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Transforming Data Features

▪ So far we are using features as they are,  

▪ For example, a training sample , we are 
feeding values 3, -2 and 4 to the model. 

▪ Can we transform and create new features? 

X = (x1, x2, …, xn)

x = (3, − 2,4)

x1x2?
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Why Transforming Features

▪ To obtain another perspective of data (XOR) 

▪ Also mapping data to higher dimension
3

Add x3 = (x1 − x2)2

X1 X2 X3 Y

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

Let y = x3
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Mapping to higher dimensional space
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Figure credit: link

https://medium.com/mlearning-ai/ml-support-vector-machine-5a1277c195f5
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Create New Features

We can transform and create features. 

Challenge: Feature space grows rapidly.
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ϕ(x) =

x1
⋮
xn

x1x2
x2x3

⋮
x2

1

x2
2

⋮
xn

ϕ(x)x
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Higher Order Polynomials

▪ Assume  dimensions, and  degree of polynomial 

▪ Number of terms  

▪ Rapid growth 
▪ m=100, d=6 
▪ ~1.6 billion terms 

▪ *Proof

n d

(n + d
d ) =

(n + d)!
n!d!
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https://people.eecs.berkeley.edu/~jordan/kernels/0521813972c09_p291-326.pdf
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Feature Mapping

▪ Pros: turn non-linearly separable classification into linear one 

▪ Cons: feature explosion 
▪ Computationally expensive 
▪ Require more training examples to avoid overfitting
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Kernel Methods

▪ Goal: capture non-linear patterns 

▪ Mapping data to higher dimensions without explicitly 
computing the mapping. 

▪ How?
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Kernel Trick

▪ Rewrite learning algortihms so they only depend on the dot 
product between two samples 

▪ Replace dot product  by kernel function , 

▪  computed the dot product implicitly.
ϕ(x)ϕ(z) k(x, z)

k( ⋅ )
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Kernel Function Example

▪ Consider two samples  and  
▪ Assume we have a kernel  

▪  

▪ , what is the form of 

x = {x1, x2} z = {z1, z2}

k(x, z) = (x ⋅ z)2

k(x, z) = ϕ(x)ϕ(z) ϕ(x)
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Kernel Function Example

▪ Consider two samples  and  
▪ Assume we have a kernel  

 

, what is the form of  

▪

x = {x1, x2} z = {z1, z2}

k(x, z) = (x ⋅ z)2

= (x1z1 + x2z2)2

= x2
1 z2

1 + 2x1x2z1z2 + x2
2 z2

2

= (x2
1 , 2x1x2 . x2

2) ⋅ (z2
1 , 2z1z2, z2

2)

k(x, z) = ϕ(x)ϕ(z) ϕ(x)
ϕ(x) = (x2

1 , 2x1x2 . x2
2)
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Compute  instead of k ϕ
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Kernelize Learning Algorithms

▪ Using  is straightfoward, how to use ? 

▪ Algorithm with  

▪ Assume , and ,  

▪ Learn weight parameters  

▪ Predict  with 

ϕ(x) k(x, z)

ϕ(x)
x ∈ ℝn ϕ(x) ∈ ℝm n < m

w ∈ ℝm

y w ⋅ ϕ(x)
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Recall a Normal Perceptron

▪ Let  

▪ Initialize weights  

▪ Repeat until satisfied 
▪ For each training sample  

▪ If , update 

y ∈ {−1,1}∀y
w, b

(xl, yl)

yl(w ⋅ xl + b) < 0 {w ← w + ylxl

b ← b + yl
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We take  out hereb
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Kernelize the Perceptron

▪ Naïve approach, replace  with  

▪ Let  

▪ Initialize weights  

▪ Repeat until satisfied 
▪ For each training sample  

▪ If , update 

x ϕ(x)
y ∈ {−1,1}∀y

w, b

(xl, yl)

yl(w ⋅ ϕ(xl) + b) < 0 {w ← w + ylϕ(xl)
b ← b + yl
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Rewrite w
▪ Naïve approach, replace  with  

