
Computational Thinking
– What It Might Mean and What We Might Do About It

Chenglie Hu
Department of Computer Science, Carroll University

Waukesha, WI 53051, USA
1-262-524-7170

chu@carrollu.edu

ABSTRACT
Computational thinking has been promoted in recent years as a
skill that is as fundamental as being able to read, write, and do
arithmetic. However, what computational thinking really means
remains speculative. While wonders, discussions and debates will
likely continue, this article provides some analysis aimed to
further the understanding of the notion. It argues that
computational thinking is likely a hybrid thinking paradigm that
must accommodate different thinking modes in terms of the way
each would influence what we do in computation. Furthermore,
the article makes an attempt to define computational thinking and
connect the (potential) thinking elements to the known thinking
paradigms. Finally, the author discusses some implications of the
analysis.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]: Computer
Science Education

General Terms
Theory

Keywords
Computational Thinking, Thinking Model, Computation,
Computing Education

1. INTRODUCTION
Wing’s influential article [18] suggested that computational
thinking is a fundamental skill for us to gain understanding, live,
and flourish in today’s world. This promotion has been well
received by the computing education community in the last few
years, resulting in numerous workshops, conference panels and
online discussions. Yet, the notion remains largely speculative
today. Wing did not in fact define the term in her article.
Indirectly, Wing described computational thinking to be involving
solving problems, designing systems, and understanding human
behavior by drawing on the concepts fundamental to computer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ITiCSE‘11, June 27–29, 2011, Darmstadt, Germany.
Copyright 2011 ACM 978-1-4503-0697-3/11/06...$10.00.

science and by including a range of mental tools that reflect the
breadth of the field. In another article [19], Wing refined the
meaning of computational thinking: “It’s a kind of analytical
thinking, and it shares with mathematical thinking for problem
solving, with engineering for modeling and design constrained by
the real world, and with scientific thinking for understanding
computability, intelligence, the minds and human behavior. The
essence of computational thinking is abstraction that can be
automated, which is what computing is about.” These
descriptions, and various others the author has seen, do not
explicitly attribute the thinking ability to the (potential) thinking
elements, structures, or traits. Indirect and often abstract
characterizations of computational thinking have made the notion
diversely interpreted.

Often, fruitful discussions can be more valuable than finding
definitive answers. However, if being able to think
computationally is indeed as fundamental as being able to read,
write, and do basic math, then an entire K-12 education could be
at stake if educators fail to reach a consensus on the notion and
ways to teach it. While speculations, discussions, and debates
will likely continue, this article intends to provide some analysis
to articulate the potential nature of computational thinking. It
also indicates some philosophical difficulties we may face when
searching for more accurate descriptions of the notion. The
analysis suggests that computational thinking is likely a hybrid
thinking ability that people gain through a variety of means. The
article then makes an attempt to conjuncture what computational
thinking may mean and link the (potential) thinking elements to
the better known thinking paradigms. Finally, the article
discusses some implications of what has been analyzed. The
article begins, however, by providing a brief review of a
collective public perception of the notion that the author has
found and studied.

2. DIFFERENT PERCEPTIONS ABOUT
COMPUTATIONAL THINKING
Educators have given various descriptions of computational
thinking over the last few years, although many dodged a direct
definition. Their views were diverse and from sometimes very
different assumptions, perspectives, and personal experiences.

The Chartered Institute for IT, formerly known as British
Computer Society (at http://www.bcs.org/), held a recent BCS
Thought Leadership debate aimed to discuss what computational
thinking is from attendees’ own experiences and how it impacts
upon our everyday lives. Some participants believed that
computational thinking helps determine what it is that can be
computed, deal with systems that generate large amount of data,

223

and better understand the constraints to a problem, computational
limits and complexity. Others thought that computing and
computational thinking collectively has changed science forever
as computational modeling becomes a widely used tool within all
disciplines. This, however, also works in reverse as the other
sciences direct the way in which computational thinking is going.
The participants felt that it's time for the IT community to
convince other subjects that computer science is a subject in its
own right, and not just a facilitator for others. Computational
thinking is a common language to explore possibilities of
computing, and a means to address a declining “sense of wonder”
among digital natives. Yet, questions remained. Some
participants concerned about teach-ability of the notion if
computational thinking is about abstraction. Some suspected that
abstraction may not be universally useful, and in certain situations
such as language processing it can actually hinder understanding.
Many wondered how computational thinking differs from the
study of the conventional computer science subjects that has been
fundamental to computing for many years, and how it differs from
mathematical thinking that, too, deals with abstractions and
representations. Some believed that many who are not computer
scientists are actually doing computational thinking unknowingly
if computational thinking is just a way of describing the dynamics
and the processing of computing. Interestingly, some even
wondered whether computational thinking was related to the
tension between empirical and theoretical investigations, as such
tension exists in other scientific disciplines.

