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The Impact of Abstraction  Concerns on Modern 
Programming languages 

MARY SHAW, MEMBER, IEEE 

Absfmcr-The major  issues of modern software are its  size and com- 
plexity, and its major  problems  involve  finding effective  techniques and 
t d s  for organization  and  maintenance. This paper  traces  the important 
ideas of modem programming l a n g u a g e s  to their roots in  the  problems 
and  languages of the past  decade  and shows how  these  modern  languages 
respond to contemporary  problems  in  software  development. Modern 
programming’s  key concept for controlling  complexity is ubsfruction- 
that is, selective  emphasis  on  detail;  new  developments  in  programming 
languages  provide ways to support  and  exploit  abstraction  techniques. 

I. ISSUES OF MODERN SOFTWARE 

HE  MAJOR issues of modem software development 
stem  from the costs of software  development, use, and 
maintenance-which are too high-and the quality of the 

resulting systems-which is too low. These problems are par- 
ticularly severe for  the large  complex  programs with long useful 
lifetimes that characterize modem software. Such  programs 
typically involve many programmers, not only during their 
development but also for maintenance  and  enhancement  after 
they are initially released. As a result, the cost  and  quality  of 
software are influenced  by both management  and software  en- 
gineering considerations [ 51, [ 231. 
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This paper examines one of the themes that  run through the 
history  of  attempts to solve the problems of high cost and  low 
quality: the effect of abstraction  techniques  and  their associ- 
ated specification and verification  issues on  the evolution of 
modem programming  languages  and methods. This theme 
places a strong emphasis on engineering concerns, including 
design, specification, correctness, and reliability. 

The  paper begins with a review of the ideas about program 
development and analysis that heavily influenced the develop- 
ment of current  techniques  (Section 11).  Many of these ideas 
are of  current  interest as well as of historical importance. This 
review  provides a setting for a survey of the ideas from  current 
research projects that are influencing modem language  design 
and software  methodology  (Section HI). Section IV illustrates 
the changes in program organization this work  has stimulated 
by  developing  an  example in three different languages intended 
for  production use: Ada, Pascal,  and Fortran. Although 
Sections I1 and 111 present a certain  amount of technical detail, 
Section IV illustrates the concepts with an example that 
should be accessible to all readers. An assessment  of the cur- 
rent  status  and  the  potential of current  abstraction  techniques 
(Section V) concludes the paper. 

11. HISTORICAL REVIEW O F  ABSTRACTION TECHNIQUES 
Controlling software development and maintenance has 

always involved  managing the intellectual  complexity of pro- 
grams and systems of programs. Not  only must the systems 
be created,  they  must be tested,  maintained,  and  extended. 
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As a  result, many different  people must understand  and  mod- 
ify them  at various times during  their  lifetimes. This section 
identifies  one  set of ideas about managing program complexity 
and shows how those  ideas have shaped -programming lan- 
guages and methodologies over the past ten to fifteen  years. 

A dominant  theme  in the evolution  of  methodologies  and 
languages is the development of tools  for dealing with  abstrac- 
tions. An abstraction is a simplified description, or specifica- 
tion, of a system that emphasizes some of the system’s details 
or  properties while suppressing others. A good abstraction is 
one  in which information  that is significant to  the reader (i.e., 
the user) is emphasized while details that are immaterial or 
diversionary, at least for  the moment, are suppressed. 

What  we call “abstraction”  in programming systems  corres- 
ponds closely to what is called “analytic modeling” in many 
other fields. It shares many of the same problems: deciding 
which characteristics of the system  are  important, what vari- 
ability (i.e., parameters)  should be included, which descriptive 
formalism to use,  how the model can be validated,  and so on. 
As in many other fields, we often  define hierarchies of models 
in which lower level models provide more detailed  explana- 
tions  for  the  phenomena that appear  in higher  level models. 
Our models also share the property that  the description is suf- 
ficiently  different  from the underlying system to require  ex- 
plicit demonstration. We refer to the  abstract  description of a 
model as its specification and to  the  next lower level model  in 
the hierarchy as its implementation. The validation that  the 
specification is consistent  with the implementation is called 
verification. The  abstractions we  use for  software  tend to 
emphasize functional  properties of the software, emphasizing 
what results are to be obtained and suppressing details  about 
how this is to be achieved. 

Many important  techniques  for program and language orga- 
nization have been based on  the principle of abstraction. These 
techniques have  evolved in  step not only with our  understand- 
ing of programming issues, but also with our  ability to use the 
abstractions as formal  specifications of the  systems  they de- 
scribe. In the 1960’s, for  example,  the  important  developments 
in  methodology  and languages  were centered  around  functions 
and  procedures, which summarize a program segment in  terms 
of  a  name and a  parameter  list. At  that time, we only knew 
how to perform  syntactic validity checks, and  specification 
techniques  reflected this: “specification” meant  little more 
than  “procedure  header”  until  late  in the decade. By the late. 
1970’s, developments were centered on the design of data 
structures,  specification  techniques drew on  quite  sophisti- 
cated  techniques of mathematical logic, and programming 
language semantics were  well enough understood to permit 
formal  verification that these programs and  specifications were 
consistent. 

Programming languages and methodologies  often develop 
in response to new ideas about  how to cope  with  complexity 
in programs and systems of programs. As languages  evolve 
to meet these ideas, we reshape our  perceptions of the prob- 
lems and  solutions  in response to  the new experiences. Our 
sharpened  perceptions  in  turn  generate new ideas which feed 
the  evolutionary cycle. This paper  explores the routes by 
which these cyclic advances in  methodology  and  specification 
have led to current  concepts  and principles of programming 
languages. 

A,  Early Abstraction  Techniques 
Prior to the  late 1960’s, the  set of programming topics  re- 

garded as important was dominated by the syntax of program- 

ming languages, translation  techniques,  and  solutions to specific 
implementation  problems.  Thus we saw many papers on solu- 
tions to specific problems  such as parsing, storage  allocation, 
and data  representation.  Procedures were  well understood, 
and libraries of procedures were set  up. These libraries met 
with mixed success, often because the documentation  (infor- 
mal specification) was inadequate or because the parameteri- 
zation of the procedures did not support the cases of interest. 
Basic data  structures  such as stacks  and  linked  lists were just 
beginning to be understood, but they were sufficiently  unfa- 
miliar that it was difficult to separate the concepts  from the 
particular  implementations. Perhaps it was too early in the 
history of  the field for generalization  and  synthesis to take 
place, but  in any event  abstraction played only  a  minor  role. 

Abstraction was f i t  treated consciously as a program or- 
ganization  technique  in  the  late 1960’s. Earlier languages 
supported  built-in  data  types  including  at least integers,  real 
numbers, and arrays,  and  sometimes  booleans, high-precision 
reals, etc. Data structures were first  treated  systematically  in 
1968 (the f i t  edition of [431), and the notion  that  a  pro- 
grammer might define  data  types  tailored to a  particular  prob- 
lem f i t  appeared  in  1967 (e.g., [671). Although discussions 
of programming techniques  date back to the beginning of the 
field, the  notion  that programming is an activity that should 
be studied  and  subjected to some  sort of discipline dates to 
the NATO Software Engineering conferences of 1968 [531 
and  1969  [71. 

B. Extensible Languages 
The  late 1960’s also saw efforts to abstract  from the built-in 

notations  of programming languages in  such  a way that any 
programmer could add new notation and new data  types to a 
base language. The objectives of the extensible language work 
included allowing individual programmers to extend  the syn- 
tax of the programming language, to define new data  struc- 
tures, to add new operators  (including  infut  operators as well 
as ordinary  functions)  for  both old and new data  structures, 
and to add new control  structures to  the base  language. This 
work on extensibility  [601 died out, in  part because it under- 
estimated  the  difficulty of d e f i g  interesting  extensions. 
The  problems  included  difficulty  with keeping independent 
extensions  compatible when all of them  modify  the  syntax 
of the base language, with organizing definitions so that re- 
lated infohation was grouped  in  common  locations,  and  with 
finding techniques for describing an  extension  accurately  (other 
than by exhibiting the code  for the extension). However, it 
left  a legacy in  its  influence on the  abstract  data  types  and 
generic definitions  of  the 1970’s. 

