
Initial Experience with a Computational Thinking Course
for Computer Science Students

Dennis Kafura, Deborah Tatar
Department of Computer Science

Virginia Tech
{kafura, tatar}@cs.vt.edu

ABSTRACT
Experience with the first offering of a computational thinking
course for computer science (CT4CS) students is reported. The
course is grounded in student interaction with fundamental,
recurring concepts suggested by comparison with two sets of
computer science principles. By using specialized, freely
available tools and physical simulations it is possible to provide
concrete, tangible learning experiences that neither require
knowledge of nor the overhead of programming. Student end-of-
term reflections indicate that the course deepened and broadened
their understanding of computer science even when they had
previously encountered a topic, and improved their computer
science vocabulary.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education

General Terms
Design, Experimentation

Keywords
Computational thinking, curriculum,CS0, pedagogy

1. INTRODUCTION
Like many departments across the country, the Department of
Computer Science at Virginia Tech has worked to revamp the
entry points to its undergraduate curriculum. A particular focus
of concern has been the widespread perception that computer
science is “just details of programming.” This effort has
included restructuring the sequence of programming courses,
introducing an optional media computation first course, and
adding an early required non-programming course in problem-
solving.
Another, as yet experimental, approach is a “computational
thinking” first course referred to as CT4CS. The name CT4CS is
used because the conception of this course draws on the general
computational thinking concern for promoting an early and
deeper understanding of critical notions of computation [7, 10,

20, 21]. But this project differs from other efforts because it
focuses on students interested in computer science as a likely
area of study. Thus, rather than developing computational
thinking for and embedded in other disciplines, we are interested
in computational thinking as a core component and attractive
aspect of computer science itself. Courses in computational
thinking that target other fields of study (science, engineering,
liberal arts, etc.) are clearly needed and well motivated. While
the goal of computational thinking to help students develop
“ways to think like a computer scientist” [20] is universally
valuable, this goal is especially critical to students learning to
become practicing computer scientists.
The overarching goal of this course is to create learning
experiences that allow prospective computer science majors to
encounter recurring, fundamental concepts in computer science
early in their study. Through these experiences students
explicitly learn a number of critical principles but, perhaps more
importantly, develop a cognitive model for and underlying
intuitions and mental models about computational phenomenon.
In this way, students develop an initial, albeit incomplete,
framework for their future study of computer science, a
framework that aids them in recognizing connections across
courses which may otherwise go unnoticed. From a pedagogical
standpoint, this approach builds on Bransford’s notion of
contrasting cases [1] which emphasizes that learning is aided by
seeing the introduction of new ideas as a solution to a pre-
existing problem. Students, therefore, are better positioned to
recognize key ideas later on, integrate them into the particulars
of more advanced courses, and enrich their epistemologies
throughout the course of their studies. Instructors across the
computer science curriculum can also assist students integrate
and deepen their understanding by explicitly referencing the
concepts. The course objectives were to:
• better inform prospective majors about the nature of computer

science,
• engender a set of intuitions, perspectives, thought processes,

or mental models that are indicative of how computer
scientists view the world and conduct the practice of their
work,

• introduce recurring, fundamental concepts and structures –
ideas that appear, perhaps implicitly, in several different
contexts in computer science, and

• develop a more sophisticated computer science epistemology,
including key vocabulary.

These goals are, of course, to be understood in the context of a
single semester introductory course.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’11, March 9–12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03...$10.00.

