
COMPUTER MATH SNAPSHOTS

REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS:
A BRIEF EXPLORATION

BRUCE SHERIN

School of Education and Social Policy
Northwestern University

2115 North Campus Drive
Evanston, IL 60208, U.S.A.

e-mail: bsherin@northwestern.edu

This column will publish short (ranging from just a few paragraphs
to ten or so pages), lively and intriguing computer-related mathematics
vignettes. These vignettes or snapshots should illustrate ways in which
computer environments have transformed the practice of mathematics or
mathematics pedagogy. They could also include puzzles or brain teasers
involving the use of computers or computational theory. Snapshots are
subject to peer review.

In this issue’s snapshot, Bruce Sherin presents a series of geometric
constructions made in a Boxer programming environment enriched with
a modest set of primitives. In reflecting on the resultant blended turtle
geometric and dynamic geometry environment, he discusses the role
and potential of programmable applications and the affordances of a
programming representation of geometric concepts and other sub-domains
of mathematics.

Computer Math Snapshots Editor: Uri Wilensky
Center for Connected Learning and Computer-Based Modeling

Northwestern University, U.S.A.
e-mail: uri@northwestern.edu

INTRODUCTION

In this snapshot, I pick up two research strands that have been prominent
in the community that contributes to IJCML. The first strand is research
around instructional uses of turtle geometry, which had its earliest and

International Journal of Computers for Mathematical Learning 7: PLEASE RUN
AGAIN , 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.



102 BRUCE SHERIN

most familiar incarnations in the Logo programming language (Abelson
and diSessa, 1980; Papert, 1980), and which continues to live on in Logo
and its descendents. The second strand, which has appeared somewhat
more recently, relates to instructional uses of dynamic geometry envi-
ronments. Prominent instances of this type of environment include Cabri
(Laborde and Laborde, 1995) and Geometer’s Sketchpad (Jackiw, 2001).

Because these two strands of work pertain to instruction in geometry
they are, in principle, related. However, in practice, they have remained
relatively separate worlds. Different computer tools are employed in
each strand, and the associated activities are, at least superficially, quite
different. In turtle geometry activities, students write their own programs,
and the constructions they create are often comparatively simple. In
contrast, in dynamic geometry environments, students create and interact
with constructions primarily though a point-and-click interface. Further-
more, because these environments are specifically created for geometry,
they are extremely powerful within this domain, and they allow students to
make complex constructions with relative ease.

The purpose of this snapshot is to explore briefly the merging of these
two strands of work. Unlike other snapshots, I will not be exploring mathe-
matics that is particularly novel for readers. Rather, my purpose is to look
at how, by merging programming and dynamic geometry, we can create
new ways of representing familiar mathematics. Indeed, I believe that my
points can be most forcefully made if the mathematics used for illustration
is very familiar to the reader. Thus, that is the tactic I will adopt; for
illustration, I will draw on some of the canonical examples from turtle
geometry and dynamic geometry.

A central feature of this exploration is that I take seriously the
possibility that it is productive to represent geometric constructions as
programs. These programming representations of constructions are the
“new ways of representing” that are the focus of this snapshot. To proceed,
I will start with a fully developed programming language (rather than
adding a macro language to a dynamic geometry environment), and I will
enrich this programming environment with new primitives that support the
creation of geometric constructions. I will not systematically compare this
technique to what is possible with the scripting features that are built into
some dynamic geometry environments. I only hope to illustrate that, if we
set out to enrich a Logo-like programming environment, it is relatively
straightforward to create a powerful and elegant language for representing
constructions.

I should mention that, in setting out on this exploration, I am following
a path suggested by Michael Eisenberg (Eisenberg, 1995). In previous



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 103

work, Eisenberg argued for ‘programmable applications’, applications in
which an enriched programming language is integrated with a direct-
manipulation interface. Along with his colleagues, Eisenberg developed
a number of prototype applications, with the Scheme dialect of Lisp as
the base language (e.g., Blough and Eisenberg, 1995). Although I will be
working with a Logo-like programming language, the approach suggested
here is clearly in the same spirit as Eisenberg’s work.

