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Abstract 

 
Visual programming languages can be used to 

make computer science more accessible to a broad 
range of students. The evaluative focus of current 
research in the area of visual languages for 
educational purposes primarily aims to better 
understand motivational benefits as compared to 
traditional programming languages. Often these visual 
languages claim to teach students computational 
thinking concepts; however, although the evaluations 
show that students may exhibit more enthusiasm, it is 
not always clear what computational thinking concepts 
students have actually learned. In this paper we 
attempt to develop a visual semantic evaluation tool 
for student-created games and simulations that goes 
towards depicting the computational thinking concepts 
implemented by the students. Through semantically 
analyzing a given student’s created projects over time, 
this visual evaluation tool, called the Computational 
Thinking Pattern (CTP) graph, can possibly indicate 
the existence of computational thinking transfer from 
games to science simulations. 
 
1. Introduction 
 

There is growing evidence that visual programming 
languages can be effective in teaching children how to 
program. The ability to at least reduce syntactic 
problems – for instance not being a mere semicolon 
away from total programming disaster – combined 
with the do-it-yourself spirit of the Web 2.0 generation 
have resulted in a renaissance of visual programming. 
The anticipated educational benefit of visual 
programming is mostly of a motivational nature. 
Visual programming [1,2], drag and drop style 
programming, or more generally end-user development 
[3] makes programming simpler.  

The motivational level of visual programming 
supported computer science learning, including game 
design, can be amazingly high; but the question of 

what it is that students actually learn emerges. For 
instance, in the case of the AgentSheets authoring tool 
[16,18], the large number of students instructed in 
schools is due to the fact that the Scalable Game 
Design [4] curriculum has been embedded into existing 
required courses that formerly consisted of teaching 
applications, such as word processing and 
keyboarding. In these classes most students are now 
required to participate in game design modules.  
Surprisingly, even with the forced exposure, the 
motivational numbers are extremely high. For instance 
78% of the girls and 68% of the boys stated that they 
would like to continue taking a game design course [5]. 
These kinds of programs exploring motivational 
dimensions are well supported through funding 
organizations, including the National Science 
Foundation. Unfortunately, the educational dimensions 
of these investigations are much weaker, making what 
students actually learn about computer science through 
the use of visual programming languages less clear.  

Computational Thinking [6,7] has become the 
buzzword in educational research. Early attempts to 
define computational thinking, such as the panel on 
computational thinking at the National Academies of 
Sciences, [8] suggests that consensus is not yet 
imminent. Many school districts with whom we are 
working have given us feedback that they have heard 
the term “computational thinking,” but do not 
understand what it is. Even though educators may not 
share a definition of “computational thinking,” their 
expectations of its effects overlap. Educators would 
like to walk into a game design-based class in 
computer science education and ask a student, “Now 
that you can make ‘Space Invaders’, can you also 
program a science simulation?” This is a bold question 
revealing a highly ambitious goal of transfer, including 
a testable condition. If all that students learn is to use 
simplified visual programming languages to make 
nothing but games, without the ability to apply more 
general skills to applications such as computational 
simulations, then computational thinking did not occur. 



Whatever computational thinking may be, to educators, 
it should allow students to apply a computational skill 
set to a diverse set of problems; this would be a true 
test.  

To assess computational thinking we need to be 
able to recognize various kinds of computational 
thinking skills. Many existing attempts have been 
limited in nature to skill investigations mostly at the 
syntactic level. Some investigations explore the 
specific benefits of visual programming languages in 
comparison to textual languages [9]. At the syntactic 
level, these comparisons are extremely difficult 
because visual and textual languages may not match up 
very well. The few studies that do find comparable 
languages, e.g., Logo and Scratch, [10] reveal mixed 
benefits and are unable to find simple causal 
connections between visual languages and learned 
skills. This is not a surprise to the visual language 
research community, which has extensively discussed 
these kinds of challenges. Perhaps more disappointing 
is the intrinsic limitation of syntax level analysis. The 
discussion has been limited to form (syntax), rather 
than the meaning (semantics) of a program. Largely 
this is not because people are uninterested in 
semantics, but because semantics are intrinsically hard 
to infer from existing programs.  

