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https://towardsdatascience.com/the-concept-of-artificial-neurons-perceptrons-in-neural-networks-fab22249cbfc

Brain v.s. Computer

Brain
Network of neurons
Nerve signals propogate via neural network
Parallel computation
Robust: neurons grow and die.

Computer
(Electronic) Gates
Electrical signals directed by gates
Sequential and parallel computation
Fragile: halt if there is no power
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Artificial Neural Networks

Key idea: emulate biological neurons for computation

ANN
Units are called nodes and correspond to neurons
Connections between nodes correspond to synapses

ANN v.s. Biological NN

Numerical signal transmitted between nodes corresponds to chemical
signal between neurons

Nodes modifying numerical signal correspond to neurons activating
gate
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ANN terms

Node: 1

Weights: W
Strength of the connection from node i to node
Input signal x; weighted by WU- and linearly combined
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Activation function /&

Produce numerical signal y = h(aj)
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Single-Layer Feed-forward Network
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= Perceptron is the simplest type of ANN
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Recall Supervised Learning

Given a training sample (X, y)

Train perceptron, adjust weights W according to (X, y)
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Learning a Threshold Perceptron

Learning is done separately for each output node j
Output nodes do not share weights
Assume output 1 or O

Perceptron learning for node j

For each (X, y) pair, repeat
Case 1: correct output

ViVVji «— Vle.
Case 2: output produced 0O(incorrect) instead of 1(correct)
‘v’ini «— le- + X;
Case 3: output produced 1(incorrect) instead of O(correct)
Until correct output for all training samples.
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Perceptron with a Threshold

Assume only one output node b and w, are used interchangably

flx) =wix = Z xw; + b
| Question: What if /(x) equals to zero?
_ 1, f(x) >0
With a threshold, a perceptron outputs {O, ) < 0
Update w
If output should be 1 instead of 0: W < W + X since (W + x)'x > w'x /

If output should be O instead of 1: w < W — X since (W — X)TX < wlx \
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Alternative Approach

Lety € {—1,1}Vy
Let M = {{X,,y,}V,} be set of misclassified samples.
e,y *wix <0

Misclassification error:

E(w) = — Z y, *wlx
(x,,y,)EM
Now we can apply gradient descent algorithm

WD WO — yVEW)

VE = — 2 y, ¥ X
(x,,y,)EM
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Sequential Gradient Descent

VE = — Z v, X
(x,,v,)EM

Adjust w based on one sample (x, y) at a time
WD 350 _ oy

When 1 = 1, turn into threshold perceptron algorithm
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Threshold Perceptron Algorithm

Lety € {—1,1}Vy
Randomly Initialize weights w

Repeat until satisfied
For each training sample
. . . I, x>0
9 = sign(w!X) where sign(a) = ,
— 1, otherwise

If correct, no change

If wrong, update: w < w + yXx \V/7a¢
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Properties of Threshold Perceptron

Binary classification

A linear separator w!x

Converges iff the data are linearly separable
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Sigmoid Perceptron
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https://people.cs.vt.edu/dbhattacharya/courses/cs4824/L18-NNI.pdf

Multilayer Networks
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https://people.cs.vt.edu/dbhattacharya/courses/cs4824/L18-NNI.pdf

Multilayer Networks

Bump
Network output

rrrrrrrr

16 © Hongjie Chen | Machine Learning / x Z

VIRGINIA TECH.



Separate with Bumps

L

= A bump can classify linearly non-separable data points

= By tiling bumps of various heights together, we can approximate
any function

= Demo: https://playground.tensorflow.org
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https://playground.tensorflow.org