In the remainder of this introduction, I will give a brief history of the
geometry tools that are at the heart of this work. Then, in the second main
section of this snapshot, I will introduce the enriched programming envi-
ronment by describing how it can be used to construct the perpendicular
bisector of a line segment. In the third section, I then present examples
in order to show how it is possible to make very compact and elegant
representations of relatively complex constructions. This will first be illus-
trated with the bisector construction, as well as with the construction of the
centroid of a triangle. Finally, in the last main part of the snapshot, I present
one final example, the construction of a circle inscribed in a polygon.
The purpose of this example is to illustrate how, through the merging of
dynamic geometry and turtle geometry, we may be able to create construc-
tions that would be difficult to construct while working solely with one of
the component approaches.

The Tool and Its History

In the discussion that follows, I will be describing a set of tools that were
constructed to enrich a particular programming environment called Boxer
(diSessa et al., 1991). In many respects, Boxer is a direct descendent of
Logo. As we will see, it is possible in Boxer to write turtle geometry
procedures using Logo’s familiar turtle graphics commands. However,
Boxer also includes some modern amenities, including a programming
interface that is hierarchically structured as boxes within boxes (hence the
name).

The history of the geometry tools in Boxer merits a brief recounting.
The origins of the tools can be traced, first, to the work of a teacher-
researcher-designer named Henri Picciotto, who developed a set of
programming tools for use with Logo. In these tools, Picciotto essentially
added a set of new primitives to Logo. Picciotto created a manual and
curricular activities, which were shipped as a companion to a commer-
cial Logo product (Picciotto, 1990). At Picciotto’s request, I ported his
tools to Boxer. In doing so, new design elements were added, in part to
take advantage of the new capabilities offered by Boxer. Somewhat later,
Andrea diSessa added the capability to click and drag points to dynam-



104 BRUCE SHERIN

Figure 1. Program that draws a segment.

ically modify constructions. Throughout this time, Picciotto frequently
tinkered with the Boxer geometry tools, adding features and modifying
the tools to support his particular needs.

I have related this brief history in order to give the reader a feel for the
scope of effort that was involved in creating the tools that will be described
below. Unlike most dynamic geometry environments, the amount of effort
involved here was modest. Indeed, there was no systematic design effort,
or even any organized collaboration. Instead, over the course of years, the
tools were picked up and refined by a few Boxer users, working in their
spare time.

A First Example

I start with an absolutely prototypical example from the world of
straightedge-and-compass geometry: the construction of the perpendicular
bisector of a line segment. Figure 1 shows a simple Boxer program that
constructs the segment we will bisect. This program first draws a point. It
then tells the turtle to turn right 45◦ and go forward 50 steps before, finally,
making a second point. We see in this program the first of our special-
purpose primitives, the point command. This command draws a point at
the current location of the turtle and then labels it with the next avail-
able label from an internal list. A description of a selection of the Boxer
geometry commands is given in Table I. In most cases, these commands
have names and functions that follow those in Picciotto’s original Logo
tools.

Figure 2 shows a second a program, named bisect-ab, that constructs a
perpendicular bisector of our segment ab. This program is made entirely
using the new geometry primitives. It first draws two circles, one centered
on point a and through point b, and the other centered on b and through a.
Then, in the third line of the program, the ccint command is used to find



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 105

TABLE I

Geometer primitives and their functions

Primitive Function

point Draws and labels a point at current turtle location.

join (p1 p2) Draws a line connecting points p2 and p2.

circle (p1 p2) Draws a circle centered at point p1 and through p2.

ccint c1 c2 Finds the intersection points of circles c1 and c2.

llint l1 l2 Finds the intersection of the two lines, l1 and l2.

goto p1 Moves the turtle to point p1.

aimto p1 Rotates the turtle so that is headed toward point p1.

ml (p1 p2) Outputs the length of the segment with endpoints p1 and p2.

Figure 2. A program that constructs a perpendicular bisector.

the intersection of the two circles. Finally, the last line of the procedure
draws a line that connects these two intersection points.

To this point, all we have done is to associate steps in a construc-
tion with programming commands. Certainly the resulting functionality is
much less than any dynamic geometry environment. However, it is worth
noting that we already have some of the important features of dynamic
geometry. Notice that, as shown in Figure 3, we can change the location
of points a and b, and then rerun the construction. In an important sense,
this is the essence of dynamic geometry, the ability to apply ‘the same
construction’ across different circumstances.

Furthermore, representing the construction in this way has done more
than give us some of the basic functionality of a dynamic geometry envi-
ronment. It is not only the case that we can apply ‘the same construction’
in multiple circumstances; we also have given this construction a concrete



106 BRUCE SHERIN

Figure 3. Bisect-ab applied to a different line segment.

manifestation. And this all works quite naturally. After all, this is what
programming languages are for, the representation of procedures.