To respond to the question “What is Computational
Thinking?” posted at the Website of the Computer Science
Teachers Association, a reader wrote: “I like to think of
Computational Thinking as the ability to see, comprehend and
devise systems and processes. For me this includes dealing with
abstractions. The ability to see a solution to a problem as a
‘process’ is what makes all computation possible. To put it
another way, if you have some ingenious solution to a problem
but can't explain it as a process then you don't have a
computational solution.” (http://blog.acm.org/archives/csta/2009
/11/what_is_computa.html) Computational thinking is also
understood as interpreting and transforming data, for which a
clear definition was given at http://gasstationwithoutpumps.
wordpress.com/2010/08/12/algorithmic-vs-computational-
thinking/: “Computational thinking is thinking about data by
using computers to summarize, massage, or transform data into a
more easily understood form. Contrast to computational thinking
that focuses on the data and the interpretation of the data, the
algorithms are just tools available to help with that focus.”

Computational thinking is also perceived in some researches
as how we do mathematics computationally. It is viewed, for
instance, as an aid to modeling, representing, and solving
mathematics problems, and effectively using mathematics in all
other disciplines [13]. A word frequency scale, termed
Computational Math Scale to measure the level of problem-
solving gestalt exhibited in textbooks about computational
mathematics, is described in [12]. To develop such a scale,
researchers used books and articles exclusively in computational
mathematics as artifacts of computational thinking. They then
examined word frequencies in research articles and compared
them to those that form the Computational Math Scale. They
concluded that the words frequencies seem to suggest that
Mathematical, Abstract, and Computational (MAC) thinking

framework might integrate a wide range of topics relevant to
computing.
 Professionals at Google defined computational thinking to
be thinking that involves a set of problem-solving skills and
techniques that software engineers use to write programs that
underlay the computer applications
(http://www.google.com/edu/computational-thinking/what-is-
ct.html). Meanwhile, notable computing educators also offered a
rich set of opinions at a workshop organized by the National
Research Council [14]. Collectively, they describe computational
thinking as a form of procedural thinking; the study of the
mechanisms of intelligence that can yield practical applications
by magnifying human intelligence; the use of computation-related
symbol systems to articulate explicit knowledge and manifest
such knowledge in concrete computational forms; a way of
formulating rigorous analysis and procedures for accomplishing a
defined task efficiently; a meta-science to bridge between science
and engineering; an open-ended and growing list of concepts that
reflect the dynamic nature of technology and human learning; a
careful reasoning about the methods of doing things, or thinking
that complements mathematical or engineering thinking by
combining the two.

The CPATH program of the National Science Foundation of
the U.S. has supported endeavors aimed to promote computing
education and foster computational thinking. Arguably, what
people have done in CPATH-supported projects (the author has
been involved in one such project) is not much different from
what computing educators have done for years. Here is the
dilemma. We seem confident that whatever we teach in
computing promotes computational thinking. But why is this
true? We struggle to answer this question. In fact, we don’t seem
to know the answers to some basic questions. Why is a separate
promotion of computational thinking necessary given that it may
share the thinking modes that are better known? To what extent
would the notion really matter? Why would visual tools be the
best way – or even a better way – to promote the learning of
computational thinking and expect students to develop with the
tools transferable skills of a higher order? And, what is
computational thinking after all?