251

A feature of CT4CS is that it does not require prior knowledge
of and does not use programming. The decision to avoid
programming was motivated by four considerations. First, to
convincingly illustrate that computer science is “more than just
programming,” the course allows students to encounter basic
principles of computation without reference to programming.
Second, in the absence of programming, the students’ full time
and energy is focused more clearly on the concepts because
these concepts are not confounded with the extraneous details of
how these concepts are expressed in a given programming
language. Third, avoiding programming helps to diminish the
effect of the students’ prior, usually programming experience on
their opportunity to learn the concepts presented in the course.
The course can deepen the knowledge of students with prior
experience and simultaneously reach students without such
background. Fourth, the strict avoidance of programming was
adopted to ensure that the course design would explore the
curriculum space as distinct from possible from programming
approaches, including media computation style approaches.
Nonetheless, CT4CS allows concrete and tangible work to be
done involving material drawn from every level of the
curriculum. The work is described as concrete and tangible for
three reasons. First, in some cases the students are able to
construct artifacts or systems of interacting elements and
explore their behavior. Students encounter not only the abstract
idea but are able to undertake practical work that embodies and
explores the idea. Second, in some cases the students are
introduced to a specific encoding (notation) so that their
thinking about an idea can be externalized, shared, and comment
on. Third, in some cases the students were involved in
conducting physical simulations that engaged them in
manipulating physical objects representing aspects of a concept
in material form. Examples of the concrete and tangible work
included in the course are: using a finite-state machine simulator
to develop a gene acceptor based on the genetic code presented
in a junior level computational biology course, using a
taxonomy modeling tool to represent the relationships of real-
world examples that students would encounter in senior level
courses in databases or information retrieval, using a Petri net
simulator to study classical synchronization and protocol
problems that students encounter in junior or senior level
operating systems and networking courses, and using a lambda
calculus evaluator to deal with issues of binding that are explicit
in junior or senior level courses in programming languages or
compilers and which are implicit in programming courses.
Section 2 provides a description of the course topics and tools.
Section 3 compares CT4CS to other related approaches. Section
4 evaluates the course using student feedback from an end-of-
term questionnaire. Section 5 draws some conclusions based on
the evaluation and the comparison to other approaches.

2. COURSE DESCRIPTION
The course was offered as an alternative to an existing required
introductory class. Students self-selected to register for the
course which met over a 15-week semester in two 75-minute
sessions each week. The room was outfitted with small round
tables to accommodate in-class work by teams of two or three
students. An overview of the course topics is given in Table 1.
The time devoted to each topic is measured in weeks. One week
consists of two 75-minute classes and the associated time

students spend working on assignments and readings outside of
the class meetings. Additional information can be found at:
http://www.cs.vt.edu/~kafura/ComputationalThinking .
Broadly, the topics are divided into two categories were based
on a definition of computer science that emphasizes the
representation (modeling) and manipulation (via engineered
systems) of information that is inherent to scientific, natural,
social, and others kinds of systems. The modeling topics focus
on how information is used to represent the attributes and
relationships of real-world artifacts and systems. The
engineering topics focus on issues related to the construction of
computational systems.

2.1 Modeling Topics
The modeling topics focused on state and behavior, abstraction,
and relationships. Finite state machine diagrams were used to
explore the importance of stateful behavior, recognizing that in a
given state the system is only capable of certain actions, that the
observed behavior of a system arises from its transitions among
its possible states, and that reactive behavior occurs when the
system interacts with an external world that drives the system
from one state to the next. A particular kind of state-oriented
system is an acceptor. Using a tool (JFLAP [11]), the students
were able to build and test acceptors for various kinds of
structured data including one that performed a simple form of
gene recognition (allowing a discussion of the relationship of
computer science to biology). The graphical form of an acceptor
was also related to a text-based form using BNF grammars. The
abstraction topic studied how artifacts have a rich set of
attributes, that representing an artifact depends on the point of
view of the modeler, and that there are a variety of graphical and
textual forms for representing the abstraction. A physical
simulation engaged the students in the modeling of a book:
identifying different modeler points of view and creating
attributes that are relevant from each point of view. The
relationships topic looked at very basic ideas of knowledge
representation. Using Protégé [14], the students were able to
define the attributes of a collection of entities (pizzas) and
observe what inferences could be made automatically about the
categorization of the entities.

2.2 Engineering Topics
The engineering part of the course consisted of five topics. The
notion of concurrency and the problems of concurrency control
were introduced by a physical simulation where the students
acted out a scenario of updating a shared memory and observing
the loss of consistency. The modeling of the correct
synchronization for several problems (traffic lights, reader-
writer) was done using a graphical tool (Snoopy [15]) for
editing and executing Petri nets. Snoopy was also used to
illustrate “layers of abstraction.” A simple layered system was
built for the AB protocol. Using the Petri net tool, the students
modeled a noisy channel, the AB protocol layer, and a bi-
directional channel layer. The last four engineering topics
focused on concepts related to programming languages and
software systems. First, the lambda calculus was used both to
explore the ideas of binding and scope as well as give some
insight into the theory of programming languages and
computation. A graphical tool for composing and evaluating
lambda expressions (LambdaTeacher [12]) was used. Second,
testing of software systems was undertaken using two exercises.