Toward a More Interactive Environment

One obvious absence in the preceding discussion was any mention of a
point-and-click interface. For instance, in the examples described above, it
was not possible for a user to click on an object in the graphical display
of the construction and delete it. Fully adding this feature to the interface
would involve a significant investment of time by a programmer. However,
note that it is possible to get the same effect by deleting a line in the
program and then rerunning the program.

Similar observations hold for other desirable features of a point-and-
click interface. In many cases, operations on the programming repre-
sentation can substitute for point-and-click interactivity in the graphical
display; a user can operate on the programming representation, rather than
on the graphical representation of the construction. These observations
suggest a more general question: When can operations on a programming
representation substitute for point-and-click interactivity in the graphical
display? This is a topic for a longer paper; here, I will just make a couple
of points.

First, consider the case in which we simply want to add or delete objects
from a graphical display by operating on a programming representation.
The ease with which this can be accomplished depends on the nature of
the correspondence between lines of programming and relevant objects in
the display. In the preceding examples, the mapping was straightforward.
But we can imagine that, in other integrated programming environments,
this will not always be the case. Multiple lines of programming will some-
times be required to construct an object. And, in some cases, the lines of



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 107

Figure 4. Bisect-ab revised to use ask-for-point.

programming that correspond to objects in a display may be interspersed.
In such instances, it may be non-trivial to add or delete objects by operating
on a programming representation.

Point-and-click interaction with a graphical display can allow other
types of operations on the objects in a graphical display, beyond simple
addition and deletion. For example, it is possible to change continuous
parameters that are associated with a display, such as the location or size
of an object, by moving or dragging the mouse pointer. Generally, these
operations can be accomplished, by making changes to a programming
representation. However, these changes will only be straightforward when
the parameter in question appears in a localized manner within a program
(e.g., when the parameter appears as a single number in the program).

Although we recognized that much can be accomplished through oper-
ations on the programming representation, we did choose to add some
point-and-click interactivity. These particular additions were easy enough
to add that the benefits were worth the small amount of programming effort
required. We made two specific additions that are relevant here. First, we
created a command called ask-for-point. When this command is executed,
the user is prompted to click somewhere in the graphics display, and a new
point is then created at the indicated location. Figure 4 shows a new version
of bisect-ab that uses ask-for-point. When this program is run, the user is
prompted to select locations for the two initial points. The program then
joins these two points, and then constructs the bisector, just as in previous
versions of bisect-ab.



108 BRUCE SHERIN

Figure 5. The construction changes as point b is dragged.

Second, we also added the capability for some true dynamic interaction
with the graphical display. When this feature is turned on, the user can
drag point a or b in our above constructions. Figure 5 shows a sequence
where point b has been dragged down and to the right. What is most
interesting about this feature is the relative ease with which it was added.
Because a programming representation of the construction was available,
the underlying code must simply rerun this programming representation as
the point is dragged. This is another instance in which the availability of a
programming representation of the construction has paid off.

FURTHER EXPLORATIONS OF THE PARADIGM

To restate: our goal here is to explore what happens if we take seriously the
idea that we can have programming representations of geometric construc-
tions. In this section, we take this proposal to some of its more interesting
extremes, and we will begin to see some more dramatic payoffs in terms
of power and elegance of representation. To begin, notice that our bisect-
ab procedure was written so that it operates on points named ‘a’ and ‘b’.
This allows for some flexibility, since the points a and b can be at any
location. However, there are some respects in which this is not as flexible
as one might want. For example, it would not be possible to use bisect-ab
to construct bisectors of two segments within a single construction.

This situation is ameliorated if we make use of variables in the place of
specific point names, as in Figure 6. This new procedure takes two inputs,
named p1 and p2, as specified at the top of the procedure. The procedure
begins by drawing the two circles, as before. Then it finds the intersections
of these two circles and stores them in the local variable named ‘int’. (This
local variable appears in Figure 6 as a box with the name ‘int’.) Finally, int
is passed as an argument to join, and the bisector segment is drawn.



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 109

Figure 6. A bisect program using variables.

Figure 7. A very compact version of the segment bisector program.

In addition to using variables, the program in Figure 6 makes use of the
fact that our geometry primitives output convenient values. In particular,
in the third line of programming, I am making use of the fact that the ccint
command not only marks the two points of intersection in the graphical
display, it also outputs these two points.

