Graphical Models

INSTRUCTOR: HONGJIE CHEN
JUNE 13TH 2022

Graphical Models

- Goal:
- Express sets of conditional independence assumptions via a graph structure
- A Graph structure with associated parameters define joint probability distribution over set of variables/nodes

Recall Conditional Independence

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y given the value of Z
- $\forall i, j, k, P\left(X=x_{i} \mid Y=y_{j}, Z=z_{k}\right)=P\left(X=x_{i} \mid Z=z_{k}\right)$
- Or equivalently $P(X \mid Y Z)=P(X \mid Z)$
- P (Thunder|Rain, Lightning) $=\mathrm{P}$ (Thunder|Lighting)
- If there is lighting, the probability of thunder is indepedent to the probability of rain, or they are conditionally indepedent.

Marginal Independence

- X is marginally indepedent of Y if
- $\forall i, j, P\left(X=x_{i} \mid Y=y_{j}\right)=P\left(X=x_{i}\right)$
- Or equivalently $\forall i, j, P\left(Y=y_{i} \mid X=x_{j}\right)=P\left(Y=y_{i}\right)$

Bayesian Network

- A Bayes network is a Directed Acyclic Graph (DAG) defining a joint probability distribution over a set of random variables
- Each node denotes a random variable
- Each edge denote a dependency of the edge receiver on the edge sender
- A conditional probability distribution (CPD) is associated with each node N , defining $\mathrm{P}(\mathrm{N}$ | Parents(N))
- The joint distribution over all variables is defined as

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

Conditional Independence in Bayesian Network

- Each node is conditionally independent of its nondescendents, given only its immediate parents
- How to represent $P(S, L, R, T, W)$

Represent $P(S, L, R, T, W)$

- Chain rule of probability

$$
P(S, L, R, T, W)=P(S) P(L \mid S) P(R \mid S, L) P(T \mid S, L, R) P(W \mid S, L, R, T)
$$

With $P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid P a\left(X_{i}\right)\right)$

$$
P(S, L, R, T, W)=P(S) P(L \mid S) P(R \mid S) P(T \mid L) P(W \mid L, R)
$$

Parameter Reduction

- How many parameters are needed?
- Without Bayesian network, $P(S, L, R, T, W)$, each random variable is boolean,
- With the Bayesian network?
- Count the number of rows of each conditional probability table, and sum them up

Bayes Network Construction Algorithm

- Choose an ordering over variables, e.g. $X_{1}, X_{2}, \ldots, X_{n}$
- For $\mathrm{i}=1$ to n
- Add X_{i} to the network
- Select parents $\operatorname{Pa}\left(X_{i}\right)$ as minimal subset of $X_{1}, X_{2}, \ldots, X_{i-1}$ such that $P\left(X_{i} \mid P a\left(X_{i}\right)\right)=P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)$
- This assures

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\prod_{i} P\left(X_{i} \mid P a\left(X_{i}\right)\right)
$$

Bayes Network with a Full Distribution

- What is the Bayes Network for $X_{1}, X_{2} \ldots, X_{n}$ with no assumed conditional independece?
- $X_{1}, X_{2}, X_{3}, X_{4}$
$P\left(X_{1}, \ldots, X_{4}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\prod_{i} P\left(X_{i} \mid P a\left(X_{i}\right)\right)$

Bayes Network with a Full Distribution

- What is the Bayes Network for $X_{1}, X_{2} \ldots, X_{n}$ with no assumed conditional independece?
- $X_{1}, X_{2}, X_{3}, X_{4}$
$P\left(X_{1}, \ldots, X_{4}\right)=\prod_{i} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\prod_{i} P\left(X_{i} \mid P a\left(X_{i}\right)\right)$
- Number of parameters 15

Bayes Network for Naïve Bayes

- $P\left(Y \mid X_{1}, \ldots, X_{4}\right) \propto P(Y) P\left(X_{1} \mid Y\right) P\left(X_{2} \mid Y\right) P\left(X_{3} \mid Y\right) P\left(X_{4} \mid Y\right)$

Bayes Network for Naïve Bayes

- $P\left(Y \mid X_{1}, \ldots, X_{4}\right) \propto P(Y) P\left(X_{1} \mid Y\right) P\left(X_{2} \mid Y\right) P\left(X_{3} \mid Y\right) P\left(X_{4} \mid Y\right)$

- Assumption help reduce parameters

Hidden Markov Model

- Assume the future is condtionally independent of the past, given the present.

