
  

Human-Centered Computing and 
Representation: A Framework 

 

 

Abstract 
The CompRep framework is a way of thinking about 
computation that clarifies the relationship of human-
centered computing to other aspects of computing. 

Keywords 
Human-centered computing, representation, theory 

ACM Classification Keywords 
H1.2. [User/Machine Systems]: Human factors; H.5.2. 
[User Interfaces]: Theory and methods. 

Introduction 
The CompRep framework is a perspective project, a 
way of thinking about computation that clarifies the 
relationship of human-centered computing to other 
aspects of computing. The organizing theme of the 
framework is, "computational systems are 
representational systems". By taking representation to 
be the purpose of computational systems, and building 
on theoretical work on the nature of representations, 
we get insights into those aspects of computing that 
are distinctively human-centered, and material for 
agendas in education and research. The aims of this 
work in progress presentation at CHI are to get 
feedback from the CHI community on the framework, 
and to solicit participation in developing the ideas. 

Copyright is held by the author/owner(s). 

CHI 2009, April 4 – 9, 2009, Boston, MA, USA 

ACM  978-1-60558-246-7/09/04. 

Clayton Lewis 

Department of Computer Science 

and Coleman Institute 

University of Colorado 

Boulder, CO 80309 USA 

clayton.lewis@colorado.edu 

 

 

 

 



 2 

 

What is Computer Science about? 
"Computer science is no more about computers than 
astronomy is about telescopes," is a view widely 
attributed to Edsger Dijkstra. But then, what is it 
about? We computer scientists haven't been very good 
at explaining the intellectual basis of our field, and this 
may be one of the reasons we are struggling to interest 
students, and potential collaborators, in our field, even 
while the importance of computing in all aspects of life 
is growing by leaps and bounds.  

Computational systems are important because they are 
used to represent all kinds of things people care about, 
like airplane wings, employees, or social networks, and 
representations are really useful. Further, as we’ll see, 
computational representations have a number of 
properties that make them especially useful. 

The nature of representations. 
So, what is a representation? There's some theory of 
representation that we can draw on, best developed for 
measurement systems, a special case (see [3], for the 
broader theory of representations, see [6,7]). 

A representation has to be understood in the context of 
a representational system, which consists of a target 
domain, in which there is something we want to 
accomplish, and a representation domain, with 
mappings connecting them. The point of 
representations is that we map work in the target 
domain into work in the representation domain, where 
it can be done more easily, or faster, or better in some 
other way. Then the results are mapped back to the 
target domain, where we need them. 

Suppose we have two cars, and we want to see which 
has greater fuel economy. We could compare the cars 
directly in some way, but life is much easier if someone 
provides a representation, say in the form of a bar 
chart. The bar chart corresponds to the real situation 
with the cars, in that if one car is more economical than 
the other, then its bar is longer. We map the difficult 
question, which car is more economical, into the easier 
question, which bar is longer? 

Figure 1 shows the representational system here. The 
target domain contains the cars, and the representation 
domain the bars. 

 

figure 1. Representational systems connect a target domain to 
a representation domain. 

Our question in the target domain is “Which car is more 
economical?” We map this question onto a question in 



 3 

the representation domain: “Which bar is longer?” 
Finally, we map the answer we get in the 
representation domain into the target domain.  

Cost structure is crucial in representations. 
As stressed earlier, the whole point of having a 
representation is to be able to do something more 
easily, or cheaper, or faster, or better in some way, and 
computational representations often have huge 
advantages over others. Here are a few examples. 

 People can use a computational representation of 
something to do work on the other side of the world, 
quickly and cheaply. 

 Computational representations can easily be 
accessed in other times, as well as in other places. That 
is, they are easy and cheap to store and retrieve.  

 Many operations on computational representations 
can be automated, meaning that they can be carried 
out by a machine, rather than a person. This often 
offers huge advantages in speed, accuracy, and cost. 
 
We’ll treat all of these advantages (speed, effort, etc.) 
under the general heading of cost. 

If computational representations didn’t offer these cost 
advantages they would rarely be used. But many, in 
fact most, computational representational systems 
include operations that are implemented not by 
computers but by people, the users. This means that 
the overall cost structure of the representational 
system, the structure that determines whether or not 
the system is useful, includes not only the attributes of 
the computational operations that are included, but 

also the attributes of the operations performed by 
people. 

