
28 COmmuniCatiOns Of the aCm | jUNE 2009 | vOl. 52 | NO. 6

V
viewpoints

Is computational thinking a •

unique and distinctive characteriza-
tion of computer science?

Is computational thinking an ad- •

equate characterization of computer
science?

My own conclusion is that both an-
swers are no. I will suggest that a prin-
ciples-based framework answers both
questions yes. We are custodians of a
deep and powerful discourse: Let’s not
hide it with an inadequate name.

What is Computational thinking?
Computational thinking has a long his-
tory within computer science. Known
in the 1950s and 1960s as “algorithmic
thinking,” it means a mental orienta-
tion to formulating problems as con-
versions of some input to an output
and looking for algorithms to perform
the conversions.

Today the term has been expanded
to include thinking with many levels
of abstractions, use of mathematics
to develop algorithms, and examining
how well a solution scales across differ-
ent sizes of problems.1

is Computational thinking
unique to Computer science?
In the 1940s, John von Neumann wrote
prolifi cally on how computers would
be not just a tool for helping science,
but a way of doing science.

As early as 1975, Physics Nobel
Laureate Ken Wilson promoted the
idea that simulation and computation

I
n thE mIDst of our struggle to
better articulate why comput-
ing is so much broader than
programming, a movement of
sorts has emerged. It is being

called “computational thinking.”8

The U.S. National Science Founda-
tion’s Computer and Information
Science and Engineering (CISE) di-
rectorate has asked most proposers,
especially those in its CPATH initia-
tive, to include a discussion of how
their projects advance computational
thinking. Carnegie Mellon Universi-
ty’s Center for Computational Think-
ing says, “It is nearly impossible to
do research in any scientifi c or engi-
neering discipline without an abil-
ity to think computationally.…[We]
advocate for the widespread use of
computational thinking to improve
people’s lives.”1

Computational thinking is seen
by its adherents as a novel way to say
what the core of the fi eld is about, a
lever to reverse the decline of enroll-
ments, and a rationale for accepting
computer science as a legitimate fi eld
of science. This movement is driven by
four main concerns:

Bringing computer science to •

the table of science (as partner, not
programmer).

Finding ways to make computer •

science a more attractive fi eld for stu-
dents to major in and for other scienc-
es to collaborate with.

Resurrecting ongoing inquiry into •

the deep questions of the fi eld.6,9

Showing that computation is funda- •

mental, and often unavoidable, in most
endeavors—a desire to proselytize.

Since starting a stint at NASA-Ames
in 1983, I have been heavily involved
with computational science and I have
devoted a substantial part of my own ca-
reer to advancing these objectives. Since

2003 I have advocated a great-principles
approach to the perennially open ques-
tion, “What is computer science?”4

Yet I am uneasy. I am concerned that
the computational thinking movement
reinforces a narrow view of the fi eld
and will not sell well with the other sci-
ences or with the people we want to at-
tract. I worry that we are not getting out
of the box, but are merely repackaging
it with new paper and a fresh ribbon.

In this column, I will examine two
key questions:

DOI:10.1145/1516046.1516054 Peter J. Denning

the Profession of It
Beyond Computational
thinking
If we are not careful, our fascination with “computational thinking”
may lead us back into the trap we are trying to escape.

÷?÷?÷

V
viewpoints

june 2009 | vol. 52 | no. 6 | communications of the acm 29

were a way to do science that was not
previously available. Wilson’s Nobel
Prize was based on breakthroughs he
achieved in creating computational
models whose simulations produced
radical new understandings of phase
changes in materials. In the early 1980s,
Wilson joined with other leading scien-
tists in many fields to advocate that the
grand challenges of science could be
cracked by computation and that the
government could accelerate the pro-
cess by supporting a network of super-
computing centers.7 They argued that
computation had become a third leg
of science, joining the traditional legs
of theory and experiment. The term
“computational thinking” was com-
mon in their discussions.

The computational sciences move-
ment eventually grew into a huge
interagency initiative in high-perfor-
mance computing, and culminated in
the U.S. Congress passing a law fund-
ing a high-performance computing
initiative in 1991.

This movement validated the notion
that computation (and computational
thinking) is essential to the advance-
ment of science. It generated a power-
ful political movement that codified
this notion into a U.S. federal law.

