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Computational Thinking Practices #1:  
Analyzing effects of computation
Computation is everywhere. From search engines 
that help us find information, to cash registers in 
stores, to software used for designing bridges, we 
live in a world built on the effects of computation.

Computation is not just another word for 
technology. For example, a cellular phone contains 
many different technologies: a radio transmitter 
and receiver, a processor, memory, and electro-
mechnical parts like buttons and touch screens. 
When studying the effects of computation, we 
aren’t trying to learn how physics governs these 
technologies. Analyzing the effects of computation 
means specifically looking at what happens when 
we collect, store, and process data.

The computation done by a cell phone involves 
recording your voice as data, compressing and 
transmitting that data, and interacting with a larger 
system that routes your call’s data to its destination. 
This same computational process is done in reverse 
so your conversation partner can talk back to you. 
That sounds like a lot of computational work for 
your cell phone to do, but that’s only part of what 
happens when you make a call.

All the sending and receiving of data happens 
via radio waves. When the technology for radio 
communication was first invented by Nikola Tesla, 

it could only be used for mass communication in 
the form of broadcasts. It takes computation to 
transform that raw technological capacity into the 
more refined form we use today in our cell phones. 
One effect of computation is that radio can now be 
used for person-to-person communication, with 
many simultaneous conversations happening in the 
same physical area.

When we analyze the effects of computation, we 
take note and measure how data is transformed. 
We look at how information is processed and what 
is accomplished by that processing. We can think 
about what we might do if such computational 
power wasn’t available. That can also help us start 
to imagine new things we can strive to accomplish 
using computation.

A major part of the work in analyzing the effects 
of computation is careful observation, as Blaze, 
Ada, Charles, Alan, and Grace are doing in this 
illustration. In their world, as in ours, computation is 
everywhere. By looking closely, we can start to see 
what computation -- not just raw technology -- does 
for us.
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Grace is building 
something new. At the 
moment, she’s using a 
wrench because it’s the 
right tool for the work she’s 
doing. She’s not just using a 
machine built by someone 
else; she’s actually making 
something new herself. 
Sometimes, creating things is a time-consuming and 
difficult process, but it gets easier with experience.

Blaze is wearing a glove that controls a much larger 
and stronger hand. This hand can do many things, 
including lift up Blaze himself. Blaze’s glove is a 
metaphor for computational artifacts that allow 
us to harness the power of machines to carry out 
massive calculations. When we turn that power back 

upon itself as we do when we 
use recursion, higher-order 
functions, or write a compiler 
for a language in that same 
language, things can get very 
exciting.

Alan is walking on the ceiling. 
He’s holding a Möbius strip, a 
topological surface with only 
one side. When twisted and 
attached back to itself, a regular 
flat rectangle can be transformed 
into a Möbius strip. Using 
computational thinking, we can 
change our perspective to solve 
a complex problem -- like Alan, who is upside down! 
Many computational concepts, like the idea of the 
Möbius strip, can challenge our assumptions about 
what’s possible and reveal deeper truths about the 
properties of the systems we are using or creating. 
At first this can seem as difficult as walking on the 
ceiling, but after a while you’ll probably find it fun.

Charles is holding an orb covered in what look like 
small radio dishes. Computational artifacts need 
not be designed to work in isolation. They can 
work together and communicate to accomplish a 
task, like we see in multi-core processors or parallel 
computing. Perhaps the radio dishes are helping 
Charles to hear things that other characters can not. 
Similarly, algorithms for pattern recognition, signal 
processing, error correction, and noise reduction 

enhance our ability to extract 
information from data. With 
the help of computational 
artifacts, we gain new powers.

Computational Thinking Practices #2:  
Producing computational artifacts
Creating computational artifacts is all about making things. Programming is one of the most visible ways we 
make computational artifacts. In that case, the artifacts are both the programs we made and their outputs. 
But the term computational artifact is not limited to just computer programs. It can refer to a whole range of 
things from microprocessors to bar codes to an airplane’s navigation system.