C. Structured  Programming 
By the early 1970’s, a  methodology emerged for  constructing 

programs by progressing from  a  statement of the objective 
through successively more precise intermediate stages to final 
code [ 171, [ 7  1 ] . Called “stepwise refinement” or  “topdown 
programming,” this methodology involves approaching  a  prob- 
lem by writing  a program that is free to assume the existence 
of any data  structures  and  operations  that can  be directly 
applied to the problem at  hand, even  if those  structures and 
operations are quite  sophisticated and difficult to implement. 
Thus  the  initial program is presumably small,  clear,  directly 
problem related, and ‘‘obviously’’ correct. Although the 
assumed structures and operations may  be specified only 
informally,  the programmer’s intuitions  about  them should 
make it possible to concentrate on the overall organization 
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of the program and defer concerns about the implementa- 
tions of the assumed definitions. When each of the  latter 
definitions is addressed, the same technique is applied again, 
and the implementations of the high-level operations are 
substituted  for  the corresponding invocations. The result 
is a new, more detailed program that is  convincingly  like 
the previous one,  but depends on fewer or simpler defiii- 
tions  (and hence is  closer to being compilable). Successive 
steps of the program  development add details of the  sort 
more relevant to the programming  language than to the 
problem domain  until the program is completely expressed 
using the  operations  and  data  types of the base  language, 
for which a compiler is  available. 

This separation of concerns  between the structures that are 
used to solve a problem  and the way those  structures are im- 
plemented provides a methodology for decomposing complex 
problems into smaller, fairly independent segments. The key 
to  the success of the methodology is the degree of abstraction 
imposed  by selecting high-level data  structures  and  operations. 
The chief limitation of the methodology, which  was not appre- 
ciated until  the methodology  had been in use for  some  time, is 
that  the final program does not preserve the series  of abstrac- 
tions  through which it was created,  and so the task of modify- 
ing the program after it is completed is not necessarily simpler 
than it would be for a program developed in  any  other way. 
Another  limitation of the methodology is that informal de- 
scriptions of operations do  not convey sufficiently precise 
information. Misunderstandings about  exactly  what  an  opera- 
tion is supposed to do can complicate the program develop- 
ment process, and  informal descriptions of procedures often 
are not adequate to assure true  independence of modules. The 
development  of techniques for formal program specification 
helps to alleviate this  set of problems. 

At about  the same time as this methodology was  emerging, 
we also  began to be concerned about how people understand 
programs and  how programs can be organized to make  them 
easier to understand,  and  hence to modify. We realized that it 
is of primary importance to be able to determine  what assump- 
tions  about the program state are being made at any  point  in 
the program. Further,  arbitrary transfers of control  that span 
large amounts of  program text interfere with this goal. The 
control flow patterns  that lend themselves to understandable 
programs are the ones that have a single entry  point (at  the 
beginning  of the  text)  and,  at least conceptually, a single 
exit  point (at  the  end of the  text). Examples of statements 
that satisfy this rule  are the i f .  . . then . . . else and the for 
and  while loops. The chief violator of the rule is the go to 
statement. 

The fiist discussion  of this question appeared in  1968 [ 161 , 
and we  converged on a common set of “ideal” control  con- 
structs a few years later [ 171, [35]. Although true consensus 
on this set of constructs has still not been achieved, the ques- 
tion is no longer regarded as  an issue. 

D. Program Verification 
In parallel with the development of “ideal” control con- 

structs-in fact, as part of their  motivation-computer scientists 
became interested in fiiding ways to make precise, mathemat- 
ically manipulatable statements  about  what a program  com- 
putes. The  ability to make  such  statements is essential to  the 
development of techniques  for reasoning about programs, 
particularly for techniques that rely on abstract specifications 
of effects. New techniques were required because procedure 
headers, even  accompanied by prose commentary, provide in- 

adequate  information  for reasoning precisely about programs, 
and imprecise statements lead to ambiguities about responsi- 
bilities and  inadequate  separation of modules. 

The  notion  that it is possible to make  formal  statements 
about values of variables (a set of  values for  the variables of a 
program is called the program state) and to reason rigorously 
about  the effect of executing a statement on the program’s 
state first appeared in the  late 1960’s [ 191, [321. The formal 
statements are expressed as formulas  in the predicate calculus, 
such as 

A  programming  language is described by a set of rules that de- 
f i e  the effect each statement  has  on  the logical formula that 
describes the program state.  The rules for  the language are 
applied to the assertions in  the program in  order to obtain 
theorems whose proofs assure that  the program matches the 
specification.’ By the early 1970’s, the basic concepts of veri- 
fying assertions about simple programs and describing a lan- 
guage in  such a way that this is possible  were under  control 
[35],  [48]. When applied by  hand, verification techniques 
tend to be error  prone,  and  formal specifications, like  informal 
ones, are susceptible to errors  of omission [201. In response 
to this problem, systems for performing the verification steps 
automatically have been developed [ 21 1. Verification requires 
converting a program annotated  with logical assertions to 
logical theorems with the  property  that  the program is correct 
if and  only if the theorems are true. This conversion process, 
called verification  condition  generation, is well understood, 
but considerable work remains to be  done on the problem of 
proving those theorems. 

When the emphasis in programming methodology  shifted 
to using data  structures as a basis for program organization, 
corresponding problems arose for specification and verifica- 
tion techniques. The initial efforts addressed the question 
of  what information is useful in a specification [ 551. Sub- 
sequent  attention  concentrated on making those specifica- 
tions more formal and dealing with the verification problems 
[33].  From this basis,  work on verification for  abstract  data 
types proceeded as  described in Section 111. 

E. Abstract  Data  Types 
In the 1970’s,  we  recognized the importance of organizing 

programs into modules in  such a way that knowledge about 
implementation details was  localized as much as possible. 
This led to language support  for  data  types  [34],  for specifi- 
cations that are organized  using the same structure as data 
[281,  [441, [741, and  for generic definitions [611. The lan- 
guage facilities are based on the class construct of Simula [ 81 , 
[9], ideas about strategies for defining modules [54], [ 561, 
and  concerns over the impact of locality on program  organiza- 
tion [ 73 I. The corresponding specification techniques  include 
strong  typing and verification of assertions about  functional 
correctness. 

Over the past five years, most research activity in  abstraction 
techniques  has been focused on the language and specification 
issues  raised by these considerations;  most of the work is iden- 
tified with the concept of abstract  data  types. Like structured 
programniing, the methodology of abstract  data  types  empha- 
sizes locality of related collections of information. In this case, 
attention is focused on data rather  than on control,  and  the 

appear in 149, ch. 31 and 175, ch. 5 1 .  
‘ A  survey of these ideas  appears  in 1471; introductions to  the  methods 
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strategy is to form modules consisting of a  data  structure and 
its associated operations.  The  objective is to treat  modules  in 
the same way as ordinary  types such as integers and reals are 
treated; this requires support  for  declarations, infvr operators, 
specification of routine  parameters,  and so on.  The  result, 
called an abstract  data  type, effectively extends  the  set of 
types available to a program-it explains the  properties of a 
new group of variables by specifying the values one  of  these 
variables may  have, and it  explains the operations  that will 
be permitted  on the variables of the new type by giving the 
effects  these  operations have on  the values of the variables. 