The field of semantics program analysis is extensive 
including reverse engineering and design intent 
recovery [11]. Even with a limited scope, for instance, 
the ability of a compiler to detect code that could run in 
parallel instead of sequential [12], semantic discovery 
can be difficult. In educational settings, educators tend 
to make the best from the situation by working with 
rubrics that provide a checklist for required behavior of 
a game. For instance, the Stanford School of Education 
developed a rubric based approach to grade middle 
school students building games with AgentSheets [13]. 
These checklists work well for teachers. Teachers run a 
student’s game while checking off the behavior that the 
game is supposed to exhibit. For instance, in Frogger, 
the user should be able to control the position of the 
frog using the cursor keys, an element of an evaluation 
rubric. Unfortunately, rubric based approaches do not 
work well, if at all, for open ended programming 
assignments, in which students can build a nearly 
unlimited range of game or simulation designs.  

In this paper we describe an early version of an 
automatic approach to computational thinking pattern 
recognition based on a semantic analysis called 
“Program Behavior Similarity (PBS)”. This approach 
can, with some probability, recognize the presence of a 
semantic level pattern without program execution. This 
paper will introduce the notion of computational 
thinking patterns, describe a way to recognize these 
patterns, and show a number of examples ranging from 

middle school to graduate school level games and 
simulations. The aim of this paper is to develop an 
early framework to recognize computational thinking 
skills in a way that is application domain independent. 
This idea is important for visual language learning as it 
pertains to human centric computing. For example, the 
ability to automatically detect computational thinking 
patterns enables the adaptation of visual language 
curricula to individual students. Ideally, we would 
demonstrate that these kinds of patterns not only exist 
for many different applications, but also, that we can 
teach these patterns in a way that could detect transfer, 
and consequently start to shed some light on the 
question, “Now that you can program ‘Space 
Invaders’, can you program a science simulation?” 
 
2. Approaches to Semantic Program 
Recognition 
 

Visual language based authoring tools have been 
created and used in a number of application domains, 
specifically in game design [13], computational science 
[14] and robotics [15]. The computational thinking 
pattern spiral (Figure 1) [5] depicts these application 
domains and the skills transfer process over time. The 
Computational Thinking (CT) Spiral embodies: 
• A collection of computational thinking patterns 

specifying common object interaction that can be 
found in a number of domains including game 
design, computational science and robotics.  

• A spiral pathway suggesting an iterative approach 
to introduce and connect these concepts. For 
instance, random movement in game design is 
conceptually similar to Brownian movement in 
physics.  

• Ordered from simple computational thinking 
patterns such as the collision of objects to highly 
advanced ones such as Maslow’s hierarchy of 
needs. These concepts build upon each other 
within the spiral. 

• Implies increased connectivity among the three 
computer science areas of robotics, computational 
science and game design. 

Ideally, learning would begin with the simplest 
concepts and progress to the more complex. The CT 
Spiral exemplifies the process of how learning transfer 
can be detected through the use of computational 
thinking patterns as they build and combine with each 
other. In our experience, over the course of the 
semester in various game design classes, we have 
informally noticed an increase in computational 
thinking complexity and possible evidence of transfer 
among students [5]. Overall, just as the spiral depiction 
offers an insightful view into the computational 



thinking transfer process, so does a student’s use of 
increasingly complex pattern combinations. 

 
Figure 1: Computational Thinking Pattern Spiral 

exemplifies computational thinking concepts from the 
simple to the complex [4] 

The aim of this research is to develop an adaptive 
mechanism able to support the teaching of visual 
programming. The ability to recognize computational 
thinking patterns is a first step towards the assessment 
of computational skills in a way necessary to solve 
challenges in applications such as game design, 
computational science and robotics. Employing the 
notion of flow [16] a human centric approach would be 
able to adapt to specific needs of users by balancing 
design challenges with the necessary skills. This would 
allow novices to gradually pick up programming skills 
starting with simple application such as basic game 
designs and then, guided by the system, to move 
towards more sophisticated games and computational 
science simulations. 