3. DIFFERENT THINKING MODES IN
RELATION TO COMPUTING
A way of thinking conceivably consists of a set of thinking
elements whether we realize or not. Foundation for Critical
Thinking suggested one such collection of eight thinking traits
that constitutes “critical thinking” at http://www.
criticalthinking.org/courses/Elements_standards_model.cfm. To
put them in a single sentence, whenever we think critically, we
think with a purpose, raise questions, and embody a viewpoint by
making assumptions and inferences and by using information and
concepts, leading to implications. A person’s critical thinking
ability is applicable in any problem-solving context. Guided by
the general principles of critical thinking, people in
Computational X develop their own modes of thought
commensurate with the kind of computation they do in the field
X.
 In computational physics, choosing a discrete model often
requires a balanced consideration among physical constraints,
numerical stability, accuracy, and computational cost. Physicists
and numerical analysts contribute to finding a model by applying
their distinctively different thinking modes. A physicist would

224

ensure that an intended numerical model is relatively faithful to
physics, whereas a numerical analyst would have to study the
computational ramifications of the model. Indeed, collaboration
across disciplines is common in Computational X.
 A way of thinking at a higher order generally requires
systematic training in a relevant field. For instance, in theory,
anyone who understands the classical Schwarz-Christoffel
conformal mapping between two singly connected regions in the
complex plane can apply a standard numerical quadrature to
numerically compute the mapping function. However, not until
the early 1980s had the numerical computation of the mapping
function become successful [17]. Generally speaking, only
people who are systematically trained in numerical analysis
would be able to recognize and overcome obstacles that may
hinder a successful numerical computation.

A way of thinking may not appear “computational”, yet have
significant computational ramifications. For instance, by asking
insightful questions, applied mathematicians had successfully
made connections between cellular automata and nonlinear
dynamic systems of some kind to explore various dynamic
properties of cellular automata and new rules of their computation
[2]. They were able to bring the existing computational models of
neural networks under a purely mathematical framework to study.
Their findings had, in turn, influenced computation profoundly in
terms of discovering much improved algorithms, leading to more
efficient cellular neural networks.
 In summary, people who use application software, develop
the software, or study the models and algorithms are equipped
with domain knowledge of different kinds that plays a pivotal role
in a critical thinking process. Thus, computational thinking is
likely diverse in nature, affording an ever growing scope. Certain
ways of thinking in computing may require extensive training.
Certain ways of thinking may not appear “computational” despite
the (potential) computational implications. However, in the end,
what makes computing meaningful, insightful, and fruitful is our
collective thinking ability fueled with our distinct domain
expertise and thinking modes.

4. MATHEMATICAL THINKING IN
RELATION TO COMPUTING
Computing is more mathematical than many think it is. Some
aspects of computing, similarly in mathematics, are about
recognizing and manipulating patterns. Some others, such as
software development, may need a certain degree of accuracy to
measure the quality of what we do in various development
processes even though we often struggle to find effective
measurements. Programming constructs such as classes and
objects are essentially mathematical entities that most who use
them do not realize. And, programming, a significant form of
computing, is arguably a mathematical activity [7].
 However, computing appears much less mathematical than
many think it should. Each computing area has its own
methodologies that people may understand and be able to use
with little knowledge of the underpinning mathematics. Indeed,
doing computing can be rather accommodating. Writing a correct
loop requires only thinking in algebraic terms. Yet, one can
instead stack a sequence of statements to do the same thing if
practical. People rely on running unit tests, not conducting
correctness proofs, to show whether functional modules are
algorithmically correct. Today, application programming
interfaces, library frameworks, and enterprise-level integrated

development environments are enabling people to develop
software with little formal training. Poor thinking ability in
abstract terms may be the reason why people are unable to
produce clear, elegant designs and programs [8]. Thus, improving
our mathematical thinking ability seems a logical way to improve
the quality of what we do in computing.
 Thinking mathematically appears also better understood. It
may suggest the following thinking abilities [16]:
1. Exemplifying and specializing (in order to find examples of

what is generally stated)
2. Completing, deleting, and correcting (in order to allow,

ensure, or contradict conclusions to be made)
3. Comparing, sorting, and organizing (in order to better

understand the assumptions and hypotheses)
4. Changing, varying, revising, and altering (questions,

assumptions, hypotheses, constraints, or solution routes)
5. Generalizing and conjecturing
6. Explaining, justifying, verifying, convincing, and refuting

(with consequences, extrapolations, reformulations,
counterexamples, etc.).