In this illustration, the characters are building, testing, and exploring computational artifacts. The process 
of creating is not limited to only thinking of ideas, or just assembling parts. The machines you see in these 
cartoons are symbolic, designed to be open to interpretation and imagination. Here are some ways of 
looking at them to help you get started:

C/C++ DATBITASCII
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One meaning of the word model is: A smaller or 
simpler version of the original item. The model 
could be a physical object like the small robot in this 
illustration. Notice that Blaze isn’t trying to move 
the arms of the huge robot, nor trying to move the 
heavy blocks himself. Instead, he is working with a 
model robot small enough for him to literally put 
his own hands around. This is simplifies the physical 
work he needs to do, just like a simplified model of 
an idea makes thinking easier.

For example, classical mechanics is a model: It’s 
Newton’s easily-computed approximation of the 
more complex reality of motion. In computer 
science, we make a model every time we write a 
program. We must choose the information and level 
of detail represented in our program. Some details 
must be left out. If we tried to include everything in 
a model or program, we would end up simulating 
the whole world!

In a complex system, we might use many different 
models and make them work together. We might 
not even care if one part of the system was switched 
out for something else that can accomplish the 
same goal. We could say we’ve abstracted that part 
of the system. Carefully selecting the qualities we 
care about and ignoring the rest of the details is the 
key to abstraction. When we deliberately separate 
our system into parts that can be individually 
understood, tested, reused, and substituted, then we 
are creating new abstractions. 

See also: Modularity, map–territory relation, 
marionette.

Computational Thinking Practices #3:  
Using abstractions and models

“All models are wrong, but some are useful.” 

 – George E. P. Box
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Computational Thinking Practices #4:  
Analyzing problems and artifacts

Wikipedia says, “Analysis is the process of breaking 
a complex topic or substance into smaller parts to 
gain a better understanding of it.”

In this illustration, Ada is using a tool with many 
attachments, representing the idea that we often 
need to try multiple approaches and many different 
tools before we can “crack” a problem. Different 
problems and different approaches to these 
problems have different weaknesses. Often, we can’t 
solve a problem until we try a number of different 
ways to break it down. That’s why it’s so valuable to 
have a variety of conceptual tools available when 
working on a problem.

Over to the right, Alan is controlling a zoomed-in 
view of the cubes on the table. This allows him to see 
and understand not only how a cube looks and acts 
from the outside, but to how its internal workings 
contribute to its overall behavior. Programmers 
engage in this kind of analysis when they use a 
debugger; so do electrical engineers when they use 
an oscilloscope to visualize signals.
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Computational Thinking Practices #5:  
Communicating processes and results

Very rarely is a computational artifact self-
explanatory. A CPU made of microscopic transistors 
on silicon or a compiled binary program of 1’s and 
0’s are both quite difficult to understand. Their forms 
are optimized for computational performance, not 
human comprehension. The design plan for the 
CPU or the source code of the program are more 
easily understood. But even these precursors don’t 
necessarily explain how they were made or why  
they work.

Computational thinking requires us to discuss 
processes for both people and machines to follow, 
and how these processes are intended to lead to 
specific results. For example, when a programmer 
is learning how to write programs, they need to be 
taught to debug by printing the value of a variable. 
When you discover a new mathematical technique 
for manipulating 3d shapes efficiently, you have to 
write it up so other people can understand and use 
it. Communication is the way we bring the things we 
know into the world.

When we use computation to 
solve a problem, the answer 
we get isn’t automatically 
meaningful to others. We have 
to communicate this result 
in a way that reveals both its 
importance and its origin.

In the illustration, Charles 
is capturing the sounds 
of a parrot in the wild and 
transmitting them to Grace at another location. 
We can interpret this literally as communication of 
audio data, like someone’s voice on a phone call. 
However, to another parrot perhaps the parrot’s 
song represents a process (like a technique for 
finding fruits and seeds, or a plan for timing seasonal 
migration) or some important news (such as the 
winner of the annual parrot speechmaking contest). 
Communicating about processes and results 
allows us to benefit from insights gained by other 
computational thinkers.
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Computational Thinking Practices #6:  
Working effectively in teams

The ability to work in a team can mean the 
difference between success and failure. Building 
any complex system, software or hardware, requires 
more work be done in less time than any single 
person can accomplish. But adding more people 
doesn’t necessarily mean that the job will get done 
sooner.

