Recurrent Neural Networks

1

INSTRUCTOR: HONGJIE CHEN

JUNE 23RD 2022

Variable Length Data

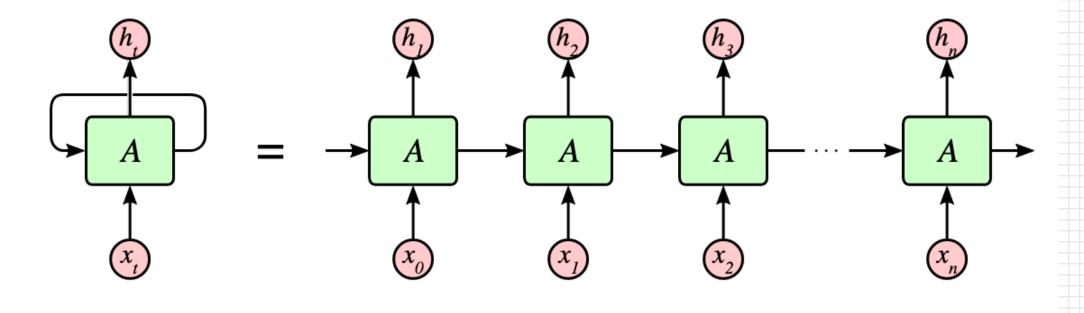
Fixed length data

Variable length data

- Time-series, for example?
- Sequential data

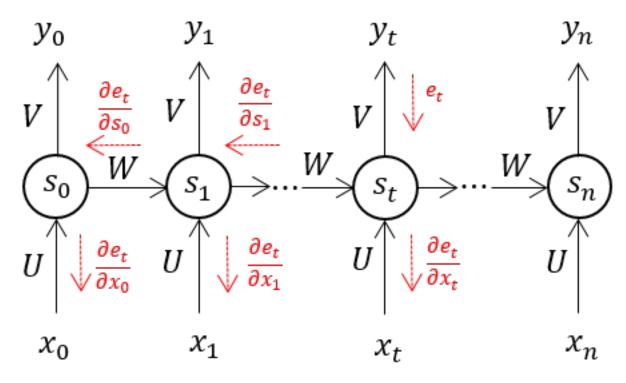
RNN

Recurrent Neural Networks (RNN) consumes sequential data by encoding data into a hidden state



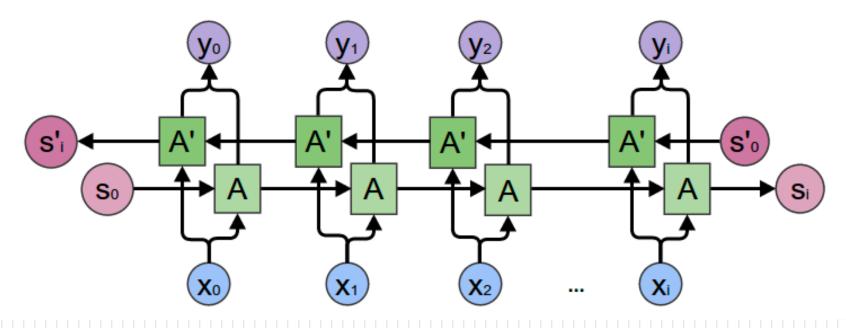
Propagation in RNN

Computation in an unrolled RNN



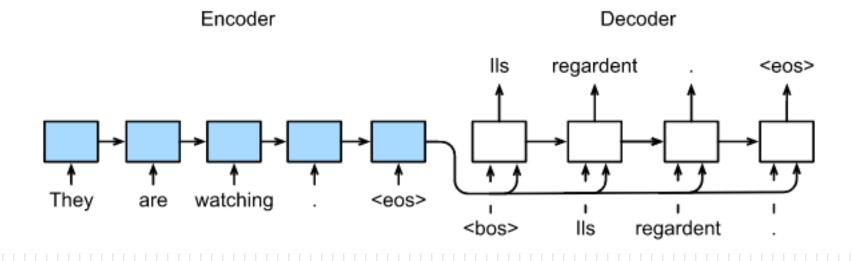
Imputation v.s. Prediction

- In some application, we have observations from the past and future, and we want to imputate a state in between
- Bi-directional RNN



Encoder-decoder Architecture

- A sequence to sequence model (seq2seq)
- Learn an embedding that serves as the input for the decoderMachine translation



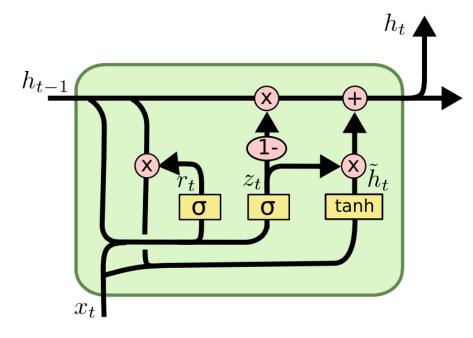
Training RNN

- Backpropagation on the unrolled network
 - All given time steps

- Challenges
 - Vanishing and explosion gradient
 - Long range memory
 - Prediction drift
- Use Demo: <u>link</u>