In providing outputs in this manner, we are taking a big step toward
creating a language that can support useful representations of geometric
constructions. Through the use of these output values, we can begin to
make compact, yet powerful expressions. For illustration, Figure 7 shows
how we can capitalize on outputs to create a compact, one-line version of
our segment bisector. In this short procedure, each of the calls to circle
produce outputs that serve as the inputs to ccint. The output of ccint (the
intersection points) then, in turn, serves as the input to join.

Using any of the versions of our bisect program that use variables, we
can construct bisectors at multiple points within a more complex construc-
tion. Figure 8 shows an example in which the compact-bisect program
has been used in a prototypical application from dynamic geometry, the



110 BRUCE SHERIN

Figure 8. Program that constructs the centroid of a triangle.

construction of the centroid of a triangle. The result is, once again, a
compact one-line program. This program constructs bisectors of two sides
of the triangle. The resulting segments are then passed as inputs to the llint
command, which finds the intersection of two given lines. (In Figure 8, I
have suppressed the circles in the construction for clarity.)

I want to pause for a moment to reflect on what we have just seen. In
the programs in Figure 7 and Figure 8, we have two extremely compact
representations, each embodying quite a bit of mathematics. Is this a good
thing? Certainly, we must expect some of the usual pitfalls associated with
the use of highly compact representations in mathematics instruction. In
particular, it is possible to envision situations in which students make use
of representations of this sort, without being able to unpack them in order
to understand what they say. However, we should also expect some of the
usual benefits of compact representations. It is easier to treat a compact
representation as a single entity, capable of consideration and manipula-
tion in its own right. Furthermore, while compact representations of this
sort hide some structure, they also make certain kinds of structure more
evident.



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 111

Figure 9. Procedure to draw a polygon.

Figure 10. A new version of the polygon procedure.

A FINAL EXAMPLE

Before concluding, I want to present a final example in order to illus-
trate the power that is derived from synthesizing the techniques of turtle
geometry and dynamic geometry. Here we start with the turtle geometry
procedure shown in Figure 9. This procedure draws a regular polygon
given two inputs, the number of sides (number-sides) and the length of
a side (slength). Readers familiar with turtle geometry will recognize this
as one of the standard exercises that is given to students.

In our dynamic geometry sub-environment, it makes sense to revise this
procedure slightly. The revised procedure, which is shown in Figure 10
takes the number of sides as one of its inputs, but the other two inputs are
points that will be the endpoints of one side of the polygon. Using these
three inputs, the procedure can construct a regular polygon in which all
of the vertices are labeled points. In addition to the standard turtle primi-
tives and the point command, this procedure makes use of three geometry
commands that I have not yet discussed. The goto and aimto commands



112 BRUCE SHERIN

Figure 11. Procedure that inscribes a circle in a polygon.

position and orient the turtle so that it is prepared to draw the remainder
of the polygon, and the ml command outputs the length of the given line
segment (refer to Table I).

When the polygon is constructed in this manner, it can interact
productively with other features of our simple geometry environment. For
example, it is now possible to drag points a and b. More importantly, the
constructed polygon can serve as the basis for the sort of constructions
that are easily accomplished with compass and straightedge. For example,
as shown in Figure 11, we can write a procedure to inscribe a circle in
a given regular polygon. This new procedure takes, as inputs, segments



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 113

Figure 12. More compact procedure that inscribes a circle in a polygon.

corresponding to any two sides of the polygon (s1 and s2). It first constructs
the perpendicular bisectors of these two segments. Then it marks the point
of intersection of these bisectors and stores the result in a variable named
‘center’. Finally, it draws a circle using the midpoint of s1 as a point on
the circle. As with our other examples, this procedure can be rewritten in a
compact form, as shown in Figure 12.

In constructing these inscribed circles, I am capitalizing on the virtues
of both types of environments. Drawing a polygon with a variable number
of sides is relatively easy in turtle geometry, but comparatively hard
with the limited tools of straightedge and compass. Of course, we could
include a special purpose command for drawing polygons in a dynamic
geometry environment. But, in the present case, we get this capability
largely for free, simply because we have turtle geometry commands avail-
able. Conversely, inscribing a circle in a polygon is moderately difficult
in turtle geometry, and comparatively easy with dynamic geometry-like
tools. Because we have commands that mimic some of the capabilities
of dynamic geometry, we can use these features in combination with our
turtle geometry commands.