 
2.1. Program Behavior Similarity  

 
As part of the Scalable Game Design project we 

have collected thousands of games built by middle 
school students [5]. We have also collected more 
sophisticated games and science simulations from 
teaching a game design course to university 
undergraduates and graduates. To assess learning 
among such diverse projects necessitates the need to 
quantify skills beyond a collection of motivational 
data. For example, being able to automatically 
recognize the computational thinking skills outlined in 
the CTP spiral (Figure 1), would enable students and 
teachers to receive direct feedback as to a given 
student’s skill level and learned concepts. 

In trying to formulate an evaluative tool that would 
be able to distinguish increased pattern combination 
complexity within student created games, both 
syntactic and semantic formats were considered. 
Syntactic evaluation usually focuses on the form or 
structure of computation. This type of evaluation does 

not appear to be discriminating enough to show 
potential increases in computational thinking skills, 
which would lead to transfer. A semantic evaluative 
tool that could compare simpler games and projects, 
produced during the beginning of the semester, with 
games and projects, created near the end of the 
semester, could possibly reveal learning transfer. As 
students start creating science simulations based on 
natural phenomena that employ her/his knowledge, 
gained from the game design curriculum, this 
evaluative tool could point to the existence of transfer 
within these games.   

Related research, such as Lewis [10], compares two 
visual language programs (Scratch and Logo) for 
student game authoring. For this example, much of this 
research protocol centers on motivational questions to 
determine if there was any difference between each of 
the two software programs. Only knowledge of 
individual programming pieces, apart from the larger 
context of the program, were used to compare the two 
programs. Studies such as this one that evaluate on a 
purely syntactic level might show knowledge of 
individual concepts, but do not evaluate the student’s 
ability to use that knowledge within multiple contexts. 
Syntactic evaluations are not useful for detecting high-
level computational thinking knowledge or learning 
transfer. A semantic evaluation tool could be very 
useful for more accurately indicating the transfer of 
learned knowledge in this respect. 

One way to compare and profile code on more of a 
semantic level, as an alternative to just counting 
program primitives such as loops, is to look for higher 
level patterns that could be indicative for the meaning 
of a program. A similar approach called Latent 
Semantic Analysis (LSA) [17] is used to find semantic 
information in natural languages by comparing text. 
Computer languages, including visual languages, can 
be subjected to the same idea. Just like natural 
languages, computer languages are based on the notion 
of statements consisting of grammatical structure. On 
one hand, computer languages should be simpler to 
deal with as their syntactic rules tend to be less 
irregular. In LSA stemming is a fundamental problem, 
which is not relevant to computer language because 
verb conjugations are non-existent. Functions and 
primitives of computer languages are comparatively 
simple. On the other hand, the approach described here 
shares some of the documented shortcomings of LSA 
such as the Bag-of-Words problem preventing the 
recognition of semantics based on word order. 

Our first attempt at a semantic type evaluation 
involved using the rules within different AgentSheets 
games to develop a profile of these games. 
AgentSheets programs consist of user created “agents,” 
which are the game characters. For example, in the 



game Frogger, a user creates a different agent for the 
frog, truck, street etc. Every agent in AgentSheets 
consists of depictions that specify how the agent looks, 
and behaviors that are rules dictating how the agent 
acts in a given situation. All behaviors in AgentSheets 
are implemented using “If/Then” conditional 
statements [18]. AgentSheets enables the use of 16 
different conditions and 23 different actions, in 
combination, to create behaviors for any given agent. 
In Frogger, for example, to make the frog move in four 
different directions involves four “key-pressed” 
conditions associated with four “move” actions, one 
for each direction. Therefore, to make the frog move 
up, a student would program “If the keyboard up key is 
hit, then the frog moves up.” The rules to make the 
frog move every direction are depicted below in Figure 
2. 

 
Figure 2: The cursor controlled move conditions and 

action behaviors for the frog. 

With the 23 conditions and 16 actions, it is possible 
to represent each game as a vector of length 39, 
wherein each element of the vector represents how 
many of each individual conditions and actions are 
used to implement a given game. Using these vectors, 
any game created in AgentSheets can be compared to 
any other game through a high dimensional cosine 
calculation for similarity as depicted in Equation 1. 
The cosine is zero if the unit vectors are orthogonal 
and one if they are the same direction.   