It is important to notice that this
movement originated with the leaders
of the physical and life sciences. Com-

puter science was present but was not a
key player. Computer scientists, in fact,
resisted participation until NSF CISE
and DARPA set up research programs
open only to those collaborating with
other sciences.

In the middle 1980s, Ken Wilson ad-
vocated the formation of departments of
computational science in universities.
He carefully distinguished them from
computer science. The term “computa-
tional science” was chosen to avoid con-
fusion with computer science.

Thus, computational science is seen
in the other sciences not as a notion
that flows out of computer science, but
as a notion that flows from science it-
self. Computational thinking is seen as
a characteristic of this way of science.
It is not seen as a distinctive feature of
computer science.

Therefore, it is unwise to pin our
hopes on computational thinking as a
way of telling people about the unique
character of computer science. We
need some other way to do that.

The sentiment that computational
thinking is a recent insight into the true
nature of computer science ignores the
venerable history of computational
thinking in computer science and in
all the sciences. Computer science is
a science in its own right (see the side-
bar “Computer Science as Science”).

Is Computational Thinking
Adequate for Computer Science?
In 1936 Alan Turing defined what it
means to compute a number. He of-
fered a model of a computing machine
and showed that the machines were
universal (one could simulate anoth-
er). He then used his theory to settle
a century-old “decision problem” of
mathematics, whether there is a by-
inspection method to tell if a set of de-
cision rules can terminate with a deci-
sion in a finite number of moves. He
showed that the “decision problem” was
not computable and argued that the very
act of inspecting is inherently compu-
tational: not even inspectors can avoid
computation. Computation is universal
and unavoidable. His paper truly was the
birth of computer science.

The modern formulations of science

Computation is
unavoidable not
only in the method
of study, but in
what is studied.

Computer Science as Science
Since its beginnings in the late
1930s, computer science has
been a unique combination of
math, engineering, and science.
It is not one, but all three. Major
subsets form legitimate fields of
math, engineering, or science.
But if you focus on a single
subset, you cannot express the
uniqueness of the field.

The term “computer
science” traces back to the
writings of John von Neumann,
who believed that the
architecture of machines and
applications could be put on a
rigorous scientific basis.

Until about 1990, the
emphasis within the field was
developing and advancing
the technology. Building
reliable computers within a

networking infrastructure was
a grand challenge that took
many years. Now that this has
been accomplished, we are
increasingly able to emphasize
the experimental method and
reinvigorate our image as a
science. Our many partnerships
with other sciences including
biology, physics, astronomy,
materials science, economics,
cognitive science, and
sociology, have led to amazing
innovations.

These collaborations
have uncovered questions
in the other fields about
whether computer science is
legitimately science. Many see
computer people as engineers
implementing principles they
did not discover rather than

equal partners in the search for
new principles. So it matters
whether computer science
qualifies as a full-fledged
science. Whether a field is seen
as a science depends on its
satisfying six criteria:5

Has an organized body of ˲˲
knowledge

Results are reproducible˲˲
Has well developed experi-˲˲

mental methods
Enables predictions, includ-˲˲

ing surprises
Offers hypotheses open to ˲˲

falsification
Deals with natural objects˲˲
Computer science easily

passes the first five of these
tests, so the debate has tended
to center on the last. During
the past decade, prominent

scientists in other fields have
discovered natural information
processes—affirming the
sixth criterion.3 The older
definition of computer science
as “the study of phenomena
surrounding computers,”
which dates back to Alan
Perlis, George Forsythe, and
Allen Newell around 1970,
is giving way to “the study
of information processes,
natural and artificial.” The
shift from computer as object
of study to computer as tool is
enabling us to revisit the deep
questions of our field in the
new light of computation as a
lens through which to see the
world. The most fundamental
of these questions is: What is
computation?6,9

30 communications of the acm | june 2009 | vol. 52 | no. 6

viewpoints

recognize the same truth when they say
that computation is an essential meth-
od of doing science. In fact, a growing
number of scientists are now saying
that information processes occur nat-
urally (for example, DNA transcrip-
tion) and that computation is needed
to understand and eventually control
them.3 So computation is unavoidable
not only in the method of study, but in
what is studied.

This is a subtle but important dis-
tinction. Computation is present in
nature even when scientists are not ob-
serving it or thinking about it. Compu-
tation is more fundamental than com-
putational thinking. For this reason
alone, computational thinking seems
like an inadequate characterization of
computer science.

