Support Vector Machine

1

INSTRUCTOR: HONGJIE CHEN

JUNE 13TH 2022

Best Linear Classifier (Greatest Margin)

Multiple possible classifier candidates

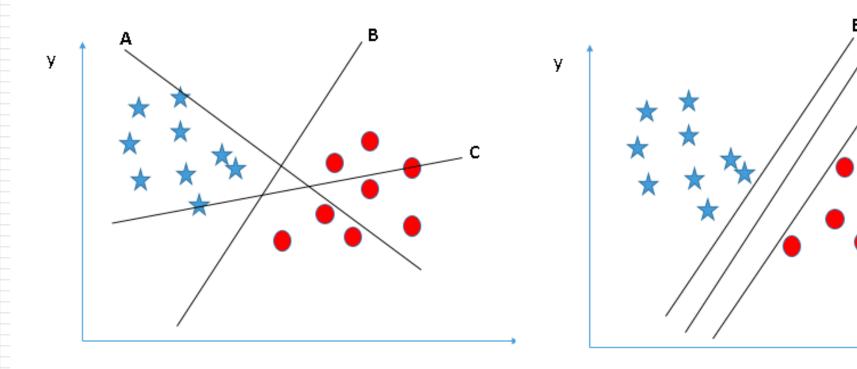
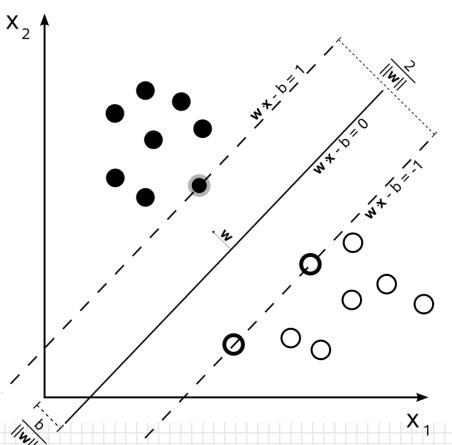


Figure credit: link

x

Decision Boundary

Parameterize the decision boundary

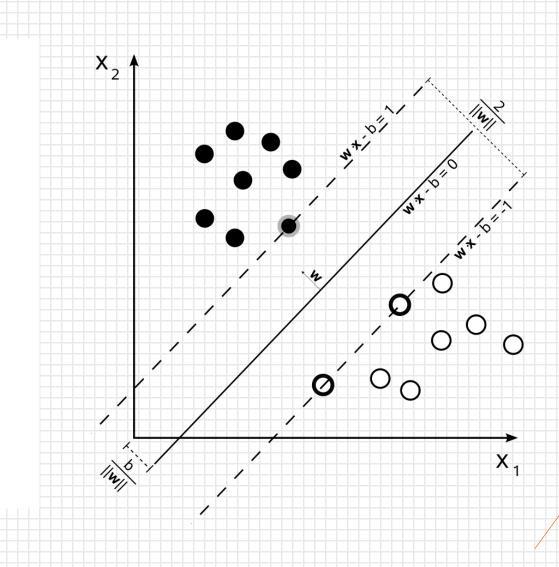


VIRGINIA TECH

Maximize the Margin

How to obtain w that maximizes the margin?

Definition of Margin?



VIRGINIA TECH

Margin

Margin = Distance of the closest sample(s) from the decision line/hyperplane

• Assume the margin is γ , how to represent it?

Represent γ

• Assume \mathbf{x}_1 on the decision line • The closest positive sample is $(\mathbf{x}_1 + \mathbf{x}_{\gamma})$ • (In the figure, assume a = 1) $\mathbf{w}^T(\mathbf{x}_1 + \mathbf{x}_{\gamma}) + b = a$ Then $(\mathbf{w}^T \mathbf{x}_1 + b) + \mathbf{w}^T \mathbf{x}_{\gamma} = a$ Then $\mathbf{w}^T \mathbf{x}_{\gamma} = \mathbf{w} \cdot \mathbf{x}_{\gamma} = a$ With $\mathbf{u} \cdot \mathbf{v} = ||u|| ||v|| \cos \theta$ X $\|\mathbf{w}\|\|\mathbf{x}_{\gamma}\| = a$ $\frac{a}{\|\mathbf{w}\|}$ Thus, $(\mathbf{w}, b) = \operatorname{argmax}_{\mathbf{w}, b} \frac{a}{\|\mathbf{w}\|} s \cdot t \cdot (\mathbf{w}^T \mathbf{x}^l + b) y^l \ge a \forall l$ $\|\mathbf{w}\|_{\gamma} = a \Rightarrow \gamma = 0$