 
Equation 1: The Program Behavior Similarity (PBS) is 

obtained by finding the angle in-between of two n-
dimensional vectors, u and v.  

Equation 1, allows for a simple comparison of every 
game based on the rules used. The high dimensional 
cosine similarity comparison of games is robust to two 
games having the same proportion of rules, but having 
these rules in differing numbers. In such cases, a 
syntactic analysis would categorize the games as 
different. This makes the use of the high dimensional 
cosine less of a purely syntactic evaluation and closer 
to a semantic-type evaluation. Therefore, if two games 
use the same exact rule set or rules in the same exact 

proportion to one another, the similarity score between 
the two games will be one. On the other hand, if 
completely different rules are used, the similarity 
between the two games will be zero.  

The following is an example of two games with a 
high similarity score.  

 
Figure 3: Two similar Centipede Games with a similarity 

score of 0.89 

The two games in Figure 3 are implementations of 
the classic arcade game Centipede. These games look 
similar, and, in general, two normally programmed 
Centipede games should have a very close similarity 
score1. This is in-fact the case, as the two above games 
have a similarity score of 0.89. The power of similarity 
score analysis gives us an initial metric in order to 
compare two games. However, this comparison is still 
low level, and furthermore, does not give us a 
meaningful explanation as to what computational 
thinking patterns might be used in a given game 
implementation or give insight into the existence of 
transfer. 

Although low-level, calculating program behavior 
similarity, as shown in the previous section, is one 
approach for semantic evaluation. However, the 
differences between programmers’ problem solving 
approaches and programming styles may result in an 
inaccurate semantic analysis. For example, the two 
Centipede games below (Figure 4), look similar, play 
similar, but have a low similarity score of 0.43. So why 
do these two similar games have such a low similarity 
score? The two games have differences both in their 
problem solving approaches and programming styles 
(Table 1), giving an imprecise semantic game analysis. 
Accidently, these two Centipede games have almost 
same number of rules, but their agents’ rules are 
programmed in a different manner. Both of them have 
a ‘mushroom’ agent, ie: a section of the centipede, 
when hit by a laser, turns into a mushroom. Centipede 
A uses two rules to implement the ‘mushroom’ agent 
while Centipede B uses six rules (Figure 5 and Figure 
6). This differences in implementation produces a low 
PBS score between the two games despite both games 
having almost the same number of rules and similar 
gameplay. 

                                                             
1 ‘Normally programmed’ refers to a minimum of 
unnecessary rules. 



 
Figure 4: Two Centipede Games with a low similarity 
score of 0.43 (Centipede A: Left, Centipede B: Right) 

Table 1: Structure of Centipede A and B  
 Centipede 

A 
Centipede 

B 
Number of Agent Classes 8 19 
Number of Depictions 13 35 
Number of Methods 26 38 
Number of Rules 107 129 

 
Figure 5: Rules and Conditions of a Mushroom Agent in 

Centipede A 

 
Figure 6: Rules and Conditions of a Mushroom Agent 

in Centipede B 
Based on this low similarity score these games 

would seem unrelated, which would be misleading. 
Thus, a higher-level approach to semantic evaluation 
that could detect the specific computational thinking 
patterns that constitute a given game would be more 
desirable. In order to fill this void, we developed the 
Computational Thinking Pattern (CTP) Graph as an 
attempt at a higher-level approach.  

 

2.2. Computational Thinking Pattern Graph 
 
The CTP graph illustrates the amounts and kinds of 

computational thinking patterns implemented in a 
given game. Figure 7 depicts two CTP graphs that 
identify the nine most popular computational thinking 
patterns providing tangible semantic game information 
that cannot be found through more syntactic means. 
These nine CT patterns are the result of a survey of 
game collections and science simulations that have 
been developed over a number of years. The CT 
patterns are lined up in a clockwise direction in order 
of implementation difficulty. In order to compare the 
CTP graphs, the positioning of the computational 
thinking patterns remain in the same order in any given 
CTP graph. The internal rationale of the CTP graph is 
an extension of the Program Behavior Similarity score. 
The CTP graph is drawn by calculating the PBS score 
between a given AgentSheets project and nine 
representative canonical patterns. Each canonical 
pattern form represents one computational thinking 
pattern such as ‘cursor control’, ‘generation’, etc. 
These canonical patterns can be found on the Scalable 
Game Design Arcade (SGDA).  