To make teamwork effective, individuals need 
interpersonal and communication skills as well as 
knowledge of different team methodologies and 
processes. As teams grow in size, the role of culture 
and management becomes increasingly important. 
Teamwork, like any other skill, takes practice.

Various strategies for dividing up work have different 
strengths and weaknesses. Figuring out the best way 
to work together isn’t always easy, but it’s important 
for computational thinking.

As multi-core processors and distributed computing 
become more common, we see computers 
themselves working in teams. Most web sites 
that you visit are served from data centers, where 
hundreds or thousands of individual computers 
work together to accomplish amazing tasks. We 
humans can do the same!

See also: Brooks’s law, pair programming, revision 
control system.
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Exploring Computational Thinking #1:  
Decomposition

In this illustration, Ada, Alan, and Grace are each 
taking apart some of the machines we have seen 
in other scenes. But decomposition isn’t only about 
disassembling objects. It’s also about pulling apart 
the steps of a process. Some things that we think 
of as a single action are actually a composite of 
many smaller actions. For example we may say that 
we are going to make dinner. But when we apply 
decomposition, we find that making dinner actually 
means to opening the refrigerator, getting out the 
broccoli, cutting up an onion, turning on the stove, 
and many other small steps.

A difficult computational problem can sometimes be 
solved by thinking of the overall task as being made 
up of many smaller, simpler tasks. Decomposition 
involves identifying those smaller tasks and how 
they fit together. The more times you do this, the 
easier it gets. Just ask Ada, who is taking apart an 
orb. Even though each of the orbs is a little different, 
she has a pretty good idea of what pieces she’s 
going to find when she takes one apart.
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Exploring Computational Thinking #2:  
Pattern Recognition

There’s something strange about the pattern of 
blocks, and Grace is pointing it out to Ada. Although 
they aren’t looking at the whole complicated 
machine that produces this pattern of blocks, they 
can still identify what is unusual. This doesn’t mean 
anything is wrong, but it tells them that there might 
be more going on than they first thought.

Forming an idea of what you expect is one way to 
find patterns. The more you look, the more patterns 
you will find in nature, in computational artifacts, 
and in processes. When we recognize a pattern, we 
can use our other computational thinking skills to 
help us understand its importance.
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Exploring Computational Thinking #3:  
Pattern Generalization and Abstraction

After you’ve seen the same pattern a few times, you 
might start thinking of different ways to describe it. 
Alan is watching some blocks fall into place to form 
a picture. If the machines drop the same pattern of 
blocks again, they’ll make the same picture.

There’s a lot for Alan to think about here, watching 
the blocks fall. There lots of possible patterns -- see if 
you can calculate the number. There are also a lot of 
ways to describe these patterns.

If we wanted the machines to make a picture of a 
house with the door on the right side instead of 
the left side, the instructions would be almost the 
same. What if instead of giving the machines new 
instructions every time, we simply told them what 
to change about some other instructions? We would 
need instructions that describe how to change other 
instructions.

Thinking this way is some of the work we do when 
we try to generalize patterns. We look for what’s the 
same about a group of patterns and try to describe it 
them a way that’s both clear and efficient. If we can 
describe the group of patterns all at once, a pattern 
of patterns, then we have an abstraction.
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Exploring Computational Thinking #4:  
Algorithm Design

It’s a computational thinking dance party! The 
special dance floor in this illustration might be 
recording their steps, or it might be lighting up with 
dance instructions. But while Grace, Alan, and Ada 
are dancing away, Charles is actually designing a 
new dance. Like an algorithm, a dance is a set of 
steps that can be followed by others to get the  
same result.

Sometimes we think of algorithms as being written 
down like a computer program, but an algorithm is 
more like an idea. The same algorithm can be written 
in many different computer languages. It’s the steps 
in the process that make an algorithm what it is.

In order to design an algorithm, or a dance, you 
need to understand your goal. You also need to 
understand the constraints of the system. Humans 
only have two feet, so a dance designed for humans 
has to work with that limitation. Computational 
systems have different kinds of limitations, such 
as the speed of the processors or the size of the 
memory or the amount of electricity they consume. 
Designing an algorithm that accomplishes specific 
goal within the constraints of the system is like 
creating an elegant dance that everyone else wants 
to learn.


