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Graphical Models

▪ Goal: 
▪ Express sets of conditional independence assumptions via 

a graph structure 

▪ A Graph structure with associated parameters define joint 
probability distribution over set of variables/nodes
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Recall Conditional Independence

▪  is conditionally independent of  given , if the probability 
distribution governing  is independent of the value of  given 
the value of  

▪ ,  

▪ Or equivalently  

▪ P(Thunder|Rain, Lightning)= P(Thunder|Lighting) 
▪ If there is lighting, the probability of thunder is indepedent to 

the probability of rain, or they are conditionally indepedent.

X Y Z
X Y

Z
∀i, j, k P(X = xi |Y = yj, Z = zk) = P(X = xi |Z = zk)

P(X |YZ) = P(X |Z)
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Marginal Independence

▪  is marginally indepedent of  if 

▪  

▪ Or equivalently 

X Y
∀i, j, P(X = xi |Y = yj) = P(X = xi)

∀i, j, P(Y = yi |X = xj) = P(Y = yi)
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Bayesian Network

▪ A Bayes network is a Directed Acyclic Graph 
(DAG) defining a joint probability distribution 
over a set of random variables 

▪ Each node denotes a random variable 
▪ Each edge denote a dependency of the edge 

receiver on the edge sender 
▪ A conditional probability distribution (CPD) is 

associated with each node N, defining P(N | 
Parents(N)) 

▪ The joint distribution over all variables is defined 
as 

P(X1, …, Xn) = ∏
i

P(Xi |Pa(Xi))
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Conditional Independence in Bayesian Network

▪ Each node is conditionally independent of its non-
descendents, given only its immediate parents 

▪ How to represent P(S, L, R, T, W )
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Represent P(S, L, R, T, W)

▪ Chain rule of probability 
 

▪ With  

P(S, L, R, T, W ) = P(S)P(L |S)P(R |S, L)P(T |S, L, R)P(W |S, L, R, T )

P(X1, …, Xn) = ∏
i

P(Xi |Pa(Xi))

P(S, L, R, T, W ) = P(S)P(L |S)P(R |S)P(T |L)P(W |L, R)
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Parameter Reduction

▪ How many parameters are needed? 
▪ Without Bayesian network, , each random variable is boolean,  
▪ With the Bayesian network? 

▪ Count the number of rows of each conditional probability table, and sum 
them up 

P(S, L, R, T, W )
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Bayes Network Construction Algorithm

▪ Choose an ordering over variables, e.g.  
▪ For i=1 to n 

▪ Add  to the network 

▪ Select parents  as minimal subset of  
such that  

▪ This assures 

X1, X2, …, Xn

Xi
Pa(Xi) X1, X2, …, Xi−1

P(Xi |Pa(Xi)) = P(Xi |X1, …, Xi−1)

P(X1, …, Xn) = ∏
i

P(Xi |X1, …, Xi−1) = ∏
i

P(Xi |Pa(Xi))
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Bayes Network with a Full Distribution

▪ What is the Bayes Network for  with no assumed 
conditional independece? 

▪  

▪

X1, X2…, Xn

X1, X2, X3, X4

P(X1, …, X4) = ∏
i

P(Xi |X1, …, Xi−1) = ∏
i

P(Xi |Pa(Xi))
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Bayes Network with a Full Distribution

▪ What is the Bayes Network for  with no assumed 
conditional independece? 