On the CTP graph, the score for each vector, 
multiplied by 10, depicts the PBS score between a 
given game and each canonical pattern (computational 
thinking pattern). Also, the score for each vector 
represents how much a certain computational thinking 
pattern is employed in a given game. So, if a game has 
features, which are not in the CTP graph structure, the 
CTP graph will not analyze those features. Therefore, 
the remaining computational thinking patterns would 
be a smaller portion of the graph. Consequently, 
undetected features will lower the PBS score of those 
computational thinking patterns. As a result, the CTP 
graph for that game will be smaller than a game that 
employs only the computational thinking patterns 
within the CTP graph structure. 

Though the top and bottom images in Figure 7 look 
the same size, they are scaled differently. This is due to 
the fact that the greatest computational thinking pattern 
value in the top image is 8 whereas the greatest 
computational thinking pattern value in the bottom 
image is 4. This difference in scaling is more apparent 
in Figure 8 wherein the two CTP graphs are 
overlapped. 

When comparing these two Centipede games above, 
using the CTP graph, the graph reveals more accurate 
analysis (Figures 7 and 8). Though these two games 
may use different implementations, they employ the 
same computational thinking patterns because they are 
the same game. Consequently, the CTP graph gives us 
the true picture of the underlying semantic meaning of 
these games.  



The CTP graph can help users, such as teachers or 
students, more effectively interpret and evaluate 
games. Furthermore, this CTP graph is automatically 
generated when a student submits her/his game to the 
SGDA giving instant feedback [7]. The authors of 
SGDA have used the system to collect around 2500 
AgentSheets projects including arcade games such as 
Frogger, Sokoban, Centipede etc. and various science 
simulations from the participants of the Scalable Game 
Design project [4]. Students can get instant semantic 
evaluation feedback right after he/she submits his/her 
project to SGDA through the CTP graph and students 
have the ability to compare their games to the other 
AgentSheets project on the SGDA.  

 

 
Figure 7: CTP Graph of Centipede A (top) and Centipede 

B (bottom)  

 
Figure 8: CTP graphs from Centipede A and B 

 
3. Transfer 

 
Bransford et al [19] describe knowledge transfer as 

the most common method for human beings to learn 
the necessary components of life. Transfer is defined as 
the ability to extend or use what has been learned in 
one context into a new context or to solve a new 
problem. Using this definition, all learning can be 

considered a form of transfer. Knowledge transfer can 
be aided by using multiple contexts (the more diverse 
settings, the better) to demonstrate new concepts to 
students. The new knowledge can then be retained by 
the student in a more abstract form. When new types of 
future situations occur, this knowledge can then be 
accessed by the student. Students are not normally able 
to transfer purely conceptual information to real world 
situations without help. Linking any concept to a single 
setting or context can also cause difficulty with 
transferring knowledge to new situations. So, although 
transfer is our preferred mode of learning and retaining 
new information, transfer cannot be assumed in any 
given context. Previous knowledge that students build 
upon can also enhance or deter the effort to assimilate 
new information. Consequently, the ability to detect 
possible knowledge transfer could benefit researchers 
in many disciplinary areas  [19]. 

Since learning and knowledge from the field of 
Computer Science in general can potentially be 
integrated and used productively in many other 
disciplines, promoting the transfer of computer science 
knowledge into these areas could substantially enhance 
learning and research within the computer science 
field. Having a tool, which could detect the potential 
transfer of computer science knowledge, as well as to 
other disciplines, would tend to increase the breadth 
and validity of computer science research, and 
contribute to the growth of the field. The CTP graph 
could potentially demonstrate the existence of 
knowledge transfer, not just within related computer 
science fields (Figure 1), but across disciplinary lines.  