▪ Let  

▪ Initialize weights  

▪ Repeat until satisfied 
▪ For each training sample , assume  samples in total 

▪ If , update  

▪ Rewrite  

▪
 where  is the number of misclassifications for (th) sample 

▪ To make prediction on a new sample  

▪

x ϕ(x)
y ∈ {−1,1}∀y

w, b

(xl, yl) L

yl(w ⋅ ϕ(xl) + b) < 0 { w ← w + ylϕ(xl)
b ← b + yl

w

w =
L

∑
j=1

αjy jϕ(xj) αj j

xnew

w ⋅ ϕ(xnew) + b =
L

∑
j=1

αjy jϕ(xj) ⋅ ϕ(xnew) + b =
L

∑
j=1

αjy jk(xj, xnew) + b
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Rewrite Condition

▪ Naïve approach, replace  with  

▪ Let  

▪ Initialize weights  

▪ Repeat until satisfied 
▪ For each training sample , assume  samples in total 

▪ If , update  

▪
 where  is the number of misclassifications for (th) sample 

▪
If , update 

x ϕ(x)
y ∈ {−1,1}∀y

w, b

(xl, yl) L

yl(w ⋅ ϕ(xl) + b) < 0 { w ← w + ylϕ(xl)
b ← b + yl

w =
L

∑
j=1

αjy jϕ(xj) αj j

yl(
L

∑
j=1

αjy jϕ(xj) ⋅ ϕ(xl) + b) = yl(
L

∑
j=1

αjy jk(xj, xl) + b) < 0 { αl ← αl + 1
b ← b + yl
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Kernelized Perceptron Algorithm

▪ Let  

▪ Initialize , assume there are  
samples 

▪ Repeat until satisfied 
▪ For each training sample  

▪
If , update  

▪ No more  👍

y ∈ {−1,1}∀y
α1 = α2 = … = αL = 0, b = 0 L

(xl, yl)

yl(
L

∑
j=1

αjy jk(xj, xl) + b) < 0 { αl ← αl + 1
b ← b + yl

ϕ( ⋅ )
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Primal and Dual Forms

▪ Let  

▪ Initialize weights  

▪ For each training sample  

▪ If ,  

▪

y ∈ {−1,1}∀y
w, b

(xl, yl)
yl(w ⋅ ϕ(xl) + b) < 0

{w ← w + ylϕ(xl)
b ← b + yl
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▪ Let  

▪ Initialize , 
assume there are  samples 

▪ For each training sample  

▪
If ,  

▪

y ∈ {−1,1}∀y
α1 = α2 = … = αL = 0, b = 0

L

(xl, yl)

yl(
L

∑
j=1

αjy jk(xj, xl) + b) < 0

{ αl ← αl + 1
b ← b + yl

Primal form Dual form
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Popular Kernels

▪ Polynomial Kernel of degree exactly  
 

▪ Polynomial Kernel of degree up to  
 

▪ Gaussian Kernel 

 

Among many others

d
K(u, v) = (u ⋅ v)d

d
K(u, v) = (u ⋅ v + 1)d

K(u, v) = e− ∥u − v∥2

2σ2
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Design a Kernel

▪ Not any function can be kernel 
▪ For some kernel definitions, there is no corresponding  

▪ Extend to Kernel upon strings, trees, or graphs 

▪ Explore more: https://doi.org/10.7551/mitpress/
4170.001.0001

ϕ( ⋅ )
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https://doi.org/10.7551/mitpress/4170.001.0001
https://doi.org/10.7551/mitpress/4170.001.0001
https://doi.org/10.7551/mitpress/4170.001.0001
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More than Kernel Perceptron

▪ Other algorithms can be Kernelized 
▪ Logistic Regression 

▪ Do Kernel methods address 
▪ Expensive computation, how? 
▪ Overfitting
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