A mathematical thinking process is also analytical to break a task
down, make assumptions, identify similar tasks, appropriate
knowledge and skills, look for patterns or connections, select a
strategy while considering alternatives, and assist thinking with
examples, data, or visual aids. Arguably, one does computing by
taking full advantage of his or her mathematical thinking ability
and the ability to follow a mathematical thinking process with,
perhaps, a different orientation. In particular, thinking to model
or design a system is a mental process to decompose the system
into subsystems, conceptualize and simulate design choices, and
apply convergent-divergent thinking cycles [5]. This is very
similar to doing mathematics. Thinking mathematically directly
translates into thinking recursively, abstractly, logically, and
procedurally – the essential thinking abilities for anyone to do
computing effectively. As said, mathematicians and computer
scientists share several modes of thought, particularly in
representation of reality, reduction to simpler problems, abstract
reasoning, information structures, and algorithms [9]. Thus, the
inseparability between mathematics and computing makes many
wonder whether computational thinking is a form of mathematical
thinking. However, one may also suspect that computing
differentiates itself from mathematics with its unique orientation
and intricacy, and hence may require more than just mathematical
thinking. But how much is there in computational thinking that is
different from mathematical thinking? If there is, would other
thinking paradigms address the difference? We struggle to
answer these questions.

5. IS COMPUTATIONAL THINKING A
MIXTURE, PERHAPS?

In a way, various thinking paradigms may be related to one
another "hierarchically". Thinking paradigms lower in the
“hierarchy” are useful precisely because of their specificity. For
instance, one tackles problems in a step-by-step fashion with
refinement iterations by applying algorithmic thinking, which is
likely a form of analytical thinking or mathematical thinking. In
light of critical thinking, all thinking paradigms may share some
common attributes disconnected to in-depth domain knowledge.
Thus, a simple question such as “How many months are there in a
year that each has 28 days?” may be used to test one’s logical,
mathematical, and perhaps, computational thinking abilities. But

225

evidently, it is the “high-order” computational thinking ability we
are trying to understand.
 It can, in fact, be rather philosophical to distinguish thinking
paradigms when we engage in meaningful thinking. For instance,
to improve performances of insertion and deletion operations of a
sorted list, one wonders whether using a two-dimensional jagged
array as storage might help (and it indeed will). Such thinking is
clearly “computational". Can such thinking be labeled
“analytical” or “mathematical” (and thus making “computational
thinking” in such instances redundant)? It’s difficult to argue it
can’t. Conversely, a philosophical undertaking, as described
earlier, can impact computation profoundly, and yet may not
appear “computational” at all. Arguably, one may apply
essentially the same thinking process to produce possibly
different mental products. For instance, mathematicians seek
abstractions or representations to make mathematical structures
richer, more predictable, or more complete. In contrast, computer
scientists introduce abstractions or representations often for
empirical reasons. However, they can be all using the same
analytical thinking skill to create abstractions or representations
and reason to seek them by exploring new ideas and approaches
as they discard preconceived assumptions. In other words, one
may acquire the very same thinking skill from a very different
learning experience. Thus, it might be a philosophical challenge
to stress the importance of computational thinking today while its
products might have existed even before modern computers were
born.

Nonetheless, “What might computational thinking be?” is at
least philosophically interesting. To further the exploration,
perhaps, we should have looked into the nature of computation in
the first place. Classically, computation is an algorithmic process
to produce output given input. Peter Denning describes
computation as a process in which the transitions from one
element of the sequence to the next are controlled by a
representation [4]. Thus, he defines computational thinking to be
an approach to problem solving that represents the problem as an
information process and seeks an algorithmic solution. However,
like many others, the definition might still be too broadly stated to
be empirically helpful. What seems plausible however is the
viewpoint that the essence of computation is to seek
representations and models – the two intimately related yet subtly
different concepts. Models, in a sense, are representations.
However, a model – how entities in the model are represented – is
a result of modeling, which is not simply how to represent things.
Rather, modeling captures the dynamics of the entities based upon
their representations. While a model can be abstract, a
representation is most likely concrete. A model allows
transforming data from one representation to another to make the
data better understood or more “easily” manipulated. Models can
be purely artificial, mathematically transformed, or
algorithmically constructed by recognizing existing data patterns.
With the above analysis, the author makes the following
conjuncture of what computational thinking may mean in an
operational sense.