252

http://www.cs.vt.edu/~kafura/ComputationalThinking�

The first exercise allowed the students to enter test cases for a
program to classify triangles (as equilateral, isosceles, or
scalene). The tool used provided code coverage statistics and
error detection percentages against a hidden collection of
correctly and incorrectly programmed solutions. The second
exercise involved the development of test cases for a grammar-
based sentence parser. An automated system (WebCAT [19])
developed at Virginia Tech was used to run the test cases against
a model solution and provide code coverage feedback. The third
topic, debugging, explored unwinding a sequence of decisions
to find a flawed decision that led to an erroneous state. A system
for solving Sudoku puzzles [18] was used to present the students
with an incorrectly solved puzzle. The tool provided a history
and navigation controls so that students could “debug” the
puzzle’s incorrect solution. The last of the four topics was data
structures. A physical simulation of a linear computer-like
memory was conducted. The students were engaged in finding
ways to map a tree structure (built of index cards and strings)
into a linear memory. Notions of representing relationships via
adjacency in memory and pointers arose from this simulation.
The syntax of C was used to show how these ideas could be
represented in a programming language.

3. COMPARISON
The CT4CS course can be compared with other computational
thinking courses, definitions of the principles of computation,
and repositories that provide resources for teaching topics in
computer science.
CT4CS differs from other computational thinking approaches in
one or both of two ways. First, some computational thinking
courses are focused on students majoring in fields other than
computer science (e.g, [8] focusing on science majors). These

courses are valuable and seek to portray computation through
topics and terms meaningful to other fields. CT4CS focuses
exclusively on computer science majors and the terms of
reference and topics that have the most impact on their future
learning. Second, many courses use some form of programming
either in lexical (e.g., [6]) or graphical (e.g., [17]) form. CT4CS
explicitly avoids the use of programming languages so that the
students can be engaged in topics that might be difficult to
approach via programming. Admittedly the absence of a
programming capability also limits some topics that can be
approached in CT4CS. However, this is a tradeoff that seems
reasonable given the topics that are addressed and the fact that
the students will have multiple subsequent chances to encounter
other important computing ideas. The specific computational
thinking courses cited above are only representatives of many
other similar courses from which CT4CS is differentiated in the
ways just noted.
In comparison to principles of computing, CT4CS embodies five
of the seven Big Ideas defined in the College Board’s CS
Principles and employed five of their seven computational
thinking practices [2]. Specifically, CS4CS shows that
computing is a creative human activity (Principle 1) by the
creation of tangible artifacts, involved the use of abstraction to
reduce information and detail (Principle 2), demonstrated
knowledge creation (Principle 3) via ontologies, examined
systems and networks (Principle 6) via concurrency and
protocols, and illustrated how computing enables innovation in
other fields via the use of examples from, for example, biology
in the gene recognizer. The course used abstraction and models
(Practice 3), analyzed problems and artifacts (Practice 4),
connected computation with other fields (Practice 6), and
engaged students in teamwork (Practice 7). Additionally, the
course involved the creation of computation artifacts (Practice

Weeks Topic Tools/Methods
.5

M
od

el
in

g
Definition of computer science Guided discussion

2 State and Behavior
Applet; tool for creating and exercising an acceptor (JFLAP);
BNF grammar; BNF visualizer

2 Abstraction: modeling/design
perspective Physical simulation; UML diagrams, Venn diagrams, XML, tree diagrams

1.5 Relationships Tool (Protégé) for representing, inferring, and visualizing relationships; ontologies

1 Midterm exam and return/review

1.5

E
ng

in
ee

ri
ng

Concurrency Physical simulation; tool (Snoopy) to create and simulate Petri nets

1 Abstraction: engineering
perspective Layered systems; tool (Snoopy) to build layered protocol

2 Binding, scope, theory: lambda
calculus Tool (Lambda Teacher) for editing and evaluating lambda expressions

1 Testing
Testing applet for simple (triangle classification) problem;
Exercise (Web-CAT) for more complex (sentence parsing) problem