In a  data-type  abstraction, we specify the  functional  proper- 
ties of  a  data  structure  and its operations,  then we implement 
them  in  terms of existing language constructs  (and  other  data 
types)  and show that  the specification is accurate. When  we 
subsequently use the abstraction, we deal with the new type 
solely in  terms of its  specification. (This technique is discussed 
in  detail  in  Section 111.) This philosophy was developed in 
several recent language research and development projects, 
including Ada [371, Alphard [741, CLU [46], Concurrent Pas- 
cal [ 41, Euclid [ 441, Gypsy [ 1 ],  Mesa [ 221, and Modula [ 721. 

The  specification  techniques used for  abstract  data  types 
evolved from  the  predicates used in simple sequential programs. 
Additional expressive power was incorporated to deal with 
the way information is packaged into modules and with the 
problem of abstracting  from  an  implementation to a  data type 
[ 291 . One  class of specification  techniques draws on  the simi- 
larity between a  data  type and the mathematical  structure 
called an algebra [28],  [45]. Another class  of techniques  ex- 
plicitly models a newly defined type by defining its properties 
in terms of the  properties of common well-understood types 
[741. 

In  conjunction with the work on  abstract  data  types  and for- 
mal specifications,  the generic definitions  that  originated  in 
extensible languages  have been developed to a level of expres- 
siveness and precision far beyond the anticipation of their 
originators. These definitions, discussed in  detail  in  Section 
111-C, are parameterized  not  only  in  terms of variables that 
can be manipulated during program execution,  but also in 
terms of data  types. They can now describe restrictions  on 
which types are acceptable  parameters in considerable detail, 
asin [21. 

F. Interactions  Between  Abstraction  and  Specification 
Techniques 

As this review shows, programming languages and method- 
ologies  evolve in response to  the needs that are perceived by 
software designers andimplementors. However, these perceived 
needs themselves evolve in response to experience gained with 
past solutions.  The original abstraction  techniques of struc- 
tured programming were procedures  or  macros?  these have 
evolved to abstract  types  and generic definitions. Methodolo- 
gies for program development emerge when we find  common 
useful patterns and try to use them as models; languages  evolve 
to support  these  methodologies when the models become so 
common and stable  that  they are regarded as standard. A more 
extensive review  of the  development of software  abstractions 
appears in [26]. As abstraction  techniques have become ca- 
pable of addressing a wider  range of program organizations, 

space,  they soon came to be regarded, like macros, as abstraction tools. 
'Although procedures were originally viewed as devices to  save code 

formal  specification  techniques have become  more precise and 
have played a more crucial role in  the programming process. 

For an abstraction to be  used effectively,  its  specification 
must express all the  information  needed by the programmer 
who uses it. Initial  attempts  at  specification used the  notation 
of the programming language to express things that could be 
checked by the  compiler: the name of a  routine  and the 
number  and  types of its  parameters.  Other  facts,  such as the 
description of what the routine  computed and under what 
conditions it should be used, were expressed informally [76]. 
We have now progressed to  the point  that we can write precise 
descriptions of many important  relations among routines,  in- 
cluding their  assumptions  about  the values  of their  inputs  and 
the  effects  they have on  the program state. However, many 
other  properties of abstractions are s t i l l  specified only  infor- 
mally. These include  time  and space consumption,  interactions 
with special-purpose devices,  very complex aggregate behavior, 
reliability  in  the face of hardware  malfunctions,  and many 
aspects of concurrent processing. It is reasonable to expect 
future  developments  in  specification  techniques  and program- 
ming languages to respond to those issues. 

The  history  of programming languages shows a balance be- 
tween language ideas and formal techniques;  in each method- 
ology, the  properties we specify are  matched to our  current 
ability to validate (verify)  the  consistency of a  specification 
and its  implementation.  Thus, since we can rely on  formal 
specifications only to the  extent  that we are certain that they 
match  their  implementations, the development of abstraction 
techniques,  specification  techniques,  and  methods of verifying 
the  consistency of a  specification  and an implementation must 
surely proceed  hand  in  hand.  In the  future, we should  expect 
to see more diversity in  the programs that are used as a basis 
for  modularization; we should also expect to see specifications 
that are concerned  with aspects of programs other  than  the 
purely functional  properties we now  consider. 

111. ABSTRACTION FACILITIES IN MODERN 
PROGRAMMING LANGUAGES 

With the  historical background of  Section 11, we now turn  to 
the  abstraction  methodologies and specification  techniques 
that are currently  under  development  in the programming lan- 
guage research community.  Some of the ideas are well enough 
worked out  to be ready  for  transfer to practical languages, but 
others  are  still  under development. 

Although the ideas behind modem  abstraction  techniques 
can be explored  independently  of programming languages, the 
instantiation of these  ideas  in  actual languages is also important. 
Programming languages are our  primary  notational vehicle for 
expressing a class of very complex  ideas;  the  concepts we must 
deal with  include not only the functional  relations of mathe- 
matics, but also constructs  that deal with relations over time, 
such as sequentiality  and  synchronization. Language  designs 
influence  the ways  we think about  algorithms by making some 
program structures easier to describe than  others.  In  addition, 
programming languages are used for  communication among 
people as well as for  controlling machines. This role is partic- 
ularly important  in long-lived programs, because a program is 
in many ways the most practical medium for expressing the 
structure imposed by the designer-and for  maintaining  the 
accuracy of this documentation over time. Thus, even though 
most programming languages technically have the same ex- 
pressive power,  differences among languages can significantly 
affect  their  practical  utility. 
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A.  The New Ideas 
Current activity in programming  languages is driven by  three 

sets of global concerns: simplicity of design, the  potential  for 
applying precise analytic  techniques to formal specifications, 
and  the need to control costs over the entire  lifetime of a long- 
lived program. 

Simplicity has emerged as a major  criterion for evaluating 
programming  language  designs. We see a certain  tension be- 
tween the need for “just the right construct”  for a task and  the 
need for a language small enough to understand  thoroughly. 
This is an example of a tradeoff between specialization and 
generality: if highly  specialized constructs are provided, indi- 
vidual  programs  will be smaller, but  at  the expense of  com- 
plexity  (and  feature-by-feature  interactions)  in the system as 
a whole. The  current  trend is to provide a relatively  small 
base  language that provides facilities for defining special facili- 
ties in a regular way[ 65 1 .  An emphasis on simplicity underlies 
a number  of design criteria that are now commonly used. 
When programs are organized to localize information,  for  ex- 
ample, assumptions  shared  among program parts  and  module 
interfaces can be significantly simplified. The  introduction of 
support  for  abstract  data  types  in programming  languages 
allows  programmers to design special-purpose structures  and 
deal with  them  in a simple way; it does so by providing a defi- 
nition facility that allows the extensions to be made  in a regu- 
lar, predictable  fashion. The regularity introduced  by using 
these facilities can substantially  reduce  maintenance  problems 
by  making it easier for a programmer who is unfamiliar with 
the code to understand  the assumptions about  the program 
state that are  made at a given point  in  the program-thereby 
increasing the odds that  he  or she can make a change without 
introducing new errors. 

Our  understanding of the principles underlying programming 
languages has improved to  the point  that formal  and  quantita- 
tive  techniques are both feasible and useful. Current  methods 
for specifying properties of abstract  data  types  and  for verifying 
that those specifications are consistent  with the implementa- 
tion  are discussed in  Section 111-B. Critical studies of testing 
methods are being performed [ 361, and  interest  in  quantitative 
methods  for evaluating programs is increasing [ 581. It is inter- 
esting to note  that there seems to be a strong  correlation be- 
tween the ease with which proof rules for language constructs 
can be written  and the ease with which  programmers can use 
those  constructs  correctly  and  understand programs that use 
them. 