▪  

▪  

▪ Number of parameters 

X1, X2…, Xn

X1, X2, X3, X4

P(X1, …, X4) = ∏
i

P(Xi |X1, …, Xi−1) = ∏
i

P(Xi |Pa(Xi))
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Bayes Network for Naïve Bayes

▪ P(Y |X1, …, X4) ∝ P(Y )P(X1 |Y )P(X2 |Y )P(X3 |Y )P(X4 |Y )
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Bayes Network for Naïve Bayes

▪  

▪ Assumption help reduce parameters

P(Y |X1, …, X4) ∝ P(Y )P(X1 |Y )P(X2 |Y )P(X3 |Y )P(X4 |Y )

13

Y

1 2 3 4



© Hongjie Chen | Machine Learning

Hidden Markov Model

▪ Assume the future is condtionally independent of the past, 
given the present.
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Inference in Bayes Networks

▪ In general, intractable (NP-complete) , Don’t know  
▪ For certain cases, tractable 
▪ Assign probablity to fully observed set of variables 
▪ Or if only one variable is unobserved 
▪ Or for singly connected graphs (i.e. no undirected loops) 
▪ Belief propagation 

▪ Monte Carlo methods 
▪ Generate samples and count up the result 
▪ Calculate 

P(Data)

π
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Bayes Network Example
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Assign joint probability

▪ Suppose we want to calculate joint probability of 
 

▪ f, a, s, h, n are actual values. 
▪ Let’s use a shorthand representation 

P(F = f, A = a, S = s, H = h, N = n)

P( f, a, s, h, n)
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Calculate P( f, a, s, h, n)

▪  

▪ Inference is linear to number of random variables.

P( f, a, s, h, n) = P( f )P(a)P(s | fa)P(h |s)P(n |s)
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Calculate Marginal Probability

▪ For example, calculate P(N = n)

19



© Hongjie Chen | Machine Learning

Calculate P(N = n)

▪  

▪ Now we have to calcualte , and go all the way up 

 

▪ Exponential growth: computationally expensive

P(N = n) = ∑
s

P(N = n |S = s)P(S = s)

P(S = s)

P(N = n) = ∑
f,a,h,s

P( f, a, h, s, n)

= ∑
f,a,h,s

P( f )P(a)P(s | fa)p(n |s)
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Monte Carlo

▪ To generate random samples is easy 

▪ Assume a , draw a value  uniformly randomly 
from , if  then let  

▪ Also draw for other random variables. 

▪ Then we count the fraction of samples where  

P(F = 1) = θ r
[0,1] r < θ F = 1

N = n
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Learning Bayes Network

▪ Case 1: When graph is known, data are fully observed 

▪ Case 2: When graph is known, data are partly known
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Learning Bayes Network with Fully Observed Data

▪ For example 
 

▪ MLE 

 

The fraction of rows under the given condition(’s rows)

θs|ij = P(S = 1 |F = i, A = j)

θs|ij =
∑K

k=1 δ( fk = i, ak = j, sk = 1)

∑K
k=1 δ( fk = i, ak = j)

23
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MLE of  from Fully Observed Dataθs|ij

▪ MLE 

▪  

▪ Calculation 

θ ← argmaxθ log P(D |θ)

P(D |θ) =
K

∏
k=1

P( fk, ak, sk, hk, nk)

=
K

∏
k=1

P( fk)P(ak)P(sk | fkak)P(hk |sk)P(nk |sk)

log P(D |θ) =
K

∑
k=1

log P( fk) + log P(ak) + log P(sk | fkak) + log P(hk |sk) + log P(nk |sk)

∂ log P(D |θ)
∂θs|ij

=
K

∑
k=1

∂ log P(sk | fkak)
∂θs|ij

24 θs|ij = P(S = 1 |F = i, A = j)
̂θs|ij =

∑K
k=1 δ( fk = i, ak = j, sk = 1)

∑K
k=1 δ( fk = i, ak = j)
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MLE of  from Partially Observed Dataθs|ij

▪ If data are partially observed 
▪ For example,  is not observed 

▪  

▪ Let  be all observed variables 
▪ Let  be all unobserved variables 

▪  

▪ Can’t calculate since  is unknown, solution?  
▪ Expectation Maximation

S

θ ← argmaxθ log P(D |θ)
X
Z

θ ← argmaxθ log P(X, Z |θ)
Z
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