1 Debugging Puzzle (Sudoku) tool with history and backtracking

1 Memory, pointers, data
structures Physical simulation; C syntax

.5 Review, Course evaluation

Table 1: CT4CS Course Overview

253

2). While programming artifacts were not created, numerous
other computation artifacts were created among which were test
cases, UML diagrams, XML encodings, data structure
declarations, BNF grammars, Petri nets, acceptors, lambda
expressions, and an ontology. We believe that these kinds of
artifacts deserve to be considered on an equal par with
programming artifacts for several reasons. First, doing otherwise
devalues the real work that computer scientists invest in the
creation and use of these artifacts. Second, we are trying to
counter the stereotype that limits computer science to
programming. This stereotype is reinforced when we value only
programming artifacts. Furthermore, we often deny students’
early exposure to the very elements that make computer science
of enduring interest during the bulk of most computer scientists’
careers. Last, our experience in the course indicates that these
non-programming artifacts enable student learning.
Another set of principles is Denning’s framework [4], one axis
of which is a set of computing practices and the other axis of
which is a set of principles for design and mechanics. The topics
in the CT4CS course have strong overlap with the elements of
this framework. Specifically, the coordination and
communication elements of mechanics resonate with the
concurrency and engineering abstractions in the CT4CS class;
the automation element is reflected in the relationships topic
where automatic deduction of relationships is seen; to a lesser
extent the computation element is touched on by the lambda
calculus and the recollection element by the topic on data
structures. The relationship of the CT4CS topics to the design
aspects was centered on the simplicity element, showing how
abstraction is used to simplify the description of artifacts. The
practices axis contained two elements that related to topics in
CT4CS. Many of the topics in the “engineering” half of the
course relate well to the “engineering systems” practice.
Similarly, many of the topics in the “modeling” half of the
course relate well to the “modeling and validation” practice.
Finally, there are repositories of materials for teaching
computing, perhaps the best exemplar of which is the Computer
Science Unplugged collection [3]. CT4CS shares with the
“unplugged” materials the goal of providing tangible and
concrete experience about computing concepts without
programming. A important difference between the two is the
academic level of the audience which dramatically influences
the level of sophistication of the topics and the presentation of
these topics. Nonetheless, there might be contributions that
CT4CS can make to the unplugged repository and there may be
materials or ideas that can be adapted from the repository for use
in future offerings of CT4CS.

4. EVALUATION
The observations reported in this section are based on the
students’ answers to a questionnaire. All of the 15 students,
three of whom were female, were in their second semester at
Virginia Tech. The questionnaire was administered on the last
regularly scheduled class meeting. The students were told in
advance of the general nature of the questionnaire (though not
the specific questions). The questionnaire was distributed in
electronic form and completed anonymously by students using
their personal laptops. The students were not provided lists of
course objectives or the course topics. The students had the full
class period (75 minutes) to complete the questionnaire along

with two other short standard course evaluations. All of the
students completed the questionnaire before the end of the class.
The questionnaire was divided into two parts: a student profile
and student reflections. The student profile consisted of five
questions about the student’s background and interests in
computer science. The student reflections contained eleven free
response questions about various aspects of the course. The
number of students in the class is not sufficient for statistical
analysis but qualitative analysis of the results and the student
reflections offers insights into student experiences. Furthermore,
the argument for this approach lies only partially in precisely
what was learned during the semester, and more fully in the way
it is thought to smooth the path towards the future. However, the
reflections offer important insight into the students’ experience,
and if their experiences are insufficiently good, then the long-
term benefits of the approach are moot.
The students as a whole had substantial prior experience in
computer science. Two-thirds of the class had programming
experience of at least one semester and almost half of the class
(7 of 15) had at least a full year of experience. This experience
was typically described as an AP CS course using Java. There
were only two students who had neither high school CS
experience or completed a CS class at VT. There was only one
student who had no prior CS coursework (in high school or at
VT) and was not taking another CS class concurrently.
Observation 1: The students reported that the course topics
deepened their knowledge and perspective on computer science.
A third of the students (5 of 15) indicated that the course had a
deep impact on their appreciation for or approach to computer
science. This was expressed variously as gaining insight into the
“why” behind programming, better understanding of what it
means to be a computer scientist, or enabling future problem-
solving with a deeper understanding of computing. Another
group (3 of 15) reported more generically that they learned new
concepts related to computing. A third group (3 of 15) reported
that the course reaffirmed or clarified concepts that they already
understood.
Observation 2: The students reported that the course offered a
number of new (to them) concepts and/or improved their
understanding of concepts they had already seen. Eight specific
ideas were mentioned as being new. Four of these ideas
(grammars/acceptors, finite state machines, Petri nets and
concurrency, lambda calculus) were identified in this way by
over half of the class (at least 8 out of 15). A minority (5 out of
15) identified two other topics (abstraction, ontologies) in this
way. Two other topics were identified as new to the students by
smaller groups (testing – 3 out of 15, debugging 2 out of 15). A
strong majority (10 of 15) of the class reported that the class had
improved their understanding of a concept that they had
previously encountered. Students (6 out of 15) also reported that
they had previously encountered the concepts of abstraction,
generalization, or modeling but found that the course improved
their understanding of these concepts.
These responses are meaningful in two ways. First, the identified
concepts are fundamental to computing and, thus, progress in
deepening students’ understanding of these concepts is
meaningful. Second, despite the high overall level of experience,
the students found the course presented a number of new ideas
or deepened their appreciation of ideas they had already