The 1970’s mark the beginning  of a real appreciation that 
the cost of software includes the costs  over  the  lifetime  of  the 
program, not  just  the costs of initial development or of  execu- 
tion.  For large, long-lived programs, the costs of enhancement 
and  maintenance usually dominate design, development,  and 
execution costs, often by  large factors. Two classes  of  issues 
arise [ 151. First,  in  order to modify a program successfully, 
a programmer must be able to determine  what other portions 
of the program depend on  the section  about to be modified. 
The  problem of  making this determination is simplified if the 
information is localized and if the design structure is retained 
in the  structure of the program. Off-line design notes  or  other 
documents  are not an  adequate  substitute  except  in the  un- 
likely case that  they are meticulously (and  correctly)  updated. 
Second, large  programs rarely exist  in  only one version. The 
major  issues concerning the  control of large-scale program de- 
velopment are problems of management, not of programming. 
Nevertheless, language-related tools can significantly  ease the 

problems. Tools are becoming  available for managing the 
interactions  among  many versions  of a program. 

B. Language Support  for  Abstract  Data  Types 
Over the past five  years, the major  thrust of research activity 

in programming  languages and  methodology  has been to ex- 
plore the issues related to abstract  data  types.  The  current 
state  has emerged directly from  the historical roots described 
in Section 11-E. The methodological concerns included the 
need for  information hiding [541, [561 and locality of  data 
access [ 731, a systematic view of data  structures [341, a pro- 
gram organization strategy exemplified by the Simula  class 
construct [ 81, [ 9 I, and the  notion of  generic definition [6  11 .  
The formal roots included a proposal for  separating  abstract 
properties from implementation [ 331 and a debate on the 
philosophy of types, which  finally led to the view that  types 
share the formal characteristics of  abstract algebras [271, [ 281, 
[451, [511 .  

Whereas structured programming  involved  progressive  devel- 
opment of a program by  adding  detail to its  control  structure, 
programming with abstract  data  types involves partitioning the 
program in advance into modules that correspond to  the major 
data  structures of the final system. The  two methodologies 
are complementary, because the techniques of structured  pro- 
gramming  may  be used within type definition  modules,  and 
conversely.  An example of the interaction of the  two design 
styles appears in this issue 161. 

In  most languages that provide the facility, the definition of 
an  abstract data  type consists of a program unit  that includes 
the following information. 

I )  Visible  Outside  the  Type  Definition: The  name of the 
type  and  the names and  routine headers of all operations  (pro- 
cedures and  functions) that are  permitted to use the represen- 
tation of the  type; some languages also include  formal specifi- 
cations of the values that variables of this type may  assume 
and  of the properties of the operations. 

2 )  N o t  Visible  Outside  the  Type  Definition: The representa- 
tion  of  the  type  in terms of built-in data  types or  other defined 
types, the bodies of the visible routines,  and  hidden  routines 
that may be called only  from within the module. 

An example of a module that defines an  abstract  data type 
appears in Fig. 5.  

The general question of abstract data types has been ad- 
dressed in a number of research projects. These include 
Alphard 1741, CLU [461, Gypsy 1 1 1 ,  Russell [121, Concurrent 
Pascal [41, and Modula [721. Although they differ in detail, 
they  share the goal of providing language support  adequate to 
the task of  abstracting from data  structures to abstract  data 
types  and allowing those  abstract definitions to hold the same 
status as built-in data  types. Detailed descriptions of the dif- 
ferences among these projects are best obtained by studying 
them  in  more detail than is appropriate here. As with many 
research projects, the impact  they have is likely to take  the 
form  of influence on  other languages rather  than  complete 
adoption.  Indeed, the influence of several of the research 
projects on Ada [ 371 and Euclid [44]  is apparent. 

Programming with  abstract  data  types requires support  from 
the programming language, not simply managerial exhortations 
about program organization. Suitable language support re- 
quires solutions to a number of technical issues  involving both 
design and  implementation. These include the following. 
I) Naming: Scope rules are required to ensure the appro- 

priate visibility of names. In  addition,  protection mechanisms 
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C V e c t o r s   t h a t   c o n t a i n   f m p l o y e e   i n f o r m a t i o n  
C Name i s   i n  FmpNam ( 2 4  c h a r s ) ,   P l l o n e   i s   i n  FmpFon ( i n t e g e r )  
C S a l a r y  i n  i n  f m p S a l   ( r e a l ) ,   D i v i s i o n   i s   i n  EmpOiv ( 4  c h a r s )  

r e a l   F l n p S a l (  I O O O )  
i n t e g e r   F m p F o n ( 1 0 0 0 ) .   F m p O i v ( 1 0 0 0 )  

d o u b l e   p r e c i s i o n   F m p N a m ( 3 . 1 0 0 0 )  

C V e c t o r s   t h a t   c o n t a i n   P h o n e   l i s t   i n f o r m a t i o n  
C Name i s   i n  DivNam (24 c h a r s ) .  Phone i s   i n  O i v F o n   ( i n t e g e r )  

i n t e g e r   I ) i v F o n (  1000) 
d o u b l e   p r e c i s i o n   D i v N a m ( 3 . 1 0 0 0 )  

C d e c l a r a t i o n s   o f   s c a l a r s   u s e d   i n   p r o g r a m  
i n t e g e r   S t a f S z .   O i v S 7 ,  i. j 
i n t e g e r   W h i c h D  
d o u b l e   p r e c i s i o n  q 

Fig. 1 .  Declarations for Fortran version o f  telephone l i t  program. 

[41], [ 521 should be considered in  order to guarantee that 
hidden  information remains private.  Further, programmers 
must be prevented  from naming the same data  in  more  than 
one way (“aliasing”) if current  verification  technology is to 
be relied upon. 

2) Type Checking: It is necessary to check actual  parameters 
to routines,  preferably during compilation, to be sure  they will 
be acceptable to the  routines.  The  problem is more complex 
than the  type checking problem  for  conventional languages 
because new types may  be added  during the compilation pro- 
cess and the  parameterization of types requires subtle decisions 
in the  definition of a useful type checking rule. 

3)  Specification  Notation: The  formal specifications of an 
abstract  data  type should convey all information needed by the 
programmer. This goal  has not  yet been achieved, but current 
progress is described below. As for any specification  formal- 
ism, it is also necessary to develop a  method  for verifying that 
a  specification is consistent with its  implementation. 

4 )  Distributed  Properties: In addition to providing opera- 
tions  that are called as routines or infix  operators,  abstract 
data  types must often  supply  definitions to  mpport  type- 
specific interpretation of various constructs of the proogram- 
ming language. These constructs  include storage allocation, 
loops that operate  on the elements of a  data  structure  without 
knowledge of the representation,  and  synchronization. Some 
of these have been explored,  but many open  questions remain 
[461,  [621,  [651. 

5 )  Separate  Compilation: Abstract data types  introduce 
two new problems to the process of separate  compilation.  First, 
type checking should be done across compilation  units as well 
as within units.  Second, generic definitions  offer significant 
potential  for  optimization (or for  inefficient  implementation). 

Specification  techniques  for  abstract  data  types are the  topic 
of a  number of current research projects.  Techniques  that have 
been proposed  include  informal  but precise  and stylized 
English [311, models that  relate  the new type to previously 
defiied types [ 741, and the algebraic axioms that specify new 
types  independently of other  types [27]. Many problems 
remain.  The emphasis to date has been on the specification 
of properties of the code; the correspondence of these specifi- 
cation to informally  understood  requirements is also impor- 
tant [ 111. Further,  the work to date has concentrated almost 
exclusively on the functional  properties of the definition with- 
out  attending,  for  example, to  the performance  or  reliability. 

