (w1xl + w0))2

∂E
∂w0

=

∂E
∂w1

=

10



© Hongjie Chen | Machine Learning

Calculate Derivative

▪  

▪  

▪

E = ∑
l

(yl − (w1xl + w0))2

∂E
∂w0

= − 2∑
l

(yl − (w1xl + w0))

∂E
∂w1

= − 2∑
l

(yl − (w1xl + w0))xl
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Vectorize X = [x1, x2, …, xn]

 

 

 

 

f(x) = w0 +
n

∑
j=1

wjxj

⃗w = [w0, w1, …, wn]

∂E
∂wi

= − 2∑
l

(yl − (w0 +
n

∑
j=1

wjxj))xl
i

⃗w (t+1) ← ⃗w (t) − η∇E( ⃗w )

wi ← wi + 2η∑
l

(yl − (w0 +
n

∑
j=1

wjxj))xl
i
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Gradient Descent Algorithm

▪ Repeat until  
▪ For all dimension , 

 

▪ Assume  to incoporate 

Δw < ϵ
i

wi ← wi + 2η∑
l

(yl − (w0 +
n

∑
j=1

wjxj))xl
i

x0 = 1 w0
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MAP

▪  

▪ Remember advantages of regularization? 
▪ Demo: https://lukaszkujawa.github.io/gradient-descent.html 

▪ Question: must  a linear function to ?

WMAP = argminW(−c∑
i

w2
i ) + ∑

l

(yl − f(xl, W ))2

f x
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Regularization

https://lukaszkujawa.github.io/gradient-descent.html