The cost structure of human operations: An example. 
Figure 2 shows a bar chart as in Figure 1 along with 
two alternatives, in which the bars are displayed 
differently. All three charts express the same 
information, but the alternatives B and C present it in 
ways that people find difficult to process, because of 
the way their perceptual apparatus works. So, design of 
effective information presentation depends on 
understanding this cost structure. 

 

figure 2. Alternative bar presentations. 

 
Human-Centered Computing. 
Here is the synopsis of the program description for the 
Human-Centered Computing Cluster at the US National 
Science Foundation [8]: 

 “This cluster, Human-Centered Computing (HCC), 
encompasses a rich panoply of diverse themes in 
Computer Science and IT, all of which are united by the 
common thread that human beings, whether as 
individuals, teams, organizations or societies, assume 



 4 

participatory and integral roles throughout all stages of 
IT development and use.” 

The description goes on to list a wide range of topics, 
including multi-modal interfaces, intelligent user 
interfaces, visualization, multi-agent systems, 
collaboration and conferencing, accessibility and 
assistive technology, affective computing, studies of 
social organizations, and many more. 

Can this broad area of work, defined mainly by 
example, usefully be given more conceptual coherence? 
Focusing on the role of people in the representational 
work of computational system suggests that it can. 
Further, the representational perspective shows that 
HCC is not, as some have thought, a peripheral aspect 
of computing, but rather a central aspect, not just in its 
practical importance, but also in the intellectual content 
it shares with other areas of computing. 

For a representational system to work, the cost 
structure of its human operations has to meet the same 
conditions as the cost structure of its automated 
operations, including conditions on accuracy and 
reliability. Here are more examples that illustrate 
factors that influence the cost structure of operations 
performed by people in representational situations. 

Recognizing objects or people in a scene, or judging 
aesthetic qualities, can be done from pictures. That is, 
if a real scene isn't at hand, it can be represented by a 
picture, and judgments made from the picture can 
substitute for the judgments that would be made from 
the real scene. Conveniently, suitable pictures can be 
created and displayed by computer, taking into account 
the specific characteristics of human vision, including 

color perception (for Homo sapiens the brightness of 
just three colors can be chosen to reproduce perfectly 
any color; a display for dogs would need only two 
colors, because dogs discriminate only short from long 
wavelengths); limited spatial resolution and blending 
(closely spaced dots merge into a smooth-appearing 
area); and depth perception. Presentation of movies 
and videos relies on further facts about how people 
see: images closely spaced in time merge into the 
appearance of smooth motion.  

These examples bring out what the point of human 
centered computing is. Effective displays are not based 
on faithful physical and geometric reproductions of the 
signals available from real scenes. Rather, they 
systematically exploit specific facts about the human 
perceptual apparatus. Analogous considerations apply 
to input apparatus, like keying, drawing, and speaking.  

HCC and social systems. 
Humans are social animals: most things that people do 
are done in groups. Designers have to understand not 
just what individual people are likely to do, and can do, 
but what people working in groups will and can do. For 
example, sometimes systems fail because some users 
don’t do things, like entering information into a data 
base, that are needed to support other users. But 
sometimes, as in Wikipedia, people working as 
volunteers put huge amounts of effort into really useful 
contributions. If you are designing a system for a lot of 
people to use, you have to try to understand what 
causes contrasts like this.  

Programming, representations, and HCC. 
Computational representational systems are built up by 
programming, the process of piecing together 



 5 

computational operations so as to reflect the structure 
of a target domain. Programming starts with a 
repertoire of primitive operations in a programming 
language, and uses notations that specify how these 
operations should be put together, or composed, to 
represent the operations needed in the representational 
system. These notations have to be used by people, 
and the cost of using them to create a representational 
system has to be included in the overall cost structure 
of the system. So a critical question is, what is the cost 
structure of the associated human operations? A small 
example can illustrate the considerations. 

Suppose we are working on the specific problem of 
adding an echo to a digitized bird song. Some 
preliminary programming will give us operations that 
make a sound softer, that delay it, and that mix 
together two sounds so that we hear them together. 
Here are two ways of specifying how to compose these 
operations to produce the song with an echo: 

#Version 1 
mix(originalSong,delay(makeSofter(originalSong))) 
#Version 2 
softerSong=makeSofter(originalSong) 
echo=delay(softerSong) 
mix(originalSong,echo) 
 
Version 1 uses nesting, a notational device borrowed 
from mathematics, to specify the composition. Version 
2 has no nesting of operations; composition is specified 
entirely by the use of variables that hold the results of 
earlier operations and allow them to be reused. What 
are the merits and demerits of each? 