The CTP graph was first developed as a means to 
offer feedback to students uploading their games to the 
SGDA. The SGDA served as a submission format for 
introductory game programming courses using 
AgentSheets. During the semester, students are 
exposed to simple computational thinking patterns; as 
the class progresses they are introduced to more 
complex and diverse computational thinking patterns. 
Towards the end of the class, students are given open-
ended assignments. For these assignments students are 
encouraged to build on their initial knowledge from the 
class in order to create their games. For the final 
project, students often choose to create simulations that 
depict some natural phenomena. Semantically 
analyzing a given student’s games from the beginning 
of the semester as compared to their final project 
(especially a science simulation), could offer an 
opportunity to discover potential knowledge transfer.  

For instance, a chaos theory simulation created by 
one student (Figure 11) with the accompanying CTP 
graph, shows how he mixed and combined 
computational thinking patterns that he had learned and 
used when previously programming Sokoban (Figure 



9) and Sims (Figure 10). The CTP graph of his science 
simulation is very similar to the combined CTP graphs 
of Sokoban and Sims (Figure 12).  Consequently, for 
this student, the CTP graphs indicate that knowledge 
transfer has occurred. 

 

 
Figure 9: Screenshot and CTP Graph of Sokoban  

 

 
Figure 10: Screenshot and CTP Graph of Sims  

 

 
Figure 11: Screenshot and CTP Graph of Chaos 

Theory Simulation  

 
Figure 12: Comparison of CTP Graphs: depicts the 

Sims-Sokoban combination 
 

4. Discussion  
 
For the last decade, several visual programming 

languages have provided easy ways for young children 
to learn programming concepts and skills. Many of 
these visual languages successfully motivate students. 
However, visual language research has not focused on 
what kind of knowledge students have actually learned 
from creating these games. The CTP graph provides an 
initial way to assess specific knowledge accumulated 
by students within a given class. 

As we have observed, the ability to detect 
computational thinking patterns is important for school 
teachers and students using visual languages for 
education. The CTP graph provides us with an initial 
means to answer the question “Now that the student 
can program Space Invaders, can the student program a 
science simulation?” Furthermore, the CTP graph has 
the ability to enable Human Centric Computing as 
teachers can get immediate feedback on their student’s 
progress.      

Limitations of the CTP graph include the arbitrary 
nature of the specified computational thinking patterns, 
the difficulty in differentiating similar patterns, and the 
number of computational thinking patterns chosen for 
the CTP graph. Among the chosen computational 
thinking patterns, a few, such as diffusion, are not 
depicted as accurately as the others, such as hill 
climbing. Although this anomaly needs to be further 
investigated, it does not taint the relative accuracy of 
the CTP graph, nor diminish its value for detecting the 
presence of knowledge transfer in these situations. 

Analyzing computational thinking patterns in 
multiple combinations is a step closer to demonstrating 
the depth and breadth of students’ knowledge. The 
semantic nature of the CTP graph allows us to evaluate 
and visualize a program’s actual underlying meaning. 
A syntactic evaluation of a student’s learning only 
shows the student’s knowledge in a very limited 
context. Moreover, the implementation of a given 
student’s previously learned computational thinking 



patterns to a scientific context gives us a clearer picture 
of how the student transferred new knowledge to a new 
situation, demonstrating that through the CTP graph 
comparison knowledge transfer exists. 

 
4.1. Future Work  

 
Although in most learning scenarios, knowledge 

transfer is often assumed, this transfer cannot be 
guaranteed to have actually taken place. The CTP 
graph is a better tool for evaluating knowledge transfer 
because the graph represents the CTP combinations as 
an observable, and definable outcome. The ability to 
detect knowledge transfer through the CTP graph, over 
the duration of a semester course, is a positive first step 
towards measuring transfer in other areas, and possibly 
other forms of learning.  

Future research will include additional validation of 
computational thinking pattern recognition. The 
current model has been validated manually by 
comparing CTP graph output with human graders 
evaluating computational thinking patterns by playing 
games/simulations and looking at the source code. The 
CTP graphs have performed quite well. However, at 
this point we speculate that problems such as potential 
false positives could be reduced by deepening the level 
of analysis. Specifically, the current level of analysis 
stops at individual conditions and actions. The analysis 
does not drill further down into parameters to these 
actions and conditions which could be used to 
discriminate between similar patterns more effectively. 
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