Not all the language developments include  formal specifica- 
tions as part of the  code.  For  example, Alphard includes 
language constructs  that associate a  specification  with the 
implementation  of  a  module; Ada and Mesa expect  interface 
definitions that contain  at  least  enough  information to support 

C G e t   d a t a   f o r   d i v i s i o n   W h i c h D  only 

D i v S z  = 0 
d o  200 i = 1 . S t a f S z  

if ( E m p D i v ( i )   . n e .   W h i c h D )  go t o  200 
D i v S z  = D i v S z  + 1 
l l i v N a m ( l . D i v S z )  = FmpNam(1. i )  
D i v N a m ( 2 , D i v S z )  = FmpNam(2, i )  
I ) i v N a m ( 3 , D i v S z )  = FmpNam(3, i )  
l l i v F o n ( D i v S r )  = f m p f o n ( i )  

200 c o n t i n u e  

C S o r t   t e l e p h o n e   l i s t  

do 220 i = I . 0 i v S z  
if ( l l i v s z  . e q .  0) g o   t o  210 

do  230 j = i + l . D i v S z  
if ( D i v N a m ( 1 . i )  . g t .  D i v N a m ( 1 , j ) )  g o  t o  240 
i f  ( D i v Y a m ( 1 . i )  . I t .  D i v N a m ( 1 . j ) )  g o  t o  230 
if ( l l i v N a m ( 2 , i )  . g t .  D i v N a m ( 2 . j ) )  g o  t o  240 

if ( D i v N a m ( 3 . i )   . g t .   D i v N a m ( 3 . j ) )  go t o  240 
if ( l l i v N a m ( 2 . i )  ,It. D i v N a m ( 2 . j ) )   g o   t o   2 3 0  

g o  to 230 
d o  250 k = 1.3 240 

D i v N a m ( k , i )  = D i v n a m ( k . j )  
q = D i v N a m ( k . i )  

250 D i v N a m ( k . j )  = q 
k = l l i v F o n ( i )  
D i v F o n (   i )  = D i v F o n (  j )  
D i v F o n ( j )  = k 

2 3 0   c o n t i n u e  
2 2 0   c o n t i n u e  
210 c o n t i n u e  

Fig. 2. Code  for Fortran version of telephone list program. 

separate  compilation. All the work, however, is based on  the 
premise that  the specification must include all information 
that  should be available to a user of the abstract  data  type. 
When it has  been verified that  the implementation  performs 
in  accordance with its  public  specification [ 331, the abstract 
specification may safely be used as the definitive source of 
information  about how higher  level programs may correctly 
use the module.  In  one sense we build up “bigger” definitions 
out of “smaller” ones;  but because a  specification  alone  suf- 
ices for  understanding, the.new definition is in  another sense 
no bigger than  the  preexisting  components.  It is this regimen- 
tation of detail that gives the technique  its  power. 

C. Generic  Definitions 
A particularly rich kind of abstract  data  type  definition 

allows one  abstraction to take  another  abstraction (e.g., a  data 
type) as a  parameter. These generic definitions provide a 
dimension of modeling flexibility  that  conventionally param- 
eterized  definitions  lack. 

For  example,  consider the problem of defining data  types 
for an application that uses three  kinds of unordered  sets:  sets 
of integers, sets of reals, and sets of a userdefied type  for 
points  in  three-dimensional space. One alternative would be 
to write  a  separate  definition  for  each of these three  types. 
However, that would involve a great deal  of duplicated text, 
since both  the specifications  and the code will be  very similar 
for all the definitions. In fact, the programs would probably 
differ  only where specific references to  the types of set ele- 
ments  are  made, and the machine code would probably  differ 
only where operations  on  set  elements  (such as the assignment 
used to store  a new  value into  the data  structure) are per- 
formed.  The obvious drawbacks of this situation  include du- 
plicated  code,  redundant programming effort, and complicated 
maintenance (since bugs must be fmed and improvements 
must be made in all versions). 

Another  alternative would be to separate  the  properties of 
unordered  sets from the  properties of their  elements. This is 
possible because the definition  of the sets relies on very  few 
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specific properties of the  elements-it  probably assumes only 
that ordinary assignment and  equality  operations for  the ele- 
ment type are defined.  Under that assumption, it is possible 
to write  a single definition, say 

type U n O r d e r e d S e t ( T ;  type) is . . .  

that can  be  used to declare sets with several different  types of 
elements, as in 

var 
Counters:   UnOrderedSet( intege1’) :  
T i m e r s :   U n O r d e r e d S e t ( i n t e g e r ) ;  
S i z e s :   U n O r d e r e d S e t ( r e a 1 ) ;  
P l a c e s :  U n O r d e r e d S e t ( P o i n t I n 3 S p a c e ) ;  

using a  syntax  appropriate to the language that  supports  the 
generic definition facility. The definition of  UnOrderedSet 
would provide  operations  such as Insert, TestMembership, 
and so on;  the declarations of the variables  would instantiate 
versions of  these  operations for all  relevant element types, 
and the compiler would determine which of the operations 
to use at any particular time by inspecting  the  parameters 
to the routines. 

The flexibility provided by generic definitions is demon- 
strated by  the algorithmic  transformation of [ 21,  which auto- 
matically  converts  any  solution of one class of  problems to 
a  solution of the corresponding  problem in a  somewhat larger 
class.  This generic definition is notable  for  the detail and pre- 
cision with which the assumptions  about  the generic parameter 
can be specified. 

IV. PRACTICAL REALIZATIONS 
A number of programming languages provide  some  or all of 

the facilities required to support abstract data types. In addi- 
tion  to implementations of research projects, several  language 
efforts have been  directed  primarily  at  providing practical im- 
plementations.  These  include Ada [37], Mesa [ 221,  Pascal 
[401, and Simula [81. Of these, Pascal currently has the 
largest user  community,  and  the objective of  the Ada  develop- 
ment  has  been to make available a language to support  most of 
the  modem ideas about  programming. Because  of the  major 
roles they play in the programming language community, 
Pascal and Ada  will  be  discussed in some detail. 

A .  A Small Example  Program 
In  order to illustrate the effects that  modem languages 

have on program organization  and  programming  style, we will 
carry  a small example  through the discussion. This section 
presents  a  Fortran  program for  the  example; Pascal and Ada 
versions  are  developed in Sections IV-B and IV-C. 

The  purpose  of the program is to produce the data  needed 
to print an internal  telephone list for  a division of  a small com- 
pany. A data base containing  information  about all employees, 
including their names,  divisions, telephone  numbers,  and 
salaries is assumed to be  available. The  program  must  pro- 
duce  a  data  structure  containing  a  sorted list of  the employees 
in a selected division and  their  telephone  extensions. 

Suitable declarations of the  employee  data base and  the 
divisional telephone list for  the  Fortran  implementation are 
given  in  Fig. 1. A program fragment  for  constructing  the tele- 
phone list is given in Fig. 2. 

The  employee  data base is represented as a set of vectors, 
one for each  unit  of  information  about the employee.  The 
vectors are  used “in parallel” as a single data  structure-that is, 
part of the  information  about  the  ith  employee is stored in the 

ith element  of  each vector. Similarly, the telephone list is 
constructed in two arrays, DivNam for names and DivFon for 
telephone  numbers. 

The  telephone list is constructed in two stages. First, the 
data base is scanned for employees whose  division (EmpDiv(i)) 
matches  the division  desired  (WhichD). When a  match is 
found,  the name and  phone  number of the  employee are added 
to the  telephone list. Second, the telephone list is sorted using 
an insertion 

There are  several important thing to notice  about this pro- 
gram. First, the  data  about  employees is stored in  four arrays, 
and the relation among  these arrays is shown  only  by the simi- 
lar naming and  the  comment  with  their declarations. Second, 
the  character string for each employee’s name  must  be  handled 
in eightcharacter segments,  and  there is no clear indication in 
either the declarations or  the code that character strings are 
in~o lved .~  The six-line test that determines  whether 

DivNam (*, i) < DivNam (*, j )  

could  be reduced to three tests if it were  changed to a test 
for less than or equal, but this would make  the sort unstable. 
Third, all the  data  about  employees,  including salaries, is  easily 
accessible and  modifiable; this is undesirable  from an adminis- 
trative standpoint. 

