

Graphical Models

Goal:

- Express sets of conditional independence assumptions via a graph structure
- A Graph structure with associated parameters define joint probability distribution over set of variables/nodes

Recall Conditional Independence

- X is conditionally independent of Y given Z, if the probability distribution governing X is independent of the value of Y given the value of Z
 - $\forall i, j, k, P(X = x_i | Y = y_j, Z = z_k) = P(X = x_i | Z = z_k)$
 - Or equivalently P(X | YZ) = P(X | Z)
- P(Thunder|Rain, Lightning)= P(Thunder|Lighting)
 - If there is lighting, the probability of thunder is indepedent to the probability of rain, or they are conditionally indepedent.

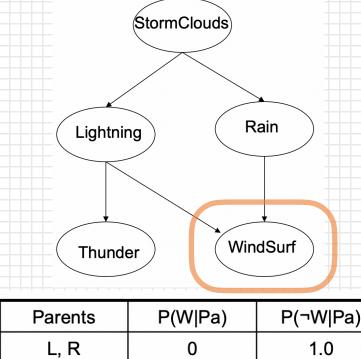
Marginal Independence

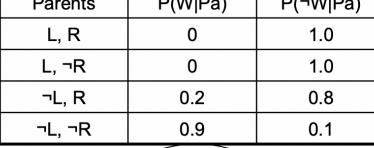
- X is marginally independent of Y if
 - $\forall i, j, P(X = x_i | Y = y_j) = P(X = x_i)$
 - Or equivalently $\forall i, j, P(Y = y_i | X = x_j) = P(Y = y_i)$

Bayesian Network

- A Bayes network is a Directed Acyclic Graph (DAG) defining a joint probability distribution over a set of random variables
- Each node denotes a random variable
- Each edge denote a dependency of the edge receiver on the edge sender
- A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parents(N))
- The joint distribution over all variables is defined as

$$P(X_1, \dots, X_n) = \prod P(X_i | Pa(X_i))$$

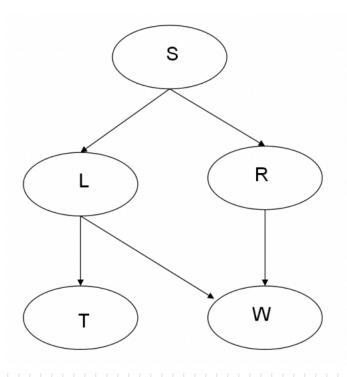




VIRGINIA TECH

Conditional Independence in Bayesian Network

- Each node is conditionally independent of its nondescendents, given only its immediate parents
- How to represent P(S, L, R, T, W)



Represent P(S, L, R, T, W)

Chain rule of probability

P(S, L, R, T, W) = P(S)P(L | S)P(R | S, L)P(T | S, L, R)P(W | S, L, R, T)

With
$$P(X_1, ..., X_n) = \prod_i P(X_i | Pa(X_i))$$

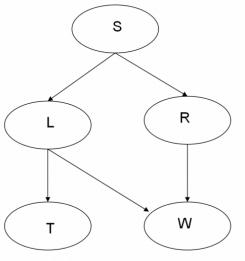
P(S, L, R, T, W) = P(S)P(L | S)P(R | S)P(T | L)P(W | L, R)

R

L

Parameter Reduction

- How many parameters are needed?
- Without Bayesian network, P(S, L, R, T, W), each random variable is boolean,
 With the Bayesian network?
 - Count the number of rows of each conditional probability table, and sum them up



Bayes Network Construction Algorithm

Choose an ordering over variables, e.g. X₁, X₂, ..., X_n
For i=1 to n

- Add X_i to the network
- Select parents $Pa(X_i)$ as minimal subset of X_1, X_2, \dots, X_{i-1} such that $P(X_i | Pa(X_i)) = P(X_i | X_1, \dots, X_{i-1})$

This assures $P(X_1, ..., X_n) = \prod P(X_i | X_1, ..., X_{i-1}) = \prod P(X_i | Pa(X_i))$

Bayes Network with a Full Distribution

What is the Bayes Network for X₁, X₂..., X_n with no assumed conditional independece?