Computational thinking is thinking to solve problems,
automate systems, or transform data by constructing models and
representations, concrete or abstract, to represent or to model the
inner-working mechanism of what is being modeled or
represented as an information process to be executed with
appropriate computing agents. Such thinking is necessarily

o logical, to capture what is essential to the models or
representations;

o algorithmic, to step-wise define or refine operational
processes;

o scientific, to gain understanding of models’ capabilities,
learn how to use them with maximum efficiency, and explore
the effects of the computation in the original problem
domain.

o mathematical, to be able to show the correctness of
algorithms, specify precisely the functionality of a software
system, measure the quality of what we do in a process of
computation, and deal effectively with the complexity of the
models and representations by exploring more effective and
efficient alternatives;

o analytical, to model with purpose, assumptions and
viewpoints, evaluate and adjust the models and
representations by prototyping, and study their implications
and consequences;

o engineering-oriented, to design the models and
representations against known constraints and practical
concerns, and to plan, execute, manage, and evaluate the
process of computation in order to improve our capability
and maturity level; and

o creative, to model the unthinkable.

This definition is, in principle, consistent with the ones reviewed
earlier. However, what makes this definition different is the
linkage of the thinking elements to the better known thinking
paradigms in terms of the relevance of each paradigm when
applied to computation. Computation is diverse. Thus, it is
hardly possible to describe computational thinking to encompass
all possible thinking modes, their combinations and derivatives.
The above definition should not preclude any thinking mode that
can be more applicable in a specific area of computing with its
focused characterization. For instance, software design needs
“design thinking”, thinking that enables a designer to tolerate
ambiguity in an iteration of convergent-divergent thinking cycle,
maintain sight of big picture, handle uncertainty, make sound
decisions, and communicate in several design languages [5]. In
the end, what matters is our ability to think critically, not the
labeling of a thinking process.
 Computing, as a discipline, has its well-established models
of computation that we can still improve on. But perhaps, the
perspectives drawn from other disciplines are really what makes
computing full of wonders, challenges, and successes.
Computation is unavoidable not only in the method of study, but
in what is studied [3]. Likewise, computational thinking is
present not only because of the nature of computation, but also
because of the way how people think critically. We gain different
kinds of critical thinking ability through a variety of means.
These thinking skills, collectively, become a guiding force to
enable us to do computation effectively. The more we do in
computation, the more capable we are as computational thinkers.
Thus, perhaps, it is not computational thinking we should
promote, but computational doing at all levels of K-16 education
in order for us to better understand the computational potential of
the world in which we live. Therefore, whether or not we would
be able to “accurately” define “computational thinking” might
never be important.

226

6. IMPLICATIONS OF THE ANALYSIS
Colleges in the U.S. have faced years of declining enrollment in
computing disciplines since the end of the dot-com era. The
College Board of the U.S. has discontinued AP Computer Science
AB Exam due to insufficient interests. Meanwhile, IT job
markets remain strong in the U.S. and companies continue to seek
IT talents overseas. The notion of computational thinking came
in time to raise the level of urgency in promoting computing
education across the entire spectrum of K-16 education.

Doing influences the way we think. A thinking paradigm
means little to virtually anyone who hasn’t had much experience
in doing things with which the paradigm may help. We promote
STEM education by having students solve STEM problems, not
by advocating scientific, engineering, or mathematical thinking.
There is inherently a C (Computing) in STEM. Learning STEM
without learning computing is fundamentally inadequate.
Learning computing while solving STEM problems, on the other
hand, would inevitably foster one's computational thinking ability
no matter how the notion is defined.

If the mainstream of computational thinking is thinking
about process abstraction, then Jean Piaget’s Stages of Cognitive
Development [15] may suggest that this thinking skill cannot be
effectively taught until adolescence age. Perhaps, what we need,
instead, is a computational culture – a set of shared attitudes,
values, goals, and practices that characterizes our education in
which information processing and computation (in a variety of
forms) are naturally integrated into what we teach. The authors of
[11] proposed permeating the collective knowledge and lessons of
computer science research into the discussion and development of
all subjects that involve (information) processing. They also
suggested some computational activities that can be naturally
integrated into what we teach. In this way, students would be
better prepared and more successful in learning programming as
they progress computationally.

Fostering a computational culture is possible. When we ask
students to search Web to find needed information, discuss how to
do it effectively. When students are learning Excel software
program, discuss ways to use it in solving perhaps optimization
problems. When teaching students bisection method of finding
roots of an equation, go a bit further to talk about binary search
and other root-finding methods that can be potentially translated
into more efficient search algorithms. When teaching
polynomials, study the identity anx

n + an-1x
n-1 + … + a1x + a0 = a0

+ x(a1 + x(a2 +…+ x(an-1 + anx)…)) and its computational
implications. Perhaps, students can learn how to design
reasonably normalized databases as a modeling experience while
still in high school. Students may possess commonsense
computing abilities [10] that we should find ways to promote and
build upon.