CONCLUSION

The purpose of this snapshot was to explore the merging of turtle geometry
with dynamic geometry. To do this, I proceeded by describing how a few
users enriched a programming environment so that it was possible to create
programming representations of geometric constructions. To conclude, I
will now draw together some of the main observations made during this
exploration.

I begin with the observation that the brief examples presented here
provide something of an existence proof that Eisenberg’s (1995) integrated
programming paradigm can be applied to dynamic geometry. I proposed to
take seriously the notion that we could employ programming representa-



114 BRUCE SHERIN

tions of geometric constructions. In following this proposal we saw that,
within the examples considered, the mapping from features of program-
ming to geometric constructions can be made very comfortably. The
creation and use of sub-procedures maps cleanly onto reused components
in geometric constructions. And the notion of variable has useful counter-
parts in constructions. Furthermore, it is possible, in at least some cases,
to create programming representations that are compact, while still being
powerful.

Second, through the merging of these two approaches, we accrued some
of the benefits of both turtle geometry and dynamic geometry. Some of
what is hard in dynamic geometry environments is comparatively straight-
forward in turtle geometry. Conversely, much of what is hard in turtle
geometry is relatively easy with dynamic geometry-like tools.

As an aside, note that some of these benefits may be amplified if
we can make use of a programming language that has a range of uses,
and that students already know. It is possible to add macro languages to
dynamic geometry environments. But using a language that users already
know could potentially have many advantages. Users would not need to
learn a new language. Furthermore, they may make use of the additional
power afforded by the programming environment, in ways that we cannot
anticipate. Whether these benefits actually accrue is a matter for future
research.

My third observation is that a few users were able to build a rela-
tively powerful environment with comparatively little programming work.
Certainly, the resulting tools are not as powerful as the excellent dynamic
geometry environments that are commercially available. However, given
the limited amount of effort that was required, it is striking that we could
obtain such an important subset of the desired functionality. Furthermore,
although the geometry tools described in this snapshot are not yet powerful
enough to supplant existing applications, I believe that the examples
presented suggest that it may be worth following this avenue further, to
create a more powerful and feature-rich environment. Such an environment
may then present us with a real alternative to existing environments.

Finally, the exploration presented here can be taken as an example
of what may be possible across a range of educational applications in
mathematics. Because of the significant effort that was required to create
dynamic geometry applications, developers of educational software may
have been hesitant to tackle new domains; at the least, developers would
have to think carefully about which few domains were deserving of
their effort. However, if it is possible to get significant functionality
by enriching programming environments, it may be possible to apply



REPRESENTING GEOMETRIC CONSTRUCTIONS AS PROGRAMS 115

a dynamic geometry-like approach to more sub-domains within mathe-
matics. For example, we could imagine, a programming language that
has been enriched for number theory – for example, with primitives that
find the factors of a number, or determine whether it is prime – or a
programming language that has been enriched for probability theory, or
for the manipulation of vectors and matrices. Such environments might
allow teachers and students to harness the power of computation across
the range of mathematical sub-disciplines.

REFERENCES

Abelson, H. and diSessa, A.A. (1980). Turtle Geometry. Cambridge, MA: MIT Press.
Blough, E. and Eisenberg, M. (1995). Combining programming languages and direct

manipulation in environments for computational science. In G. Olson and S. Schuon
(Eds), Proceedings of Designing Interactive Systems (pp. 123–130). Ann Arbor, MI.

diSessa, A.A., Abelson, H. and Ploger, D. (1991). An overview of Boxer. Journal of
Mathematical Behavior 10(1): 3–15.

Eisenberg, M. (April, 1995). Programmable applications: Interpreter meets interface.
SIGCHI Bulletin 27(2).

Jackiw, N. (2001). The Geometer’s Sketchpad (Version 4.0) [Computer Software].
Emeryville, CA: KCP Technologies, Inc.

Laborde, C. and Laborde J.M. (1995). The Case of Cabri-géomètre: learning geometry
in a computer-based environment. In D. Watson and D. Tinsley (Eds), Integrating
Information Technology into Education (pp. 95–106). London: Chapman & Hall.

Papert, S. (1980). Mindstorms. New York: Basic Books.
Picciotto, H. (1990). Logo Math: Tools and Games, a Comprehensive Computer Envi-

ronment to Enhance the Discovery-based Learning of Secondary School Mathematics.
Cambridge, MA: Terrapin, Inc.




