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Imitate Human

▪ A neuron
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Figure credit: link

https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc
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Brain v.s. Computer

▪ Brain

▪ Network of neurons

▪ Nerve signals propogate via neural network

▪ Parallel computation

▪ Robust: neurons grow and die.


▪ Computer

▪ (Electronic) Gates

▪ Electrical signals directed by gates

▪ Sequential and parallel computation

▪ Fragile: halt if there is no power
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Artificial Neural Networks

▪ Key idea: emulate biological neurons for computation


▪ ANN

▪ Units are called nodes and correspond to neurons

▪ Connections between nodes correspond to synapses


▪ ANN v.s. Biological NN

▪ Numerical signal transmitted between nodes corresponds to chemical 

signal between neurons

▪ Nodes modifying numerical signal correspond to neurons activating 

gate
4



© Hongjie Chen | Machine Learning

ANN terms

▪ Node: 

▪ Weights: 


▪ Strength of the connection from node  to node 


▪ Input signal  weighted by  and linearly combined





▪ Activation function 


▪ Produce numerical signal 

i
W

i j
xi Wij

aj = ∑
i

Wjixi + w0 = Wjix

h
y = h(aj)
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Single-Layer Feed-forward Network

▪ Perceptron is the simplest type of ANN
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Recall Supervised Learning

▪ Given a training sample 


▪ Train perceptron, adjust weights  according to 

(x, y)

W (x, y)
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Learning a Threshold Perceptron

▪ Learning is done separately for each output node 

▪ Output nodes do not share weights

▪ Assume output 1 or 0


▪ Perceptron learning for node 


▪ For each  pair, repeat

▪ Case 1: correct output


▪ 


▪ Case 2: output produced 0(incorrect) instead of 1(correct)


▪ 


▪ Case 3: output produced 1(incorrect) instead of 0(correct)


▪ 


▪ Until correct output for all training samples.

j

j
(x, y)

∀iWji ← Wji

∀iWji ← Wji + xi

∀iWji ← Wji − xi
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Perceptron with a Threshold

▪ Assume only one output node





▪ With a threshold, a perceptron outputs 


▪ Update 

▪ If output should be  instead of :  since 

▪ If output should be  instead of 1:  since 

f(x) = wTx = ∑
i

xiwi + b

{1, f(x) > 0
0, f(x) < 0

w
1 0 w ← w + x (w + x)Tx ≥ wTx
0 w ← w − x (w − x)Tx ≤ wTx
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 and  are used interchangablyb w0

Question: What if  equals to zero?f(x)
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Alternative Approach

▪ Let 


▪ Let  be set of misclassified samples.


▪ i.e., 


▪ Misclassification error:


▪



▪ Now we can apply gradient descent algorithm

▪ 


▪

y ∈ {−1,1}∀y
M = {{xn, yn}∀n}

yn * wTx < 0

E(w) = − ∑
(xn,yn)∈M

yn * wTx

⃗w (t+1) ← ⃗w (t) − η∇E( ⃗w )
∇E = − ∑

(xn,yn)∈M

yn * x
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Sequential Gradient Descent

▪



▪ Adjust  based on one sample  at a time


▪ 


▪ When , turn into threshold perceptron algorithm

∇E = − ∑
(xn,yn)∈M

yn * x

w (x, y)
⃗w (t+1) ← ⃗w (t) − ηyx

η = 1
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Threshold Perceptron Algorithm

▪ Let 


▪ Randomly Initialize weights 


▪ Repeat until satisfied

▪ For each training sample


▪  where 


▪ If correct, no change

▪ If wrong, update: 

y ∈ {−1,1}∀y
w

̂y = sign(wTx) sign(a) = {1, x > 0
−1, otherwise

w ← w + yx
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Properties of Threshold Perceptron

▪ Binary classification


▪ A linear separator 


▪ Converges  the data are linearly separable

wTx

iff
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Sigmoid Perceptron
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Figure credit: link

https://people.cs.vt.edu/dbhattacharya/courses/cs4824/L18-NNI.pdf
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Multilayer Networks

Ridge
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Figure credit: link

https://people.cs.vt.edu/dbhattacharya/courses/cs4824/L18-NNI.pdf
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Multilayer Networks

Bump
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Separate with Bumps

▪ A bump can classify linearly non-separable data points


▪ By tiling bumps of various heights together, we can approximate 
any function


▪ Demo: https://playground.tensorflow.org
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https://playground.tensorflow.org

