

INSTRUCTOR: HONGJIE CHEN

JUNE 14TH 2022

MLE of $\theta_{s|ij}$ from Partially Observed Data

- If data are partially observed
 - For example, S is not observed
- $\bullet \ \theta \leftarrow \operatorname{argmax}_{\theta} \log P(D \,|\, \theta)$
 - Let X be all observed variables
 - Let Z be all unobserved variables
 - $\theta \leftarrow \operatorname{argmax}_{\theta} \log P(X, Z | \theta)$
 - Can't calculate since Z is unknown, solution? Expectation Maximation

Expectation-Maximization

- EM seeks to estimate $P_{\theta}(Z | X)$
- $\theta \leftarrow \operatorname{argmax}_{\theta} \mathbb{E}_{Z|X,\theta} \left[\log P(X, Z | \theta) \right]$ • $X = \{F, A, H, N\}$ Observed • $Z = \{S\}$ Unobserved

$$\log P(X, Z | \theta) = \sum_{k=1}^{K} \log P(f_k) + \log P(a_k) + \log P(s_k | f_k a_k) + \log P(h_k | s_k) + \log P(n_k | s_k)$$
$$\mathbb{E}[x] = \sum_{i}^{K} P(X = i)i$$
$$\mathbb{E}[x] = \sum_{i}^{K} P(X = i)i$$
$$[\log P(f_k) + \log P(a_k) + \log P(s_k | f_k a_k) + \log P(h_k | s_k) + \log P(n_k | s_k)]$$

Expectation-Maximization Algorithm

- EM is an iterative method to estimate parameters from partly observed data that contains two step
- Given observed variable set X, unobserved variable set Z
- Initialize parameters θ
- Iterate until converged
 - Expectation step:
 - Estimate the values of unobserved Z conditioned on X with θ
 - Maximization step: argmax

Use observed values and E-step estimates to derive a better $\boldsymbol{\theta}$

EM Algorithm with Maths

- Iterative until convergence
 - E step: Calculate $P(Z | X, \theta)$
 - M step: $\theta' \leftarrow \operatorname{argmax}_{\theta'} Q(\theta' | \theta)$

Guaranteed to find local maximum

• Each iteration increases $\mathbb{E}_{P(Z|X,\theta)}[\log P(X,Z|\theta')]$

E step • $X = \{F, A, H, N\}$ Allergy • $Z = \{S\}$ Sinus Nose Headache $P(S_k = 1, f_k, a_k, h_k, n_k | \theta)$ $P(S_k = 1 \mid f_k, a_k, h_k, n_k, \theta) =$ $P(S_k = 1, f_k, a_k, h_k, n_k | \theta) + P(S_k = 0, f_k, a_k, h_k, n_k | \theta)$ $\rightarrow \mathbb{E}[s_k]$

6 - C Hongjie Chen | Machine Learning

M step

Recall fully observed case

$$\theta_{s|ij} = \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j, s_k = 1)}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

Partially observed case

$$\theta_{s|ij} \leftarrow \frac{\sum_{k=1}^{K} \delta(f_k = i, a_k = j) \mathbb{E}[s_k]}{\sum_{k=1}^{K} \delta(f_k = i, a_k = j)}$$

EM Description in a High Level

- E step:
 - Calulcate the expectation for each unobserved variables

M step:

 Calculate 'MLE' except the actual count (which is unknown) is replaced by its expectation count

Another example

Train Naïve Bayes with unlabled data

Learn P(Y|X)

Y	X1	X2	X3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

EM with the Example

• E step:

Calulcate the expectation for each unobserved variables

$$\mathbb{E}_{P(Y|X_1...X_N)}[y(k)] = P(y(k) = 1 \mid x_1(k), \dots, x_N(k); \theta) = \frac{P(y(k) = 1) \prod_i P(x_i(k) \mid y(k) = 1)}{\sum_{j=0}^1 P(y(k) = j) \prod_i P(x_i(k) \mid y(k) = j)}$$

M step:

 Calculate MLE except the actual count (which is unknown) is replaced by its expectation count

Expectation

$$\theta_{ij|m} = \hat{P}(X_i = j | Y = m) = \frac{\sum_k P(y(k) = m | x_1(k) \dots x_N(k)) \delta(x_i(k) = j)}{\sum_k P(y(k) = m | x_1(k) \dots x_N(k))}$$
Actual
Which substitutes the term in MLE $\hat{P}(X_i = j | Y = m) = \frac{\sum_k \delta((y(k) = m) \land (x_i(k) = j))}{\sum_k \delta(y(k) = m)}$

VIRGINIA TECH