E. Pascal 
Pascal [40] is a  simple algebraic  language that was designed 

with  three  primary objectives. It was to support  modem  pro- 
gramming development  methodology; it was to be  a simple 
enough language to teach to students;  and  it was to be  easy 
to implement reliably, even on small computers. It has, in 
general, succeeded in all three respects. 

Pascal  provides a  number of facilities for  supporting  struc- 
tured programming. It provides the standard  control  constructs 
of structured,  programming,  and  a  formal definition [351  fa- 
cilitates verification of  Pascal  programs. It  supports  a set of 
data  organization  constructs that are suitable for d e f i g  ab- 
stractions. These include  the ability to define  a list of arbi- 
trary  constants as an enumerated  type, the ability to define 
heterogenous  records with  individually  named fields, data 
types that can  be dynamically allocated and referred to by 
pointers, and  the ability to name  a  data  structure as a type 
(though  not to bundle  up  the  data  structure  with  a set of 
Operations). 

The language has  become quite widely used.  In  addition to 
serving as a  teaching language for undergraduates, it is used 
as an implementation language for microcomputers [3] and 
it has  been extended to deal with parallel programming [41. 
An international standardization  effort is currently  under- 
way [391. 

Pascal is not  without its disadvantages. It provides limited 
support for large programs,  lacking  separate  compilation fa- 
cilities and block structure  other  than  nested  procedures. 
Type  checking does not provide  quite as much control over 
parameter passing as one might  wish, and  there is no  support 
for  the encapsulation  of related definitions in such  a way that 

However,  most readers will recognize  the  algorithm,  and  the  topic of 
’This selection is not an endorsement of insertion  sorting  in general. 

this paper is the  evolution of programming  languages, not  sorting 
techniques. 

41ndeed,  the  implementations of floating point in some versions of 
Fortran interferes with this type  violation. Character  strings are dealt 
with  more  appropriately  in the Fortran77  standard. 
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S t r i n g  = a r r a y   [ l .   , 2 4 1  of c h a r ;  
S h o r t s t r i n g  = a r r a y   [ 1 . . 8 ]   o l c h a r ;  
FmpRec = record 

N a m e : S t r i n g ;  

S a 1 a r y : r e a l ;  
Pl1one:integer; 

D i v i s i 0 n : S h o r t S t r i n g ;  
end; 

PhoneRec = r e c o r d   N a m e : S t r i n g :   P h o n e : i n l e g e r :  end; 

var  
S t a f f :   a r r a y  [ l . .  l O O O ]  01 FmpRec; 

S t a f f s i z e .   D i v S i 7 e . i . j :   i n t e g e r ;  
Phones:   array [ l .  .lOOO] of PhoneAec; 

WhichDiv :   char ;  
q: PhoneRec; 

Fig. 3. Declarations for Pascal version of telephone  list  program. 

they can be isolated  from the remainder of the program. 
Many  of the disadvantages are addressed in  extensions, deriva- 
tive  languages, and the standardization  effort. 

We can illustrate  some  of Pascal’s characteristics by returning 
to the program for  creating  telephone lists. Suitable  data  struc- 
tures,  including  both  type  definitions  and  data  declarations, 
are shown  in Fig. 3. A program fragment  for  constructing the 
telephone list is given in Fig. 4. 

The declarations  open  with  definitions of four  types which 
are not predefined  in Pascal. Two  (String and Shortstring) are 
generally useful, and the  other two  (EmpRec  and  PhoneRec) 
were  designed for this particular  problem. 

The  definition of String and Shortstring as types  permits 
named variables to be treated as single units; operations are 
performed on  an entire  string variable, not on individual groups 
of characters. This abstraction simplifies the program, but, 
more importantly, it allows the programmer to concentrate  on 
the  algorithm that uses the  string as names, rather  than  on 
keeping track of the individual fragments of a name. The dif- 
ference  between the complexity  of the code  in Figs. 2 and 4 
may not seem large, but when it is compounded over many 
individual composite  structures with different  representations, 
the  difference can be large indeed. If  Pascal allowed pro- 
grammer-defined types to accept  parameters,  a single defini- 
tion of string  that  took  the string  length as a  parameter could 
replace String and Shortstring; Ada  does  allow this, and the 
change is made in  the Ada program of  Section IV-C. 

The  type  definitions  for EmpRec and PhoneRec  abstract 
from specific data  items to  the notions  “record of information 
about an employee”  and  “record of information  for  a  tele- 
phone list.” Both  the  employee  data base and the telephone 
list can thus be represented as vectors whose elements  are 
records of the  appropriate  types. 

The  declarations of Staff  and Phones have the effect of indi- 
cating  that all the  components are related to  the same informa- 
tion  structure.  In  addition, the definition is organized as a 
collection of records,  one  for  each employee-so the primary 
organization of the  data  structure is by employee. On the 
other  hand, the data  organization  of  the  Fortran program was 
dominated by the  arrays that correspond to  the fields, and the 
employees were secondary. 

Just as in  the  Fortran program, the  telephone list is con- 
structed  in  two stages (Fig. 4). Note that Pascal’s ability to 
operate  on strings and  records as single units has substantially 
simplified the  manipulation of names and the interchange  step 
of the  sort.  Another  notable  difference  between the  two pro- 
grams is in the use of conditional  statements.  In the Pascal 
program, the use  of i f .  . . then . . . statements emphasizes 
the  conditions  that will cause the bodies of the if statements 

( G e t   d a t a   f o r   d i v i s i o n   W l l i c h D i v   o n l y  ) 

D i v S i z e  : =  0 ;  
for i : =  1 to S t a f f s i z e   d o  

if S t a f f [ i ] . D i v i s i o n  = Y h i c h D i v   t h e n  
b e g i n  
D i v S i 7 e  : =  D i v S i z e  + 1; 
Pl1011es[DivSi7e] .Naae : =  S t a f f [ i ] . N a a e ;  

e n d  ; 
P l ~ o ~ ~ e s [ D i v S i z e ] . P h o n e  : =  S t a f f [ i ] . P h o n e :  

( S o r t   t e l e p h o n e   l i s t  1 

for i : =  1 l o  D i v S i z e   d o  
for j : =  i + l  l o  D i v S i 7 e   d o  

il Phones[ i ] .Name > Phones[ j ] .Name  then  

q : =  P h o n e s l i ] :  
begin  

P l ~ o n e s [  i ]  : = P h o n e s [ j ] ;  
P h o n e s [ j ]  : = q ;  
end ; 

Fig. 4. Code for Pascal version of telephone list program. 

to be executed.  The  Fortran if statements with go to’s, 
however, describe conditions  in which code is nor to be exe- 
cuted, leaving the  reader  of the program to compute the con- 
ditions that actually  correspond to  the actions. 

It is also worth  mentioning that  the Pascal program will not 
execute the body of the  sort  loop at all if no employees work 
in division WhichDiv (that is, if  DivSize is 0). The  body of the 
corresponding  Fortran  loop would be executed once in  that 
situation if the  loop had not been  protected by an  explicit  test 
for an empty list. While it would do  no harm to execute this 
particular  loop  once  on an empty  list,  in general it is necessary 
to guard Fortran  loops against the possibility that  the  upper 
bound is less than the lower  bound. 

C. Ada 
The Ada  language is currently being developed under the 

auspices of the Department  of Defense in an attempt to reduce 
the software  costs of embedded  computer systems. The  project 
includes  components for  both  a language and  a programming 
support  environment.  The  specific objectives of the Ada de- 
velopment  include  significantly  reducing the number of pro- 
gramming languages that must be learned,  supported,  and 
maintained within the Department of Defense. The language 
design emphasized the goals  of high program reliability,  low 
maintenance  costs,  support  for  modern programming meth- 
odology, and efficiency of compilers and object programs 
[371,  [381. 