254

encountered. Thus, the course content seemed to “stretch”
and/or deepen the students’ understanding of computer science.
For example, one student reported that the course provided a
“deeper look into not only how to model things, but why we
model them that way” (italics in student’s comment). A smaller
group (3 of 15) reported similar gains in understanding of
concurrency issues and another group (3 of 15) cited
improvement in their understanding of testing/debugging. There
was a small amount of overlap among these three groups (due to
students citing more than one topic area); in total the three
groups above accounted for two-thirds of the class (10 of 15).
Observation 3: The students reported that a number of course
topics strongly engaged their interest. Overall, there were 22
reasons given for why a particular idea was cited by a student as
being of interest. The number or reasons is more than the
number of students because some students citied more than one
idea as being interesting.
A majority of the students (8 of 15) reported that concurrency
was the most interesting idea they encountered in the class. The
reasons for their choice of this idea varied and included: utility
(dealing with real life or practical situations), challenging,
involved logic or problem solving, novelty (something not
thought about before). Another group (4 of 15) identified the
ideas of grammars and finite state machines as among the most
interesting. The given reasons behind their choice included logic
and problem-solving, and utility (dealing with real life or
practical situations). A smaller group (3 of 15) identified data
structures as the most interesting topic citing utility (2 of 3) and
novelty as their reasons. These same reasons were cited by a
similarly sized group (3 of 15) for the ideas related to
testing/debugging.
These reasons can be categorized as utility (can be applied to
real-life problems, will be useful in future work), logic/problem-
solving (can be approached in a logical fashion, requires
structured thinking, engages problem-solving skills), challenge
(offered a mental challenge to think about), and novel (the idea
or some aspect of the idea was new, a new way of thinking
about the idea). The distribution of the reasons suggests that the
students found interesting ideas that they could see as having
high utility (cited 9 of 22 times), novelty (6 of 22), logic-
problem solving (5 of 22), or challenging (2 of 22). While these
results had a high degree of overlap, their diversity is very
important. There is no single reason that a person should be
interested in computer science. To the contrary, the goals of this
class and of other changes to our computer science curriculum,
is to bring people with a wide scope and perspective as well as
deep engineering capabilities into computer science.
Furthermore, it is interesting to note that a single topic (e.g.,
concurrency) may appeal to different students for different
reasons, making the task of designing an appropriate set of
topics more promising -- and more challenging. The student
feedback also gave good guidelines for determining how to
improve the presentation of current topics or what aspects to
look for in new topics.
Observation 4: The students reported that the course helped
them develop a better vocabulary for explain computer science
issues. A strong majority of students (12 of 15) reported that the
course had improved their technical vocabulary. The degree of
improvement was variously described, ranging from “definitely”

