

Transforming Data Features

• So far we are using features as they are, $X = (x_1, x_2, ..., x_n)$

• For example, a training sample x = (3, -2, 4), we are feeding values 3, -2 and 4 to the model.

• Can we transform and create new features? x_1x_2 ?

Why Transforming Features

To obtain another perspective of data (XOR)

3 - C Hongjie Chen | Machine Learning

VIRGINIA TECH.

Mapping to higher dimensional space

VIRGINIA TECH

Figure credit: link

4 © Hongjie Chen | Machine Learning

Create New Features

We can transform and create features.

Challenge: Feature space grows rapidly.

 X_1

 X_n

 $x_1 x_2$

 $x_2 x_3$

 x_2^2

 X_n

 $\phi(x)$

X

Higher Order Polynomials

Assume n dimensions, and d degree of polynomial

Number of terms
$$\binom{n+d}{d} = \frac{(n+d)!}{n!d!}$$

Rapid growth

- m=100, d=6
- ~1.6 billion terms

6 C Hongjie Chen | Machine Learning

Feature Mapping

Pros: turn non-linearly separable classification into linear one

Cons: feature explosion

- Computationally expensive
- Require more training examples to avoid overfitting

Kernel Methods

Goal: capture non-linear patterns

Mapping data to higher dimensions without explicitly computing the mapping.

Kernel Trick

Rewrite learning algortihms so they only depend on the **dot product between two samples**

- Replace dot product $\phi(\mathbf{x})\phi(\mathbf{z})$ by kernel function $k(\mathbf{x}, \mathbf{z})$,
- $k(\cdot)$ computed the dot product implicitly.

Kernel Function Example

• Consider two samples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

Assume we have a kernel

•
$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^2$$

• $k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})\phi(\mathbf{z})$, what is the form of $\phi(\mathbf{x})$

Kernel Function Example

• Consider two samples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$ Assume we have a kernel $k(\mathbf{x}, \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})^2$ $=(x_1z_1+x_2z_2)^2$ $= x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$ $= (x_1^2, \sqrt{2}x_1x_2, x_2^2) \cdot (z_1^2, \sqrt{2}z_1z_2, z_2^2)$ $k(\mathbf{x}, \mathbf{z}) = \phi(\mathbf{x})\phi(\mathbf{z})$, what is the form of $\phi(\mathbf{x})$ • $\phi(\mathbf{x}) = (x_1^2, \sqrt{2x_1x_2}, x_2^2)$ Compute k instead of ϕ

Kernelize Learning Algorithms

• Using $\phi(\mathbf{x})$ is straightfoward, how to use $k(\mathbf{x}, \mathbf{z})$?

• Algorithm with $\phi(\mathbf{x})$

- Assume $\mathbf{x} \in \mathbb{R}^n$, and $\phi(\mathbf{x}) \in \mathbb{R}^m$, n < m
- Learn weight parameters $\mathbf{w} \in \mathbb{R}^m$
- Predict y with $\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})$

Recall a Normal Perceptron

- Let $y \in \{-1,1\} \forall y$
- Initialize weights w, b
 - Repeat until satisfied
 - For each training sample (\mathbf{x}^l, y^l)

If
$$y^{l}(\mathbf{w} \cdot \mathbf{x}^{l} + b) < 0$$
, update
$$\begin{cases} \mathbf{w} \leftarrow \mathbf{w} + y^{l} \mathbf{x}^{l} \\ b \leftarrow b + y^{l} \end{cases}$$

We take *b* out here

Kernelize the Perceptron

• Naïve approach, replace x with $\phi(x)$ • Let $y \in \{-1,1\} \forall y$ Initialize weights \mathbf{w}, b

Repeat until satisfied

• For each training sample (\mathbf{x}^l, y^l)

If
$$y^{l}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}^{l}) + b) < 0$$
, update

$$\begin{array}{l} \mathbf{w} & \leftarrow \mathbf{w} + y^l \phi(\mathbf{x}^l) \\ \leftarrow b + y^l \end{array}$$

Rewrite **W**

- Naïve approach, replace ${f x}$ with $\phi({f x})$
- Let $y \in \{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b
- Repeat until satisfied
 - For each training sample (\mathbf{x}^l, y^l) , assume *L* samples in total

If
$$y^{l}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}^{l}) + b) < 0$$
, update
$$\begin{cases} \mathbf{w} \leftarrow \mathbf{w} + y^{l} \boldsymbol{\phi}(\mathbf{x}^{l}) \\ b \leftarrow b + y^{l} \end{cases}$$