The language developed through competitive designs con- 
strained by a  set  of  requirements [ 131. It is undergoing  final 
revisions and will be frozen in mid-1980’s. Development of 
the programming environment will continue over the  next 
two years [ 141. Since compilers  for the language are not  yet 
available, it is too soon to evaluate how well the language 
meets its goals.  However, it is possible to describe the way 
various features of the language are  intended to respond to  the 
abstraction issues raised  here. 

Although Ada  grew out of the Pascal  language philosophy, 
extensive syntactic changes and  semantic  extensions make it  a 
very different language from Pascal. The  major  additions  in- 
clude  module  structures  and  interface  specifications to large- 
program organizations  and  separate  compilation,  encapsulation 
facilities and generic definitions to support  abstract  data  types, 
support  for parallel processing, and control over low-level 
implementation issues related to  the architecture of object 
machines. 

There  are three major  abstraction  tools  in Ada. The package 
is used for  encapsulating  a  set of related  definitions  and iso- 
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package Employee is 

type FrnpRec is 
restricted  type P r i v S t u f f  isprivate; 

record 
Name: s t r i n g ( 1 . . 2 4 ) ;  
P h o n e :   i n t e g e r ;  
P r l v P a r t :   P r i v S t u f f ;  

end  record; 
procedure S e t S a l a r y ( W h o :  inout FrnpRec; S a l :   f l o a t ) :  
function GetSalary(Wl1o:  FmpReu) return f l o a t :  
procedure S e t D l v ( Y l 1 u :  inout FmpRec; O i v :   S t r i n g ( 1 . . 8 ) ) :  
function t ietDiv(Yl1u:  FrnpRec) return s t r i n g (  I .  . a ) ;  

type P r i v S t u f f  is 
private 

record 

D i v i s i o n :   s t r i n g ( 1 . . 8 ) ;  
S a l a r y :   f l o a t :  

end record: 
end Frnployee:  

Fig. 5 .  Ada package defmition for employee records. 

declare 

Fig. 6. 

use F m p l o y e e ;  

type PlluneRec is 
record 

Name: s t r i n g ( 1 . . 2 4 ) ;  
P h o n e :   i n t e g e r ;  

end record; 

S t a f f :  array ( 1 . . 1 0 0 0 )  of FmpRec; 

S t a f f S i 7 e .   D i v S i 7 e .  i. j: i n t e g e r  range 1 . . 1 0 0 0 ;  
Phones:  array ( 1 . .  1 0 0 0 )  of PhoneRec; 

W h l c h D i v :   s t r i n g (  I .  . E ) ;  
q :  PhoneRec; 

Declarations  for Ada version of telephone list program. 

lating  them  from the rest of the program. The  type determines 
the values a variable (or  data  structure) may take on and  how 
it can be manipulated.  The generic definition allows many 
similar abstractions to be generated  from a single template, 
as described in  Section 111-C. 

The incorporation of many of these ideas into Ada can be 
illustrated through the example of Section IV-A. The  data 
organization of the Pascal  program (Figs. 3 and 4) could be 
carried over almost directly to the Ada program,  and the re- 
sult would  use  Ada reasonably well.  However,  Ada  provides 
additional facilities that can be applied to this problem. Recall 
that  neither  the  Fortran program nor  the Pascal  program can 
allow a programmer to access names, telephone  numbers,  and 
divisions without also allowing him to access private informa- 
tion,  here  illustrated  by salaries.  Ada  programs can provide 
such selected access, and we  will extend  the previous example 
to do so.’ 

We now organize the program in three  components: a defi- 
nition of the record for each employee  (Fig. 5), declarations 
of the  data needed  by the program (Fig. 6 ) ,  and  code  for con- 
struction of the telephone list (Fig. 7).  

The package of information  about  employees whose  specifi- 
cation is shown in Fig. 5 illustrates one of Ada’s  major addi- 
tions to our  tool kit of abstraction facilities. This definition 
establishes EmpRec as a data type with a small set of privjleged 
operations. Only the specification of the package is presented 
here.  Ada does not require the module  body to accompany 
the specification (though it must  be defined before the pro- 
gram can be executed); moreover, programmers are  permitted 
to rely only on  the specifications, not  on  the  body of a pack- 

’This Ada  program is written in  the preliminary version of Ada [ 371. 
Revisions are currently (April 1980) being  made, so this program may 
have become invalid when this paper appears. 

- -  G e t   d a t a  for d i v i s i o n   Y h i c h O i v   o n l y  

D i v S i z e  : =  0; 
for i in 1 ,  . S t a f f S i ~ e  loop 

if G e t D i v ( S t a f f ( i ) )  = W h i c l i D i v  then 
D i v S 1 z e  : =  O i v S i 7 e  + 1; 
P h o n e s ( D i v S i 7 e )  : =  ( S t a f f ( i ) . N a r n e .   S t a f f ( i ) . P h o n e f :  

end if: 
end loop; 

- -  S o r t  t e l e p h o n e   l i s t  

for i in l . . D i v S i 7 e  loop 
for J in i+l. . D i v S i 7 e  loop 

if P h o n e s ( i ) . N a m e  D P h o n e s ( j ) . N a m e  then 

Phones(  i )  : =  P l i o n e s ( j ) ;  
q : =  P h o n e s ( i ) ;  

Phones(  j )  : =  q :  
end i f ;  

end  loop; 
end  loop: 

Fig. 7. Code  for Ada version of telephone program. 

age. The specification itself is divided into a visible part 
(everything from package to private) and a private part  (from 
private to end). The private part is intended  only to provide 
information  for  separate  compilation. 

Assume that  the policy for using  EmpRec’s is that  the Name 
and  Phone fields are accessible to anyone,  that it is permissible 
for  anyone to read but  not to write the Division field, and that 
access to the S a l a r y  field and  modification of the Division  field 
are supposed to be  done  only be authorized programs. Two 
characteristics of Ada make it possible to establish this policy. 
First, the scope rules prevent any  portion of the program out- 
side a package from accessing any names except the ones listed 
in  the visible part  ,of  the specification. In the particular case of 
the Employee package, this means that  the Salary and Division 
fields of an EmpRec cannot  be directly read or written  outside 
the package. Therefore the integrity of the data can be  con- 
trolled by verifying that  the routines that are exported  from 
the package are correct. Presumably the routines SetSalary, 
GetSalary, SetDiv, and GetDiv perform reads and writes as 
their names suggest; they might also keep records showing who 
made changes and when. Second, Ada  provides  ways to con- 
trol  the visibility of each routine  and variable  name.  As a re- 
sult,  unauthorized  portions of the program  may be discouraged 
from calling routines SetSalary, GetSalary, and SetDiv; at  the 
same time, the field  names of EmpRec and  routine GetDiv 
may be freely available  everywhere.6 

Although the field name PrivPart is exported  from  the Em- 
ployee package along with Name and  Phone,  there is no danger 
in doing so. An auxiliary type was defined to protect the 
s a l a r y  and division information;  the declaration 

restricted  type P r i v S t u f f  is private 

indicates not only that  the  content and organization of the data 
structure are hidden from the user (private),  but also that all 
operations  on  data of type PrivStuff are forbidden  except  for 
calls on  the routines  exported  from the package. For restricted 
types, even assignment and  comparison for equality  are  for- 
bidden. Naturally, the  code inside the  body of the Employee 
package may manipulate these hidden fields; the purpose of 
the packaging is to guarantee that only the code inside the 
package body can do so. 

6Alternatively,  a  password  could be  added as a parameter to the sensi- 
tive  routines. 
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The ability to force manipulation  of  a  data  structure to be 
carried out only  through  a  known set of  routines is central to 
the  support of abstract data types. It is useful not only in ex- 
amples such as the  one given here, but also for cases in which 
the representation may  change radically from  time to time  and 
for cases in which some  kind  of internal consistency  among 
fields, such as checksums,  must  be  maintained.  Support for 
secure computation is not among Ada’s  goals. It can be 
achieved in this case, but  only  through  a  combination of an 
extra level of packaging and  some  management  control. Even 
without  guarantees about security, however,  the packaging of 
information  about  how  employee  data is handled provides a 
useful  structure  for  the  development  and  maintenance of the 
program. 