X 2

Support Vector Machine

$$(\mathbf{w}, b) = \operatorname{argmax}_{\mathbf{w}, b} \frac{a}{\|\mathbf{w}\|} s \cdot t \cdot (\mathbf{W}^T \mathbf{X}^l + b) y^l \ge a \forall l$$

• *a* is a constant

$$(\mathbf{w}, b) = \operatorname{argmin}_{\mathbf{w}, b} \mathbf{w}^T \mathbf{w} \ s \cdot t \cdot (\mathbf{W}^T \mathbf{X}^l + b) y^l \ge a \forall l$$

Efficiently solved by Quadratic Programming (QP)

Primal and Dual Forms of SVM

- Primal form: solve for w, b
 (w, b) = argmin_{w,b} w^Tw
 s.t.(w^Tx^l + b)y^l ≥ a∀l
- Predict $\mathbf{x}^{new} : (\mathbf{w}^T \mathbf{x}^{new} + b) > 0$

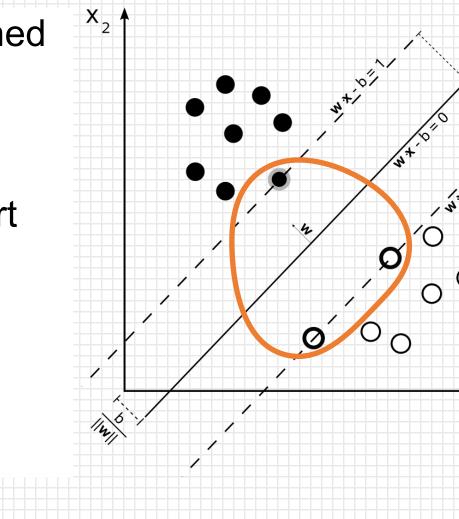
• Dual form: solve for $\alpha_1, \ldots, \alpha_L$ $\operatorname{argmax}_{\alpha} \sum_{l=1}^{L} \alpha_{l} - \frac{1}{2} \sum_{j=1}^{L} \sum_{k=1}^{L} \alpha_{j} \alpha_{k} y^{j} y^{k} (\mathbf{x}^{j} \cdot \mathbf{x}^{k})$ s.t. $\alpha_l > 0 \forall l$, $\sum \alpha_l y^l = 0$ Predict $\mathbf{x}^{new}: \sum \alpha_l y^l (\mathbf{x}^{new} \cdot \mathbf{x}^k) + b > 0$ $K(\mathbf{x}^j, \mathbf{x}^k)$

Proof*: link

Support Vectors

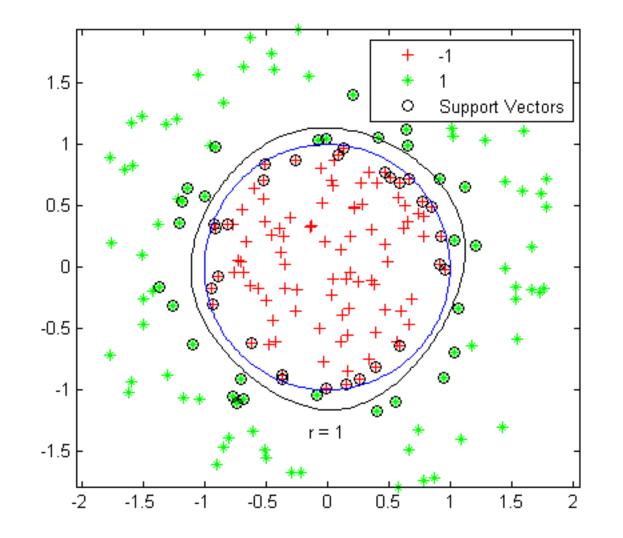
- The linear hyperplane is defined by support vectors
- Other points do not effect the decision boundary
- Only need to store the support vectors to classify new points

What about more than two classes?



Χ.

SVM with Gaussian Kernel



VIRGINIA TECH

10 C Hongjie Chen | Machine Learning

SVM Summary

- Goal: maximize margin
- Primal and dual forms
- Kernel SVM in dual form
- SVM algorithm with QP

