

Kernels

Transforming Data Features

- So far we are using features as they are, $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- For example, a training sample $x=(3,-2,4)$, we are feeding values $3,-2$ and 4 to the model.
- Can we transform and create new features? $x_{1} x_{2}$?

Why Transforming Features

- To obtain another perspective of data (XOR)

- Also mapping data to higher dimension
$\operatorname{Add} x_{3}=\left(x_{1}-x_{2}\right)^{2}$

X_{1}	X_{2}	X_{3}	Y
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

Let $y=x_{3}$

Mapping to higher dimensional space

Figure credit: link

Create New Features

We can transform and create features.

Challenge: Feature space grows rapidly.

$$
\phi(x)=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n} \\
x_{1} x_{2} \\
x_{2} x_{3} \\
\vdots \\
x_{1}^{2} \\
x_{2}^{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Higher Order Polynomials

- Assume n dimensions, and d degree of polynomial
. Number of terms $\binom{n+d}{d}=\frac{(n+d)!}{n!d!}$
- Rapid growth
- m=100, d=6
- ~1.6 billion terms
- *Proof

Feature Mapping

- Pros: turn non-linearly separable classification into linear one
- Cons: feature explosion
- Computationally expensive
- Require more training examples to avoid overfitting

Kernel Methods

- Goal: capture non-linear patterns
- Mapping data to higher dimensions without explicitly computing the mapping.
- How?

Kernel Trick

- Rewrite learning algortihms so they only depend on the dot product between two samples
- Replace dot product $\phi(\mathbf{x}) \phi(\mathbf{z})$ by kernel function $k(\mathbf{x}, \mathbf{z})$,
- $k(\cdot)$ computed the dot product implicitly.

Kernel Function Example

- Consider two samples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Assume we have a kernel
- $k(\mathbf{x}, \mathbf{z})=(\mathbf{x} \cdot \mathbf{z})^{2}$
- $k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x}) \phi(\mathbf{z})$, what is the form of $\phi(\mathbf{x})$

Kernel Function Example

- Consider two samples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Assume we have a kernel

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =(\mathbf{x} \cdot \mathbf{z})^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+2 x_{1} x_{2} z_{1} z_{2}+x_{2}^{2} z_{2}^{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2} \cdot x_{2}^{2}\right) \cdot\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)
\end{aligned}
$$

$k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x}) \phi(\mathbf{z})$, what is the form of $\phi(\mathbf{x})$

$$
\phi(\mathbf{x})=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2} \cdot x_{2}^{2}\right)
$$

Compute k instead of ϕ

Kernelize Learning Algorithms

- Using $\phi(\mathbf{x})$ is straightfoward, how to use $k(\mathbf{x}, \mathbf{z})$?
- Algorithm with $\phi(\mathbf{x})$
- Assume $\mathbf{x} \in \mathbb{R}^{n}$, and $\phi(\mathbf{x}) \in \mathbb{R}^{m}, n<m$
- Learn weight parameters $\mathbf{w} \in \mathbb{R}^{m}$
- Predict y with $\mathbf{w} \cdot \phi(\mathbf{x})$

Recall a Normal Perceptron

- Let $y \in\{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b

$$
\text { We take } b \text { out here }
$$

- Repeat until satisfied
- For each training sample $\left(\mathbf{x}^{l}, y^{l}\right)$

$$
\text { If } y^{l}\left(\mathbf{w} \cdot \mathbf{x}^{l}+b\right)<0 \text {, update }\left\{\begin{array}{l}
\mathbf{w} \leftarrow \mathbf{w}+y^{l} \mathbf{x}^{l} \\
b \leftarrow b+y^{l}
\end{array}\right.
$$

Kernelize the Perceptron

- Naïve approach, replace \mathbf{x} with $\phi(\mathbf{x})$
- Let $y \in\{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b
- Repeat until satisfied
- For each training sample $\left(\mathbf{x}^{l}, y^{l}\right)$

$$
\text { If } y^{l}\left(\mathbf{w} \cdot \phi\left(\mathbf{x}^{l}\right)+b\right)<0 \text {, update } \begin{cases}\mathbf{w} & \leftarrow \mathbf{w}+y^{l} \phi\left(\mathbf{x}^{l}\right) \\ b & \leftarrow b+y^{l}\end{cases}
$$

Rewrite w

- Naïve approach, replace \mathbf{x} with $\phi(\mathbf{x})$
- Let $y \in\{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b
- Repeat until satisfied
- For each training sample $\left(\mathbf{x}^{l}, y^{l}\right)$, assume L samples in total

$$
\text { If } y^{l}\left(\mathbf{w} \cdot \phi\left(\mathbf{x}^{l}\right)+b\right)<0, \text { update }\left\{\begin{array}{l}
\mathbf{w} \leftarrow \mathbf{w}+y^{l} \phi\left(\mathbf{x}^{l}\right) \\
b \leftarrow b+y^{l}
\end{array}\right.
$$