The  declarations  of Fig. 6 are much like the declarations of 
the Pascal program.  The  Employee package is used instead of 
a simple record, and  there are minor syntactic differences 
between  the languages. The clause 

use Employee: 

says that all the visible  names of  the  Employee package are 
available  in the  current  block.  (The names of the  routines 
for  manipulating Salary and changing  Division must be hidden 
at  a different point in the program.) Since  Ada,  unlike Pascal, 
allows nonprimitive  types to take  parameters, Name’s and 
Division’s  are declared as String’s of specified length. 

In  the code  of the Ada  program itself (Fig. 7), we  assume 
that visibility  rules  allow the nonprivate field  names of Emp- 
Recs and the GetDiv function to be used. Ada  provides a way 
to create a  complete  record value and assign it with  a single 
statement;  thus  the assignment 

Phones(DivSize) : =  (Staff(i).Name,  Staff(i).Phone): 

sets both fields of the PhoneRec  at  once. Aside from this and 
minor  syntactic distinctions, this program fragment is very 
much like the Pascal fragment  of Fig. 4 .  

V. STATUS AND POTENTIAL 
It is clear that methodologies  and analytic techniques based 

on the principle of  abstraction have played  a  major role in  the 
development of software  engineering  and that  they will con- 
tinue to  do so. In this section, we describe the ways our cur- 
rent  programming habits are changing to respond to those 
ideas. We also note some of the limitations of  current  tech- 
niques  and  how future work may deal  with  them,  and we con- 
clude  with  some suggestions for  further  reading  on  abstraction 
techniques. 

A.  How  New Ideas Affect  Programming 
As techniques  such as abstract data  types have emerged, they 

have affected both  the overall organization  of  programs  and 
the  style of writing small segments of code. 

The new  languages  will  have the most  sweeping effects on 
the  techniques we use for  the high-level organization of pro- 
gram systems,  and  hence on  the management of  design and 
implementation projects. Modularization features that impose 
controls on  the distribution of variable, routine,  and  type 
names can  profoundly  shape the strategies for decomposing  a 
program into modules.  Further, the availability of precise 
(and  enforceable) specifications for module interfaces will 
influence  management of software projects [ 761. For example, 
the requirements  document for  a large  avionics system  has 
already been converted to a precise, if informal, specification 
[ 3 11.  Project  organization wiU also be influenced  by the grow- 

ing availability of support tools for managing multiple  modules 
in multiple versions [ 68 I .  

The  organization  and style of the code  within  modules will 
also be affected. Section IV shows  how the  treatment  of  both 
control  and  data changes within  a  module as the  same  problem 
is solved in languages with increasingly powerful  abstraction 
techniques. 

The ideas behind  the abstract data-type  methodology are 
still not entirely validated. Projects using  various portions  of 
the methodology-such as design  based on  data  types,  but  no 
formal specification, or conversely specification and verifica- 
tion  without  modularity-have been successful, but  a  complete 
demonstration on  a large project  has not  yet  been  completed 
[63].  Although  complete validation experiments have not 
been done,  some of the initial trials are encouraging. A large, 
interesting program  using data-type  organization in a language 
without  encapsulation facilities has been  written  and largely 
verified [ 21 1, and abstract data  types specified via algebraic 
axioms have  proved useful as a design tool [ 301. 

B. Limitations o f  Current  Abstraction  Techniques 
Efforts to use abstract data  types have also revealed some 

limitations of  the  technique.  In  some cases problems are not 
comfortably cast as data types, or  the necessary functionality 
is not readily expressed  using the specification techniques  now 
available. In  other cases, the  problem requires a set of d e f i -  
tions that are clearly  very  similar but  cannot be  expressed  by 
systematic  instantiation  or  invocation  of  a  data  type definition, 
even  using  generic definitions. 

A number of familiar, well-structured  program  organizations 
do not  fit well into precisely the abstract data-type paradigm. 
These include, for example, filters and shells in the Unix spirit 
[42]  and interactive programs in which the command  syntax 
dominates the specification. These  organizations are unques- 
tionably  useful  and  potentially as well understood as abstract 
data types, and  there is every reason to believe that similarly 
precise formal  models can  be developed.  Some of these alterna- 
tive points of  view are already  represented in high-level  design 
systems for software 1251, [571. 

Although facilities for d e f i g  routines  and  modules whose 
parameters may  be  generic  (i.e., o f  types that  cannot be  ma- 
nipulated in  the language)  have been developed  over the  past 
five years, there has  been little  exploration of the generality 
of generic definitions. Part of the problem has  been lack of 
facilities for specifying the precise dependence  of the defini- 
tion  on  its generic  parameters. A specific example  of  a  com- 
plex  generic definition, giving an algorithmic  transformation 
that can be  applied to a wide variety of  problems, has been 
written  and verified [ 21. 

The language investigations described above, together  with 
other research projects [211, 1281,  [301,  1331,  [451,  1561, 
have  addressed questions of functional specification in con- 
siderable detail. That is, they  provide  formal  notations  such as 
input-output predicates, abstract models, and algebraic axioms 
for  making assertions about  the effects that operators have on 
program  values. In  many cases, the specifications of a  system 
cannot  be  reduced to formal assertions; in these cases  we resort 
to testing in order to increase our  confidence in  the program 
1251. In  other situations, moreover,  a  programmer is con- 
cerned  with  properties other  than pure  functional correctness. 
Such  properties  include  time  and  space  requirements,  memory 
access patterns, reliability, synchronization,  and process inde- 
pendence;  these have not been addressed by the  data  type 
research. A specification methodology that addresses these 
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properties must  have two  important characteristics. First, it 
must be possible for  the programmer to make  and verify  asser- 
tions  about the properties  rather  than simply analyzing the 
program text  to derive exact values or complete specifications. 
This is analogous to  our approach to functional specifications 
-we do  not  attempt  to formally derive the mathematical  func- 
tion defined by a program;  rather, we specify certain  properties 
of the  computation  that are important  and  must  be preserved. 
Further,  it is important to avoid adding a new conceptual 
framework for each new  class  of properties. This implies 
that mechanisms for dealing with new properties  should be 
compatible  with  the mechanisms already used for  functional 
correctness. 

A certain amount of work on formal specifications and veri- 
fication of extra-functional  properties has already been done. 
Most  of it is directed at specific properties  rather  than at tech- 
niques that can  be applied to a variety of properties;  the results 
are, nonetheless, interesting. The need to address a variety of 
requirements in practical real-time systems was  vividly demon- 
strated at  the conference on Specifications of  Reliable Software 
[66], most  notably  by Heninger [ 3 1 1. Other work includes 
specifications of security  properties [ 181, [SO], 1691, reli- 
ability [ 701, performance [59], [64], and  communication 
protocols [ 241. 

C. Further  Reading 
This paper  has included extensive citations  in  order to make 

further  information  about briefly discussed topics easy to 
obtain. The purpose of this section is to identify the  books 
and papers that will be most  helpful  for general or background 
reading. 

General issues of software development, including both 
management and  implementation issues, are discussed in 
Brook’s  very readable book [ 5 1. The philosophy of structured 
programming  and the principles of data organization that 
underlie the representation issues of abstract  data  types receive 
careful technical treatment in [ 101. The proceedings of the 
conference on Specifications of Reliable Software [66] con- 
tain papers on both prose descriptions of requirements  and 
mathematical specification of abstractions. 

More  specific (and  more deeply technical) readings include 
Parnas’ seminal paper on information hiding [ 561, Guttag  and 
Homing’s discussion of the use of algebraic axioms as a design 
tool [ 301, London’s  survey of verification techniques [47], 
and papers on specification techniques including algebraic 
axioms [ 271 and  abstract  models [74]. 
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