

Embedding

Represent higher dimensional data in a lower dimensional data while still containing useful information

Embed this picture?Depending on tasks

Autoencoder

Advantages of autoencoder

- Parameter savings, fewer dimensions
- Compression
- Denoising
 - Data generation
 - Manipulate the input to the decoder part

Autoencoder with Maths

- Encoder: $f(\cdot)$
- Decoder: $g(\cdot)$
- Autoencoder $g(f(\mathbf{x})) = \mathbf{x}$
- For a training sample (x^l, y^l) , $y^l = x^l$
 - Thus, auto

Autoencoder Variants

6 C Hongjie Chen | Machine Learning

Denoising Autoencoder

Intentionally add noise to input

- $\tilde{x} = x + \mathcal{N}(0,\sigma)$
- Output remains the same

• y = x

VIRGINIA TECH

More on Dimension Reduction

- Principle Component Analysis (PCA)
 - Singular-value Decomposition (SVD)

Both are deterministic and do not need extra parameters or external training