to “somewhat”. Two students did not believe that their
vocabulary was improved and one student was not sure. This
spread in reactions may be due to the fact that the word
“vocabulary” means different things to different people.
Vocabulary is an interesting metric because it represents utility
both for itself and also as an indicator of the students’
epistemology, that is, their notions about the interconnected web
of ideas inherent in computer science, some of which are well
captured in particular specialized words or phrases.
Observation 5: The students reported that the physical
simulations were useful to their learning. As described in
Section 2, the course pedagogy included three physical
simulations illustrating ideas related to abstraction, concurrency,
and data structures. The students unanimously believed that the
physical simulations were useful. Eighty percent (12 of 15) of
the students gave unqualified support for the value of the
physical simulations. Twenty percent (3 of 15) noted that the
simulations took too much time to conduct or were seen as
being useful only to those who had not yet taken a CS class.
This feedback is meaningful because it might be the case that
(relatively) new university students would find the activity of a
physical simulation not sufficiently sophisticated for a college-
level course.
Observation 6: The students expressed divided opinions on the
ordering of this course with respect to an introductory
programming course in computer science. The single strongest
opinion (7 of 15) was that this course should come before a
programming course. Three of these students believed that this
course would help form ways of thinking that would make a
programming course easier. Two students believed that the ideas
in this course were presented in a more abstract or less detailed
way than these concepts would appear in a programming course
so it was useful (or necessary) to take this course first. Two
students gave no reason. However, others (4 of 15) indicated
that there was equal value in taking this course before or after an
introductory programming class. The one student who explained
this choice pointed to the mutual reinforcing of concepts
between this course and a programming course, believing that
there was value in such reinforcement working in either
direction. Two students believed that this course should be taken
after a programming class. Both these students believed that the
practical grounding achieved in a programming course was
necessary before approaching these concepts in a more abstract
way in this course. One student found it useful to be taking this
class concurrently with a media computation programming
class. One student offered no opinion.
While there was a near majority who favor taking this course
before a programming course, the variety of opinion and reasons
suggested that there is some latitude in where the course could
be positioned in the overall curriculum. The students’ reasons
could be interpreted to mean that the choice depends on a
student’s learning style more than any prior study, or that the
students, most of whom had taken programming before or
concurrently, had difficulty imagining the counter-factual case.
Pragmatically, other scheduling constraints (on the individual
student or the institution) may also play a role in determining
when the course is taken.

255

5. CONCLUSIONS
The experience with the initial course offering convinced us that
a computational thinking course for computer science students
was a viable concept. We found it possible to provide practical,
concrete, learning experiences about a variety of important
computing concepts using tools and physical simulation rather
than programming. Student feedback suggests that the course
fulfilled its specific course objectives to:

• better inform students about the nature of computer science
(observation 1)

• to help develop intuitions and mental models (observation 2)

• present fundamental concepts as gauged by the comparison
with two sets of principles of computing (see section 3)

• develop better epistemologies, as indicated by vocabulary
(observation 4)

The student feedback also indicated that the physical
simulations were very useful to student learning (observation 5),
and that a course like this one could be flexibly positioned with
respect to a programming course (observation 6).
Our own experience in teaching went beyond these specifics to
suggest that students used the experience to encounter ideas in a
way that would more firmly fix elements of computational
thinking in their minds and render the treatment of these ideas in
subsequent courses more tractable, more marked, and more
profound.
We do not believe that the particular set of topics used in this
first offering is the “right” set; but the experience seems to
confirm the notion that a non-programming computational
thinking course for computer science students is viable.
We are exploring the development of CT4CS in two ways. First
the collection of topics presented in the course can be expanded.
Other topics that we are investigating are in machine learning
[16], natural language processing [13], ideas related to networks
and behavior [5], and social networks [9]. Second, the examples
used in class and in assignments can be enriched to better
illustrate the connections of computation with other interesting
problem domains similar to the use of gene recognition in
conjunction with acceptors. We are interested in receiving
suggestions and ideas on either of these improvements from the
community.

6. ACKNOWLEDGMENTS
We would like to thank and acknowledge the contributions to
the course of Denis Gracanin (finite state machine applet), Steve
Edwards (testing applet and WEbCAT assignment), and Joon S.
Lee (Sudoko system).

7. REFERENCES
[1] Bransford, J. D., Franks, J. J., Vye, N. J. and Sherwood, R.

D. New approaches to instruction: Because wisdom can't be
told. Cambridge University Press, City, 1989

[2] College Board, CS Principles, http://csprinciples.org/
[3] Computer Science Unplugged. See: http://csunplugged.org/
[4] Denning, P. J. 2003. Great principles of computing.

