
Perceptron

1

INSTRUCTOR: HONGJIE CHEN

JUNE 6TH 2022

© Hongjie Chen | Machine Learning

Imitate Human

▪ A neuron

2

Figure credit: link

https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc

© Hongjie Chen | Machine Learning

Brain v.s. Computer

▪ Brain

▪ Network of neurons

▪ Nerve signals propogate via neural network

▪ Parallel computation

▪ Robust: neurons grow and die.

▪ Computer

▪ (Electronic) Gates

▪ Electrical signals directed by gates

▪ Sequential and parallel computation

▪ Fragile: halt if there is no power

3

© Hongjie Chen | Machine Learning

Artificial Neural Networks

▪ Key idea: emulate biological neurons for computation

▪ ANN

▪ Units are called nodes and correspond to neurons

▪ Connections between nodes correspond to synapses

▪ ANN v.s. Biological NN

▪ Numerical signal transmitted between nodes corresponds to chemical

signal between neurons

▪ Nodes modifying numerical signal correspond to neurons activating

gate
4

© Hongjie Chen | Machine Learning

ANN terms

▪ Node:

▪ Weights:

▪ Strength of the connection from node to node

▪ Input signal weighted by and linearly combined

▪ Activation function

▪ Produce numerical signal

i
W

i j
xi Wij

aj = ∑
i

Wjixi + w0 = Wjix

h
y = h(aj)

5

© Hongjie Chen | Machine Learning

Single-Layer Feed-forward Network

▪ Perceptron is the simplest type of ANN

6

© Hongjie Chen | Machine Learning

Recall Supervised Learning

▪ Given a training sample

▪ Train perceptron, adjust weights according to

(x, y)

W (x, y)

7

© Hongjie Chen | Machine Learning

Learning a Threshold Perceptron

▪ Learning is done separately for each output node

▪ Output nodes do not share weights

▪ Assume output 1 or 0

▪ Perceptron learning for node

▪ For each pair, repeat

▪ Case 1: correct output

▪

▪ Case 2: output produced 0(incorrect) instead of 1(correct)

▪

▪ Case 3: output produced 1(incorrect) instead of 0(correct)

▪

▪ Until correct output for all training samples.

j

j
(x, y)

∀iWji ← Wji

∀iWji ← Wji + xi

∀iWji ← Wji − xi

8

© Hongjie Chen | Machine Learning

Perceptron with a Threshold

▪ Assume only one output node

▪ With a threshold, a perceptron outputs

▪ Update

▪ If output should be instead of : since

▪ If output should be instead of 1: since

f(x) = wTx = ∑
i

xiwi + b

{1, f(x) > 0
0, f(x) < 0

w
1 0 w ← w + x (w + x)Tx ≥ wTx
0 w ← w − x (w − x)Tx ≤ wTx

9

 and are used interchangablyb w0

Question: What if equals to zero?f(x)

© Hongjie Chen | Machine Learning

Alternative Approach

▪ Let

▪ Let be set of misclassified samples.

▪ i.e.,

▪ Misclassification error:

▪

▪ Now we can apply gradient descent algorithm

▪

▪

y ∈ {−1,1}∀y
M = {{xn, yn}∀n}

yn * wTx < 0

E(w) = − ∑
(xn,yn)∈M

yn * wTx

⃗w (t+1) ← ⃗w (t) − η∇E(⃗w)
∇E = − ∑

(xn,yn)∈M

yn * x

10

 is incorporatedb

© Hongjie Chen | Machine Learning

Sequential Gradient Descent

▪

▪ Adjust based on one sample at a time

▪

▪ When , turn into threshold perceptron algorithm

∇E = − ∑
(xn,yn)∈M

yn * x

w (x, y)
⃗w (t+1) ← ⃗w (t) − ηyx

η = 1

11

© Hongjie Chen | Machine Learning

Threshold Perceptron Algorithm

▪ Let

▪ Randomly Initialize weights

▪ Repeat until satisfied

▪ For each training sample

▪ where

▪ If correct, no change

▪ If wrong, update:

y ∈ {−1,1}∀y
w

̂y = sign(wTx) sign(a) = {1, x > 0
−1, otherwise

w ← w + yx
12

© Hongjie Chen | Machine Learning

Properties of Threshold Perceptron

▪ Binary classification

▪ A linear separator

▪ Converges the data are linearly separable

wTx

iff

13

© Hongjie Chen | Machine Learning

Sigmoid Perceptron

14

Figure credit: link

https://people.cs.vt.edu/dbhattacharya/courses/cs4824/L18-NNI.pdf

© Hongjie Chen | Machine Learning

Multilayer Networks

Ridge

15

Figure credit: link

https://people.cs.vt.edu/dbhattacharya/courses/cs4824/L18-NNI.pdf

© Hongjie Chen | Machine Learning

Multilayer Networks

Bump

16

© Hongjie Chen | Machine Learning

Separate with Bumps

▪ A bump can classify linearly non-separable data points

▪ By tiling bumps of various heights together, we can approximate
any function

▪ Demo: https://playground.tensorflow.org
17

https://playground.tensorflow.org