Yet, there are still serious obstacles. Studies have suggested
that lack of or inadequate introduction of computer science at the
high-school level, not the impact of the dot-com burst or IT
overseas outsourcing, may have been a sustained major factor to
prevent many capable high-school students from pursuing
computing-related studies in colleges [1]. Meanwhile, teaching
computer science is still an avocation, not exactly a hobby, but
certainly not a primary job for many high-school computer
science teachers [6]. As a result, few colleges have CS teacher
education programs. To remove, or at least alleviate, the
obstacles, educators have been promoting learning of CS in free
environments (termed CS-unplugged at http://csunplugged.org/).

They are developing a new AP course: “CS: Principles”
(http://csprinciples.org) aimed to broaden participation in
computing. But, it might require a pervasive plug-in in our
curricula at all levels to eventually make computing a
fundamental part of our education.

In closing, our ability to think critically and innovatively
when we engage in computation will continue to improve as
digital technology advances whether we promote computational
thinking or not. In contrast, we are searching for means to
improve our ability to make computing an integral part of K-16
education if promoting computational thinking can indeed help.

7. ACKNOWLEDGMENTS
The author would like to acknowledge the support of the NSF
CPATH program No. 0939032.

8. REFERENCES
[1] Carter, L. Why students with an apparent aptitude for computer science

don’t choose to major in computer science. SIGCSE 2006, Houston, pp.
27-31.

[2] Chen, F. et al. Realization of Boolean Functions via CNN: Mathematical
Theory, LSBF and Template Design, IEEE, TRANSACTIONS ON
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, 53, 10 (October
2006), 2203-2213.

[3] Denning, P. Beyond Computational Thinking, Commun. ACM, Vol. 5,
No. 6, June 2009, 28-30

[4] Denning, P. Ubiquity Symposium 'What Is Computation?' Opening
Statement, Nov. 2010,
http://ubiquity.acm.org/article.cfm?id=1880067

[5] Dym C. et al. Engineering Design Thinking, Teaching, and Learning,
Journal of Engineering Education, January, 2005, 103-120

[6] Harrison, J. Endings and Beginnings, at
http://blog.acm.org/archives/csta/2009/05/

[7] Hu, C. It's Mathematical, After All – the Nature of Learning Computer
Programming, Education and Information Technologies (Springer
Netherlands), 11, 1 (January 2006), 83-92.

[8] Kramer J. Is Abstraction the Key to Computing? Commun. ACM, Vol.
50 No. 4, April 2007, 37-42

[9] Knuth, D. Algorithmic Thinking and Mathematical Thinking, The
American Mathematical Monthly, Vol. 92, No. 3 (Mar., 1985), 170-181

[10] Lewandowski, G. et al. Commonsense Understanding of Concurrency:
Computing Students and Concert Tickets, Commun. ACM, 53, 7 (July
2010), 60-70.

[11] Lu, J. & Fletcher, G. Thinking about Computational Thinking, SIGCSE
2009, Chattanooga, PP260-264

[12] McMaster K. et al. Integrating Mathematical Thinking, Abstract
Thinking, and Computational Thinking, Proceedings of ASEE/IEEE
Frontiers in Education Conference, October 27 - 30, 2010, Washington,
DC

[13] Moursund, D. Computational Thinking and Math Maturity: Improving
Math Education in K-8 Schools (Second Edition), 2007, retrieved at
http://uoregon.edu/~moursund/Books/ElMath/ElMath.html.

[14] National Research Council, Report of a Workshop on The Scope and
Nature of Computational Thinking Committee for the Workshops on
Computational Thinking, retrieved at
http://www.nap.edu/catalog/12840.html

[15] Piaget, J. Studies in Reflecting Abstraction, Hove, UK: Psychology Press,
2001.

[16] Watson, A. & Mason, J. Questions and Prompts for Mathematical
Thinking, Association of Teachers of Mathematics, Derby, 1998.

[17] Trefethen, L. Numerical Computation of the Schwarz-Christoffel
Transformation, SIAM J. Sci. Stat. Comput. 1 (1980), 82-102.

[18] Wing, J. Computational Thinking, Commun. ACM, 49, 3 (March 2006),
33-35.

[19] Wing, J. Computational thinking and thinking about computing, Phil.
Trans. R. Soc. A (2008) 366, 3717-3725

227