Commun. ACM 46, 11 (Nov. 2003), 15-20. DOI=
http://doi.acm.org/10.1145/948383.948400

[5] [NB] Easley, David and Kleinberg, Jon Networks, Crowds,
and Markets, Cambridge University Press, 2010, a pre-
publication draft is available at
http://www.cs.cornell.edu/home/kleinber/networks-
book/networks-book.pdf

[6] Freudenthal, E. A., Roy, M. K., Ogrey, A. N., Magoc, T.,
and Siegel, A. 2010. MPCT: media propelled
computational thinking. In Proceedings of SIGCSE’10
(Milwaukee, Wisconsin, USA, March 10 - 13, 2010).
ACM, New York, NY, 37-41. DOI=
http://doi.acm.org/10.1145/1734263.1734276

[7] Guzdial, M. 2008. Education: Paving the way for
computational thinking. Commun. ACM 51, 8 (Aug. 2008),
25-27. DOI= http://doi.acm.org/10.1145/1378704.1378713

[8] Hambrusch, S., Hoffmann, C., Korb, J. T., Haugan, M., and
Hosking, A. L. 2009. A multidisciplinary approach towards
computational thinking for science majors. In Proceedings
of SIGCSE’09 (Chattanooga, TN, USA, March 04 - 07,
2009) ACM, New York, NY, 183-187. DOI=
http://doi.acm.org/10.1145/1508865.1508931

[9] HarambeeNet: The SocialNets in Education Project, see:
http://harambeenet.org/modules.html

[10] Henderson, P. B., Cortina, T. J., and Wing, J. M. 2007.
Computational thinking. SIGCSE Bull. 39, 1 (Mar. 2007),
195-196. DOI=
http://doi.acm.org/10.1145/1227504.1227378

[11] JFLAP, http://www.jflap.org/
[12] Mason, K. An Interactive Interpreter for Expressions in the

Lambda Calucus, Honors Paper, Department of Computer
Science, University of Adelaide, November, 1997.

[13] Natural Language Toolkit, see: http://www.nltk.org/
[14] Protégé, http://protege.stanfard.edu/
[15] C Rohr, W Marwan, M Heiner: Snoopy - a unifying Petri

net framework to investigate biomolecular networks;
Bioinformatics 2010 26(7): 974-975. http://www-
dssz.informatik.tu-
cottbus.de/index.html?/software/snoopy.html

[16] Russel, Ingrid and Markov, Zdravko, Machine Learning
Experiences in Artificial Intelligence: A Multi-Institutional
Project, see:
http://uhaweb.hartford.edu/compsci/ccli/index.htm

[17] Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P.,
and Saulters, C. 2010. Teaching computational thinking
through musical live coding in scratch. In Proceedings of
SIGCSE’10 (Milwaukee, Wisconsin, USA, March 10 - 13,
2010). ACM, New York, NY, 351-355. DOI=
http://doi.acm.org/10.1145/1734263.1734384

[18] Sudoku player: http://poet.cs.vt.edu/tuple_games/
[19] WebCAT http://web-cat.org/WCWiki/WebCatWiki
[20] J. Wing, Viewpoint-Computational Thinking, Commun.

ACM 49,3 (March 2006) 33-3.
[21] J. Wing, Computational thinking and thinking about

computing, Philosophical Transactions of the Royal
Society, A, 2008, 366, pp. 3717-3725.
DOI=10.1098/rsta.2008.0118

256

http://csprinciples.org/�
http://doi.acm.org/10.1145/948383.948400�
http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf�
http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book.pdf�
http://doi.acm.org/10.1145/1734263.1734276�
http://doi.acm.org/10.1145/1508865.1508931�
http://doi.acm.org/10.1145/1227504.1227378�
http://www.jflap.org/�
http://www.nltk.org/�
http://protege.stanfard.edu/�
http://www-dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html�
http://www-dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html�
http://www-dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html�
http://uhaweb.hartford.edu/compsci/ccli/index.htm�
http://doi.acm.org/10.1145/1734263.1734384�

	1. INTRODUCTION
	2. COURSE DESCRIPTION
	2.1 Modeling Topics
	2.2 Engineering Topics

	3. COMPARISON
	4. EVALUATION
	5. CONCLUSIONS
	6. ACKNOWLEDGMENTS
	7. REFERENCES

