Generative Adversarial Networks

INSTRUCTOR: HONGJIE CHEN

JUNE 27TH 2022

Generative Networks

- Typical neural networks
 - Input: data
 - Output: class for classification, or real values for prediction

What about we design neural networks

- Input: random vector
- Output: data

Types of Generative Networks

- Generative Adversarial Networks (GAN)
- Boltzmann machines
- Sigmoid belief networks
 - Variational autoencoders
- And more...

GAN

- An adversary as one in a game
- Train two networks
 - Generator $g(\mathbf{z}; W_g) \rightarrow \mathbf{x}$
 - Discriminator $d(\mathbf{x}; W_d) \rightarrow Pr(\mathbf{x} \text{ is real})$
 - **Objective function**

Objective of GAN

The definition of real depends on the games

Train two networks

• Generator $g(\mathbf{z}; W_g) \rightarrow \mathbf{x}$

• Discriminator $d(\mathbf{x}; W_d) \rightarrow Pr(\mathbf{x} \text{ is real})$

Objective function

 $\min_{W_g} \max_{W_d} \sum_{n} \log Pr(x_n \text{ is real}; W_d) + \log Pr(g(z_n; W_g) \text{ is fake}; W_d) = \min_{W_g} \max_{W_d} \sum_{n} \log d(x_n; W_d) + \log(1 - d(g(z_n; W_g); W_d)))$

Training GAN

- Min-max optimization
- Repeat until convergence
 - Sample z_1, \ldots, z_N from Pr(z)
 - Sample x_1, \ldots, x_N from training set
 - Update discriminator by ascending its stochastic gradient

$$\nabla_{W_d}(\frac{1}{N}\sum_{n=1}^N \log d(x_n; W_d) + \log(1 - d(g(z_n; W_g); W_d)))$$

- Sample z_1, \ldots, z_N from Pr(z)
- Update generator by descending its stochastic gradient

$$\nabla_{W_d}(\frac{1}{N}\sum_{n=1}^N \log(1 - d(g(z_n; W_g); W_d)))$$

Sufficient and Converged Training

- Generator will achieve true data distribution
- Discriminator give 0.5/0.5 prediction on generated samples

VIRGINIA TECH