$$X_1, X_2, X_3, X_4$$

$$P(X_1, \dots, X_4) = \prod_i P(X_i | X_1, \dots, X_{i-1}) = \prod_i P(X_i | Pa(X_i))$$

Bayes Network with a Full Distribution

What is the Bayes Network for X₁, X₂..., X_n with no assumed conditional independece?

$$X_{1}, X_{2}, X_{3}, X_{4}$$

$$P(X_{1}, ..., X_{4}) = \prod_{i} P(X_{i} | X_{1}, ..., X_{i-1}) = \prod_{i} P(X_{i} | Pa(X_{i}))$$
Number of parameters 15

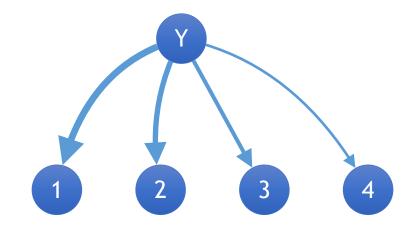
VIRGINIA TEC

Bayes Network for Naïve Bayes

• $P(Y|X_1, ..., X_4) \propto P(Y)P(X_1|Y)P(X_2|Y)P(X_3|Y)P(X_4|Y)$

Bayes Network for Naïve Bayes

• $P(Y|X_1, ..., X_4) \propto P(Y)P(X_1|Y)P(X_2|Y)P(X_3|Y)P(X_4|Y)$

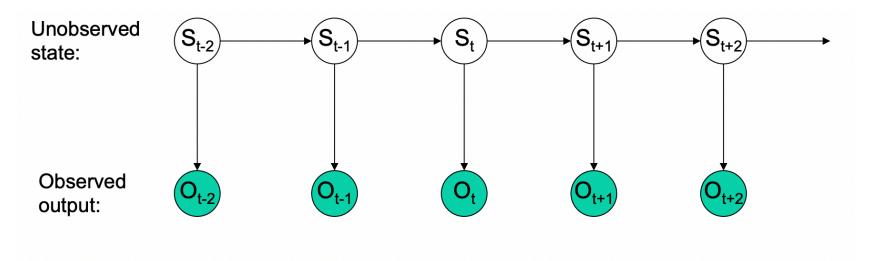


Assumption help reduce parameters

13 C Hongjie Chen | Machine Learning

Hidden Markov Model

Assume the future is conditionally independent of the past, given the present.



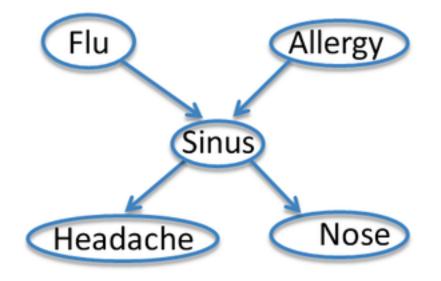
 $P(S_{t-2}, O_{t-2}, S_{t-1}, \dots, O_{t+2}) =$

Inference in Bayes Networks

In general, intractable (NP-complete), Don't know P(Data)For certain cases, tractable

- Assign probablity to fully observed set of variables
- Or if only one variable is unobserved
- Or for singly connected graphs (i.e. no undirected loops)
 - Belief propagation
- Monte Carlo methods
 - Generate samples and count up the result
 - Calculate π

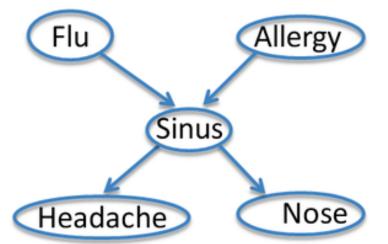
Bayes Network Example



16 © Hongjie Chen | Machine Learning

Assign joint probability

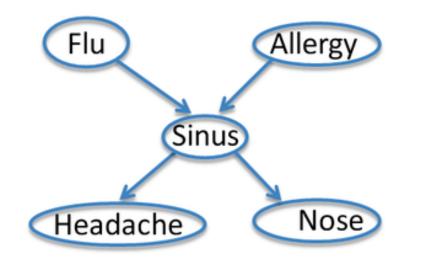
- Suppose we want to calculate joint probability of P(F = f, A = a, S = s, H = h, N = n)
- f, a, s, h, n are actual values.
- Let's use a shorthand representation P(f, a, s, h, n)