Popular RNN variants

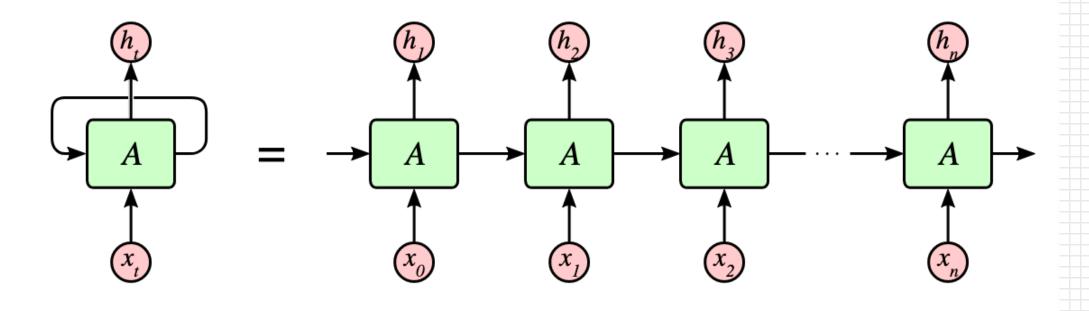
- LSTM and GRU, specific structure design
- Gated structure to control memorization and forgetting

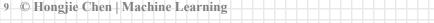


$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

Unrolled with LSTM or GRU

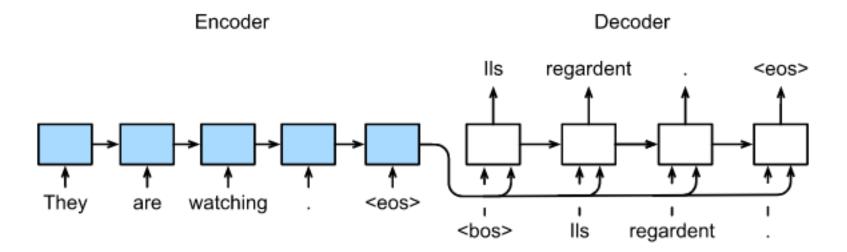
A is LSTM or GRU





Recall encoder-decoder structure

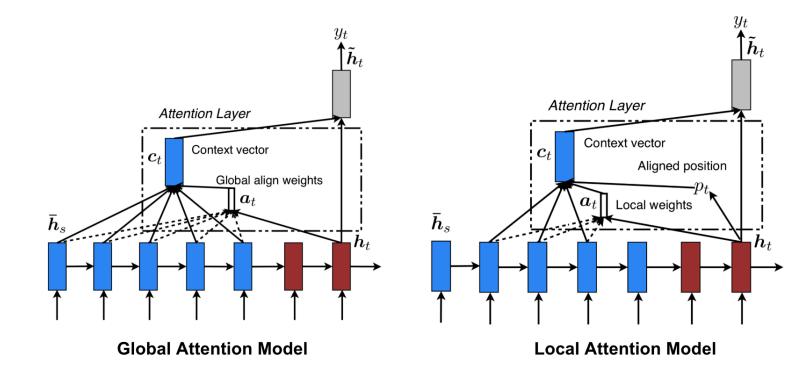
The learned embedding is fed to all unrolled steps in decoder.



However, may care less about history from far

Attention

Parameters that are used to highlight important features



Can also be incoporeated for computer vision tasks

General Attention

• A (*query*, *key*, *value*) attention mechanism

attention $(q, \mathbf{k}, \mathbf{v}) = \sum similarity(q, k_i) \times v_i$

And more

Name	Alignment score function	Citation
Content-base attention	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = ext{cosine}[oldsymbol{s}_t,oldsymbol{h}_i]$	Graves2014
Additive(*)	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i) = \mathbf{v}_a^ op ext{tanh}(\mathbf{W}_a[oldsymbol{s}_t;oldsymbol{h}_i])$	Bahdanau2015
Location- Base	$lpha_{t,i} = ext{softmax}(\mathbf{W}_a s_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015
General	$\operatorname{score}(\boldsymbol{s}_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^\top \mathbf{W}_a \boldsymbol{h}_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015
Dot-Product	$ ext{score}(oldsymbol{s}_t,oldsymbol{h}_i)=oldsymbol{s}_t^{ op}oldsymbol{h}_i$	Luong2015
Scaled Dot- Product(^)	$\operatorname{score}(\mathbf{s}_t, \mathbf{h}_i) = \frac{\mathbf{s}_t^\top \mathbf{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017