Inference in Bayes Networks

- In general, intractable (NP-complete), Don’t know P(Data)
- For certain cases, tractable
- Assign probablity to fully observed set of variables
- Or if only one variable is unobserved
- Or for singly connected graphs (i.e. no undirected loops)
- Belief propagation
- Monte Carlo methods
- Generate samples and count up the result
- Calculate π

Bayes Network Example

Assign joint probability

- Suppose we want to calculate joint probability of $P(F=f, A=a, S=s, H=h, N=n)$
- $\mathrm{f}, \mathrm{a}, \mathrm{s}, \mathrm{h}, \mathrm{n}$ are actual values.
- Let's use a shorthand representation $P(f, a, s, h, n)$

Calculate $P(f, a, s, h, n)$

- $P(f, a, s, h, n)=P(f) P(a) P(s \mid f a) P(h \mid s) P(n \mid s)$
- Inference is linear to number of random variables.

Calculate Marginal Probability

- For example, calculate $P(N=n)$

Calculate $P(N=n)$

$$
P(N=n)=\sum_{s} P(N=n \mid S=s) P(S=s)
$$

- Now we have to calcualte $P(S=s)$, and go all the way up

$$
\begin{aligned}
P(N=n) & =\sum_{f, a, h, s} P(f, a, h, s, n) \\
& =\sum_{f, a, h, s} P(f) P(a) P(s \mid f a) p(n \mid s)
\end{aligned}
$$

- Exponential growth: computationally expensive

Monte Carlo

- To generate random samples is easy
- Assume a $P(F=1)=\theta$, draw a value r uniformly randomly from [0,1], if $r<\theta$ then let $F=1$
- Also draw for other random variables.
- Then we count the fraction of samples where $N=n$

Learning Bayes Network

- Case 1: When graph is known, data are fully observed
- Case 2: When graph is known, data are partly known

Learning Bayes Network with Fully Observed Data

- For example

$$
\theta_{s \mid i j}=P(S=1 \mid F=i, A=j)
$$

K data points

- MLE

$$
\theta_{s \mid i j}=\frac{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j, s_{k}=1\right)}{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j\right)}
$$

The fraction of rows under the given condition('s rows)

MLE of $\theta_{s \mid i j}$ from Fully Observed Data

- MLE

$$
\theta \leftarrow \operatorname{argmax}_{\theta} \log P(D \mid \theta)
$$

- Calculation

$$
\begin{aligned}
& P(D \mid \theta)=\prod_{k=1}^{K} P\left(f_{k}, a_{k}, s_{k}, h_{k}, n_{k}\right) \\
&=\prod_{k=1}^{K} P\left(f_{k}\right) P\left(a_{k}\right) P\left(s_{k} \mid f_{k} a_{k}\right) P\left(h_{k} \mid s_{k}\right) P\left(n_{k} \mid s_{k}\right) \\
& \log P(D \mid \theta)=\sum_{k=1}^{K} \log P\left(f_{k}\right)+\log P\left(a_{k}\right)+\log P\left(s_{k} \mid f_{k} a_{k}\right)+\log P\left(h_{k} \mid s_{k}\right)+\log P\left(n_{k} \mid s_{k}\right) \\
& \frac{\partial \log P(D \mid \theta)}{\partial \theta_{s \mid i j}}= \sum_{k=1}^{K} \frac{\partial \log P\left(s_{k} \mid f_{k} a_{k}\right)}{\partial \theta_{s \mid i j}} \\
& \theta_{s \mid i j}=P(S=1 \mid F=i, A=j) \quad \hat{\theta}_{s \mid i j}=\frac{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j, s_{k}=1\right)}{\sum_{k=1}^{K} \delta\left(f_{k}=i, a_{k}=j\right)}
\end{aligned}
$$

MLE of $\theta_{s \mid i j}$ from Partially Observed Data

- If data are partially observed
- For example, S is not observed
- $\theta \leftarrow \operatorname{argmax}_{\theta} \log P(D \mid \theta)$
- Let X be all observed variables

- Let Z be all unobserved variables
- $\theta \leftarrow \operatorname{argmax}_{\theta} \log P(X, Z \mid \theta)$
- Can't calculate since Z is unknown, solution?
- Expectation Maximation