Calculate P(f, a, s, h, n)

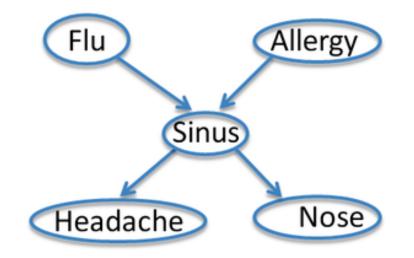
• P(f, a, s, h, n) = P(f)P(a)P(s | fa)P(h | s)P(n | s)

Inference is linear to number of random variables.



Calculate Marginal Probability

• For example, calculate P(N = n)



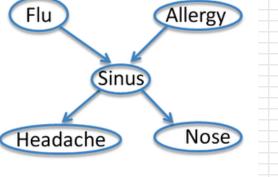
Calculate P(N = n) $P(N = n) = \sum P(N = n | S = s) P(S = s)$

Now we have to calcualte P(S = s), and go all the way up

$$P(N = n) = \sum_{f,a,h,s} P(f, a, h, s, n)$$

=
$$\sum_{f,a,h,s} P(f)P(a)P(s | fa)p(n | s)$$

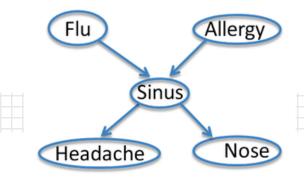
Exponential growth: computationally expensive



VIRGINIA TECH

20 C Hongjie Chen | Machine Learning

Monte Carlo



- To generate random samples is easy
- Assume a $P(F = 1) = \theta$, draw a value r uniformly randomly from [0,1], if $r < \theta$ then let F = 1
- Also draw for other random variables.

• Then we count the fraction of samples where N = n

Learning Bayes Network

Case 1: When graph is known, data are fully observed

Case 2: When graph is known, data are partly known

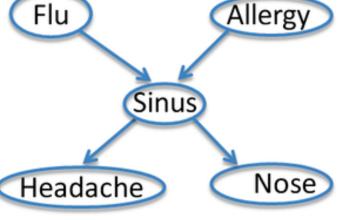
Learning Bayes Network with Fully Observed Data

For example

$$\theta_{s|ij} = P(S = 1 | F = i, A = j)$$

MLE

$$\begin{aligned} & \text{MLE} \\ \theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)} \end{aligned}$$



VIRGINIA TECH

$$MLE of \theta_{s|ij} from Fully Observed Data$$

$$MLE$$

$$\theta \leftarrow \operatorname{argmax}_{\theta} \log P(D|\theta)$$

$$\theta \leftarrow \operatorname{argmax}_{\theta} \log P(D|\theta)$$

$$P(D|\theta) = \prod_{k=1}^{K} P(f_k, a_k, s_k, h_k, n_k)$$

$$= \prod_{k=1}^{K} P(f_k) P(a_k) P(s_k | f_k a_k) P(h_k | s_k) P(n_k | s_k)$$

$$\log P(D|\theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k | f_k a_k) + \log P(h_k | s_k) + \log P(n_k | s_k)$$

$$\frac{\partial \log P(D|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k | f_k a_k)}{\partial \theta_{s|ij}}$$

$$\frac{\partial \log P(D|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k | f_k a_k)}{\partial \theta_{s|ij}}$$

$$\frac{\partial \log P(D|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k | f_k a_k)}{\partial \theta_{s|ij}}$$

$$\frac{\partial \log P(D|\theta)}{\partial \theta_{s|ij}} = \sum_{k=1}^{K} \frac{\partial \log P(s_k | f_k a_k)}{\partial \theta_{s|ij}}$$

MLE of $\theta_{s|ij}$ from Partially Observed Data

- If data are partially observed
 - For example, S is not observed
- $\bullet \ \theta \leftarrow \operatorname{argmax}_{\theta} \log P(D \,|\, \theta)$
 - Let X be all observed variables
 - Let Z be all unobserved variables
 - $\theta \leftarrow \operatorname{argmax}_{\theta} \log P(X, Z | \theta)$
 - Can't calculate since Z is unknown, solution? Expectation Maximation