Rewrite w

$$\mathbf{w} = \sum_{j=1}^{L} \alpha_j y^j \phi(\mathbf{x}^j)$$
 where α_j is the number of misclassifications for $j(th)$ sample

To make prediction on a new sample x^{new}

$$\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}^{new}) + b = \sum_{j=1}^{L} \alpha_j y^j \boldsymbol{\phi}(\mathbf{x}^j) \cdot \boldsymbol{\phi}(\mathbf{x}^{new}) + b = \sum_{j=1}^{L} \alpha_j y^j k(\mathbf{x}^j, \mathbf{x}^{new}) + b$$

Rewrite Condition

- Naïve approach, replace ${f x}$ with $\phi({f x})$
- Let $y \in \{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b
- Repeat until satisfied
 - For each training sample (\mathbf{x}^l, y^l) , assume *L* samples in total

If
$$y^{l}(\mathbf{w}, \phi(\mathbf{x}^{l}) + b) < 0$$
, update
$$\begin{cases} \mathbf{w} \leftarrow \mathbf{w} + y^{l}\phi(\mathbf{x}^{l}) \\ b \leftarrow b + y^{l} \end{cases}$$

$$\mathbf{w} = \sum_{\substack{j=1\\j=1}}^{L} \alpha_j y^j \phi(\mathbf{x}^j) \text{ where } \alpha_j \text{ is the number of misclassifications for } j(\text{th}) \text{ sample}$$

$$\text{If } y^l \left(\sum_{\substack{i=1\\j=1}}^{L} \alpha_j y^j \phi(\mathbf{x}^j) \cdot \phi(\mathbf{x}^l) + b\right) = y^l \left(\sum_{\substack{i=1\\j=1}}^{L} \alpha_j y^j k(\mathbf{x}^j, \mathbf{x}^l) + b\right) < 0, \text{ update } \begin{cases} \alpha^l \leftarrow \alpha^l + 1\\ b \leftarrow b + y^l \end{cases}$$

Kernelized Perceptron Algorithm

• Let $y \in \{-1,1\} \forall y$

Initialize $\alpha_1 = \alpha_2 = \ldots = \alpha_L = 0, \ b = 0$, assume there are L samples

Repeat until satisfied

• For each training sample
$$(\mathbf{x}^{l}, y^{l})$$

• If $y^{l}(\sum_{j=1}^{L} \alpha_{j} y^{j} k(\mathbf{x}^{j}, \mathbf{x}^{l}) + b) < 0$, update $\begin{cases} \alpha^{l} \leftarrow \alpha^{l} + 1 \\ b \leftarrow b + y^{l} \end{cases}$
No more $\phi(\cdot) \blacklozenge$

Primal and Dual Forms

Primal form

• Let $y \in \{-1,1\} \forall y$ • Initialize weights \mathbf{w}, b

For each training sample (\mathbf{x}^l, y^l) If $y^l(\mathbf{w} \cdot \phi(\mathbf{x}^l) + b) < 0$, $\begin{cases} \mathbf{w} \leftarrow \mathbf{w} + y^l \phi(\mathbf{x}^l) \\ b \leftarrow b + y^l \end{cases}$

Dual form

- Let $y \in \{-1,1\} \forall y$
- Initialize $\alpha_1 = \alpha_2 = \ldots = \alpha_L = 0, \ b = 0,$ assume there are *L* samples

• For each training sample
$$(\mathbf{x}^{l}, y^{l})$$

• If $y^{l}(\sum_{j=1}^{L} \alpha_{j} y^{j} k(\mathbf{x}^{j}, \mathbf{x}^{l}) + b) < 0$,
• $\begin{cases} \alpha^{l} \leftarrow \alpha^{l} + 1 \\ b \leftarrow b + y^{l} \end{cases}$

Popular Kernels

- Polynomial Kernel of degree exactly d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$
- Polynomial Kernel of degree up to d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$
- Gaussian Kernel

$$K(\mathbf{u},\mathbf{v}) = e^{-\frac{\|\mathbf{u}-\mathbf{v}\|^2}{2\sigma^2}}$$

Among many others

Design a Kernel

- Not any function can be kernel
- For some kernel definitions, there is no corresponding $\phi(\,\cdot\,)$
- Extend to Kernel upon strings, trees, or graphs

Explore more: <u>https://doi.org/10.7551/mitpress/</u> <u>4170.001.0001</u>

More than Kernel Perceptron

- Other algorithms can be Kernelized
 - Logistic Regression

- Do Kernel methods address
 - Expensive computation, how?
 - Overfitting