- Rewrite w

$$
\mathbf{w}=\sum_{j=1}^{L} \alpha_{j} y^{j} \phi\left(\mathbf{x}^{j}\right) \text { where } \alpha_{j} \text { is the number of misclassifications for } j(\text { th }) \text { sample }
$$

- To make prediction on a new sample $x^{\text {new }}$

$$
\mathbf{w} \cdot \phi\left(\mathbf{x}^{n e w}\right)+b=\sum_{j=1}^{L} \alpha_{j} y^{j} \phi\left(\mathbf{x}^{j}\right) \cdot \phi\left(\mathbf{x}^{n e w}\right)+b=\sum_{j=1}^{L} \alpha_{j} y^{j} k\left(\mathbf{x}^{j}, \mathbf{x}^{n e w}\right)+b
$$

Rewrite Condition

- Naïve approach, replace \mathbf{x} with $\phi(\mathbf{x})$
- Let $y \in\{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b
- Repeat until satisfied
- For each training sample $\left(\mathbf{x}^{l}, y^{l}\right)$, assume L samples in total

$$
\text { If } y^{l}\left(\mathbf{w} \cdot \phi\left(\mathbf{x}^{l}\right)+b\right)<0 \text {, update }\left\{\begin{array}{l}
\mathbf{w} \leftarrow \mathbf{w}+y^{l} \phi\left(\mathbf{x}^{l}\right) \\
b \leftarrow b+y^{l}
\end{array}\right.
$$

. $\mathbf{w}=\sum^{L} \alpha_{j} y^{j} \phi\left(\mathbf{x}^{j}\right)$ where α_{j} is the number of misclassifications for j (th) sample

$$
\text { If } y^{l}\left(\sum_{j=1}^{j=1} \alpha_{j} y^{j} \phi\left(\mathbf{x}^{j}\right) \cdot \phi\left(\mathbf{x}^{l}\right)+b\right)=y^{l}\left(\sum_{j=1}^{L} \alpha_{j} y^{j} k\left(\mathbf{x}^{j}, \mathbf{x}^{l}\right)+b\right)<0, \text { update }\left\{\begin{array}{l}
\alpha^{l} \leftarrow \alpha^{l}+1 \\
b \leftarrow b+y^{l}
\end{array}\right.
$$

Kernelized Perceptron Algorithm

- Let $y \in\{-1,1\} \forall y$
- Initialize $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{L}=0, b=0$, assume there are L samples
- Repeat until satisfied
- For each training sample (\mathbf{x}^{l}, y^{l})

$$
\text { If } y^{l}\left(\sum_{j=1}^{L} \alpha_{j} y^{j} k\left(\mathbf{x}^{j}, \mathbf{x}^{l}\right)+b\right)<0 \text {, update }\left\{\begin{array}{l}
\alpha^{l} \leftarrow \alpha^{l}+1 \\
b \leftarrow b+y^{l}
\end{array}\right.
$$

- No more $\phi(\cdot)$

Primal and Dual Forms

Primal form

- Let $y \in\{-1,1\} \forall y$
- Initialize weights \mathbf{w}, b
- For each training sample $\left(\mathbf{x}^{l}, y^{l}\right)$
- If $y^{l}\left(\mathbf{w} \cdot \phi\left(\mathbf{x}^{l}\right)+b\right)<0$,
$= \begin{cases}\mathbf{w} & \leftarrow \mathbf{w}+y^{l} \phi\left(\mathbf{x}^{l}\right) \\ b & \leftarrow b+y^{l}\end{cases}$

Dual form

- Let $y \in\{-1,1\} \forall y$
- Initialize $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{L}=0, b=0$, assume there are L samples
- For each training sample (\mathbf{x}^{l}, y^{l})

$$
\begin{aligned}
& \text { If } y^{l}\left(\sum_{j=1}^{L} \alpha_{j} y^{j} k\left(\mathbf{x}^{j}, \mathbf{x}^{l}\right)+b\right)<0, \\
& \left\{\begin{array}{l}
\alpha^{l} \leftarrow \alpha^{l}+1 \\
b \leftarrow b+y^{l}
\end{array}\right.
\end{aligned}
$$

Popular Kernels

- Polynomial Kernel of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomial Kernel of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian Kernel

$$
K(\mathbf{u}, \mathbf{v})=e^{-\frac{\|\mathbf{u}-\mathbf{v}\|^{2}}{2 \sigma^{2}}}
$$

Among many others

Design a Kernel

- Not any function can be kernel
- For some kernel definitions, there is no corresponding $\phi(\cdot)$
- Extend to Kernel upon strings, trees, or graphs
- Explore more: https://doi.org/10.7551/mitpress/ 4170.001.0001

More than Kernel Perceptron

- Other algorithms can be Kernelized
- Logistic Regression
- Do Kernel methods address
- Expensive computation, how?
- Overfitting