Human-centered analysis of programming 
notations. 
The best developed framework for this is Cognitive 
Dimensions analysis, developed by Green, Petre, 
Blackwell, and others [1,2] Here are a few dimensions: 

Hard mental operations: high demand on cognitive 
resources. 

Both versions require hard mental operations. In 1 one 
has to parse the expression to determine what is 
composed with what, and in what way (when mappings 
take more than one parameter the possible 
compositions multiply). In 2 one has to trace the 
history of the variables to recover the same 
information. Neither task is easy in general. 

Closeness of mapping: closeness of representation to 
domain. 
Role-expressiveness: the purpose of a component is 
readily inferred. 
These two dimensions point to advantages of Version 2 
over 1. The introduction of named variables in 2  picks 
out correspondences between entities in the program 
and entities in the target domain, an example of 
closeness of mapping. At the same time, these 
correspondences help the reader understand the roles 
of parts of the program. Perhaps we can create 
notations that ease the hard mental operations in both 
versions. 

Why does a representational perspective 
matter? Agendas for education and 
research. 
The CompRep framework has been useful in teaching 
an introductory Computer Science course to nonmajors. 



 6 

Because both the target domain and the representation 
domain are in focus, the approach clarifies what 
Computer Science is about, in a way that invites 
interest from students for whom the computer itself, 
like Dijkstra’s telescope, may not be fascinating. When 
applied to programming CompRep helps students use 
what they know about target domains, like sound, to 
structure their programming tasks, which are new to 
them. See detailed discussion in [4]. Can this 
educational beginning be developed? 

On the research side, the CompRep perspective 
suggests that better understanding of the cost 
structure of human operations would be fruitful in 
driving innovation in systems design. More research 
should combine studies of psychophysics and 
perception with experimentation on computer 
presentation of information. An even larger opportunity 
offers for work on the cost structure of human 
operations in programming. The few beginnings in this 
area show that the critique of Card and Newell [9] 
almost 25 years ago still holds: “Millions for compilers 
but hardly a penny for understanding human 
programming language use.” 

The cost structure of social operations also badly needs 
inquiry. Our ability to predict what operations will and 
will not be effectively carried out by self-organizing 
volunteers is weak, yet this kind of work is already of 
decisive importance in many real-world activities. 

The theory of representation itself needs more 
development. There are potential connections to 
category theory (in mathematics) and philosophical 
work on representation by Cummins, Millikan, and 
others. See [4,5]. 

Acknowledgements 
I thank the NSF Broadening Participation in Computing 
program. George Furnas, Brian Cantwell Smith, Peter 
Polson, and Randolph Bias provided valuable feedback. 

Citations 
[1] Blackwell, A. Human Computer Interaction Notes, 
http://www.cl.cam.ac.uk/Teaching/2000/AGraphHCI/H
CI/hcinotes.html#cds (2000). 

[2] Blackwell, A. Cognitive dimensions resource site. 
http://www.cl.cam.ac.uk/%7Eafb21/CognitiveDimensio
ns/ (n.d.). 

[3] Krantz, D., Luce, D., Suppes, P., and Tversky, A. 
Foundations of Measurement. Dover Publications 
(2007). 

[4] Lewis, C.H. CompRep Blog 
http://comprep.blogspot.com (2008). 

[5] Lewis, C.H. A theoretical view of Human-Centered 
Computing. 
http://spot.colorado.edu/~clayton/HCCNotes1.pdf 
(n.d.). 

[6] Mackinlay, J. and Genesereth, M. Expressiveness 
and language choice. Data & Knowledge Engineering 
(1985), 17-29. 

[7] Mackinlay, J. D. Automating the Design of 
Graphical Presentations of Relational Information. ACM 
Transactions on Graphics, 5, 2, (1986), 110-141. 

[8] National Science Foundation HCC Cluster 
Description 
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=
500051 (n.d.) 

[9] Newell, A., and Card, S. The prospects for 
psychological science in human-computer interaction. 
Human Computer Interaction (1985) 209-242.  


