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MLE of  from Partially Observed Dataθs|ij

▪ If data are partially observed

▪ For example,  is not observed


▪ 


▪ Let  be all observed variables

▪ Let  be all unobserved variables


▪ 


▪ Can’t calculate since  is unknown, solution? 

▪ Expectation Maximation

S

θ ← argmaxθ log P(D |θ)
X
Z

θ ← argmaxθ log P(X, Z |θ)
Z
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Expectation-Maximization

▪ EM seeks to estimate 


▪ 


▪ 

▪ 


Pθ(Z |X )

θ ← argmaxθ𝔼Z|X,θ [log P(X, Z |θ)]
X = {F, A, H, N}
Z = {S}

log P(X, Z |θ) =
K

∑
k=1

log P( fk) + log P(ak) + log P(sk | fkak) + log P(hk |sk) + log P(nk |sk)

𝔼P(Z|X,θ)[log P(X, Z |θ)] =
K

∑
k=1

1

∑
i=0

P(sk = i | fk, ak, hk, nk)

[log P( fk) + log P(ak) + log P(sk | fkak) + log P(hk |sk) + log P(nk |sk)]
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𝔼[x] = ∑
i

P(X = i)i

Observed
Unobserved
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Expectation-Maximization Algorithm

▪ EM is an iterative method to estimate parameters from partly observed 
data that contains two step


▪ Given observed variable set , unobserved variable set 


▪ Initialize parameters 

▪ Iterate until converged

▪ Expectation step:


Estimate the values of unobserved  conditioned on  with 

▪ Maximization step: argmax


Use observed values and E-step estimates to derive a better 

X Z

θ

Z X θ

θ
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EM Algorithm with Maths

▪ Iterative until convergence

▪ E step: Calculate 


▪ M step: 


▪ Guaranteed to find local maximum


▪ Each iteration increases 

P(Z |X, θ)
θ′￼← argmaxθ′￼

Q(θ′￼|θ)

𝔼P(Z|X,θ)[log P(X, Z |θ′￼)]
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E step

▪ 


▪ 





X = {F, A, H, N}
Z = {S}

P(Sk = 1 | fk, ak, hk, nk, θ) =
P(Sk = 1,fk, ak, hk, nk |θ)

P(Sk = 1,fk, ak, hk, nk |θ) + P(Sk = 0,fk, ak, hk, nk |θ)
→ 𝔼[sk]
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M step

▪ Recall fully observed case





▪ Partially observed case


θs|ij =
∑K

k=1 δ( fk = i, ak = j, sk = 1)

∑K
k=1 δ( fk = i, ak = j)

θs|ij ←
∑K

k=1 δ( fk = i, ak = j)𝔼[sk]

∑K
k=1 δ( fk = i, ak = j)
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EM Description in a High Level

▪ E step:

▪ Calulcate the expectation for each unobserved variables


▪ M step:

▪ Calculate ‘MLE’ except the actual count (which is 

unknown) is replaced by its expectation count
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Another example

▪ Train Naïve Bayes with unlabled data
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EM with the Example

▪ E step:

▪ Calulcate the expectation for each unobserved variables





▪ M step:

▪ Calculate MLE except the actual count (which is unknown) is replaced by its 

expectation count





Which substitutes the term in MLE 

𝔼P(Y|X1…XN)[y(k)] = P(y(k) = 1 |x1(k), …, xN(k); θ) =
P(y(k) = 1)∏i P(xi(k) |y(k) = 1)

∑1
j=0 P(y(k) = j)∏i P(xi(k) |y(k) = j)

θij|m = ̂P(Xi = j |Y = m) =
∑k P(y(k) = m |x1(k)…xN(k))δ(xi(k) = j)

∑k P(y(k) = m |x1(k)…xN(k))

̂P(Xi = j |Y = m) =
∑k δ((y(k) = m) ∧ (xi(k) = j))

∑k δ(y(k) = m)
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Actual

Expectation


