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Pros and Challenges
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= Deep Neural Networks (DNN) are neural networks with many layers
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= Pros: Highly expressive, accurate, mainstream method
= Challenges:
= How to train a DNN?
= How to avoid overfitting?

2 © Hongjie Chen | Machine Learning /
VIRGINIA TECH.



Expressiveness

A shallow flat NN can approximate abitrarily closely to deep
narrow NN.

When deep, fewer neurons are required to reach the same
expressiveness.

3 © Hongjie Chen | Machine Learning x ji

VIRGINIA TECH



Parity Function Example
Y,Xl,Xz,X3,X4 E {_1,1}

1, X1+X2+X3+X4 m0d2=1
=1L, X +X%+X+X) mod2=0

8 situations when predicted as 1



for Parity Function

A Shallow Flat NN
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« 21 3 = 4 hidden units
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|_A Narrow Deep NN for Parity Function

= 2n — 2, n = 4 hidden units

2 odd 2 odd 2 odd
subsets subsets subsets

if odd
if even
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I_A Simple DNN Example
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More and more terms
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Vanishing Gradients
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Weights are in [0,1] or [—1,1]
Activation functions and their derivatives are in [—1,1]
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, For example, sigmoid function o(x) =

dy
] More terms mean a— IS close to zero
Wi

= Vanishing gradients close to the starting layers
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Addressing Vanishing Gradients

Popular solutions:
Smarter units, maxout units (Rectified Linear Units)
Skip connections
Batach normalization
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I_Recl‘ified Linear Units (RelLU)

u ReLU Linear and Rectified activations
= h(a) = max(0,a) T e
= Gradient h'(a) is either O or 1 | 2 resholded ReL, theta = 1.5

= Computationally efficient — ELU. sipha=10

—  SoftPlus

= LeakyRelLU 2

h(a) = {ka, a<0 , k is a small constant
- a,a>=>0 o

= Fix dying ReLU, when there are many negative values

= Gradient is either k or 1

= Counterexample: Softplus
= h(a) =log(1 + e%) ]
= Gradient is still smaller than 1

= Making it differentiable at x = 0 does not help Input
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Maxout Units

L

= A generalization of ReLU units
= fmax(hl’ h2, cees hn) —_ maX(hl, h2, cees hn)

= h; denotes the hidden state value from i(th) input hidden node

Rectifier Absolute value Quadratic
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Addressing Overfitting

High expressivity increases the risk of overfitting
Memorizing everything causes a bad generalization

Popular solutions
Dropout (turn off some neurons)
Regularization
Data augmentation
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Dropout in Training Stage

L

= Randomly turn some units down
= For each iteration

= Each input unit is dropped with a probability p, (e.g., 0.2)
= Each hidden unit is dropped with a probability p, (e.g., 0.5)

Without dropout With dropout
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Dropout in Testing Stage

When testing, the dropout is not used
To utilize all input information
Too excited

Compensation
Multiply each input unit by 1 — p,
Multiply each hidden unit by 1 — p,
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Dropout seen as Ensemble

Dropout can be viewed as a type of ensemble learning
In each training iteration, a different subnetwork is trained

In testing, these subnetworks are aggregated.

Recall Boostrapping Aggregation (Bagging) in decision trees
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