A number of us developed a great
principles framework that exposes
the fundamental scientific principles
of computing4,6 (see the sidebar “The
Great Principles Framework”). This
framework interprets computer sci-
ence as the study of fundamental prop-
erties of information processes, both
natural and artificial. Computers are
the tool, not the object of study. Com-
putation pervades everyday life.2

The great principles framework
reveals that there is something even
more fundamental than an algorithm:
the representation. Representations
convey information. A computation is
an evolving representation and an al-
gorithm is a representation of a meth-
od to control the evolution.

In this framework, computational
thinking is not a principle; it is a prac-
tice. A practice is a way of doing things

at which we can develop various levels
of skill. Computational thinking is one
of several key practices at which every
computer scientist should be compe-
tent (see the sidebar “The Great Prin-
ciples Framework”). It shortchanges
computer science to try to characterize
the field by mentioning only one essen-
tial practice without mentioning the
others or the principles of the field.

Conclusion
Computation is widely accepted as a
lens for looking at the world. We do not
need to sell that idea. Computational
thinking is one of the key practices of
computer science. But it is not unique
to computing and is not adequate to
portray the whole of the field.

In the 1960s and 1970s we allowed,
and even encouraged, the perception
“CS = programming,” which is now to
our dismay widely accepted outside the
field and is connected with our inabil-

The real value of
computer science
is in the offers we
are able to make
from our expertise,
which is founded
in a rich and deep
discourse.

ity to take care of the concerns listed at
the beginning of this column. But giv-
en the outside perception, computa-
tional thinking is all too easily seen as a
repackaging—a change of appearance
but not of substance. Do we really want
to replace that older notion with “CS =
computational thinking”? A colleague
from another field recently said to me:
“You computer scientists are hungry!
First you wanted us to take your courses
on literacy and fluency. Now you want
us to think like you!”

I suggest that the real value of com-
puter science is in the offers we are able
to make from our expertise, which is
founded in a rich and deep discourse.
We are valued at the table when we
help the others solve problems they
care about. We are most valued not for
our computational thinking, but for
our computational doing.	

References
1.	C arnegie Mellon University Center for Computational

Thinking; http://www.cs.cmu.edu/~CompThink.
2.	C omputer Science Unplugged Web site; http://

csunplugged.org.
3.	 Denning, P. Computing is a natural science. Commun.

ACM 50, 7 (July 2007), 13–18.
4.	 Denning, P. Great principles of computing. Commun.

ACM 46, 11 (Nov. 2003), 15–20.
5.	 Denning, P. Is computer science science? Commun.

ACM 48, 4 (Apr. 2005), 27–31.
6.	G reat Principles of Computing Web site; http://

greatprinciples.org.
7.	 Wilson, K.G. Grand challenges to computational

science. In Future Generation Computer Systems.
Elsevier, 1989, 171–189.

8.	 Wing, J. Computational thinking. Commun. ACM 49, 3
(Mar. 2006), 33–35.

9.	 Wing, J. Five deep questions in computing. Commun.
ACM 51, 1 (Jan. 2008), 58–60.

Peter J. Denning (pjd@nps.edu) is the director of the
Cebrowski Institute for Information Innovation and
Superiority at the Naval Postgraduate School in Monterey,
CA, and is a past president of ACM.

Copyright held by author.

The Great Principles Framework
The Great Principles (GP)
framework is a way to express
computer science as a field
of science based on deep
and enduring fundamental
principles.3,4,6 The framework
has two parts: core principles
and core practices.

The core principles are
statements and stories about
the immutable laws and
recurrences that shape and
constrain all computing

technologies. They can be
grouped into seven categories:

Computation˲˲
Communication˲˲
Coordination˲˲
Recollection˲˲
Automation˲˲
Evaluation˲˲
Design˲˲
These are not mutually

exclusive groups of principles,
but windows that bring
particular perspectives about

computing. The Internet, for
example, is a technology that
draws its operating principles
primarily from communication,
coordination, and recollection,
and its architecture from design
and evaluation.

The core practices are areas
of skill and ability at which
computing people can display
various levels of performance
such as beginner, competent,
and expert. There are four core

practices:
Programming˲˲
Engineering of systems˲˲
Modeling˲˲
Applying˲˲
Computational thinking

can be seen either as a style of
thought that runs through the
practices or as a fifth practice.
It is the ability to interpret
the world as algorithmically
controlled conversions of inputs
to outputs.

