
PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980 1119

1261 H. D. Mills, “Top-down programming in large systems,” in De-
programming,”ZBMSyst. J . , vol. l l , no. l , pp. 56-73, 1972.

bugging Techniques in Large Systems, R. Rustin, Ed. Englewood
Cliffs, NJ: Rentice Hall, 1971, pp. 41-55.

[2 7] F. P. Brooks, Jr., The Mythical Man-Month: Esroys on Software
Engineering. Reading, MA: Addison-Wesley Publishing, 1974,

[281 J. B. Holton, “Are the new programming techniques being used,”
195 pp.

I291 S. H. Caine and E. R. Gordon, “PDL-Atoolforsoftware design,”
Datamation, pp. 97-103, July 1977.

[301 F. S. Ingrassia, “Combating the 90% complete syndrome,” Data-
in Proc. Nat. Computer Conf., pp. 271-276, 1975.

(31] B. P. Lientz and E. B. Swanson, “Software maintenance: A user/
mation, pp. 171-176, Jan. 1978.

management tug-of-war,” Data Management, pp. 26-30, Apr.

[321 B. C. DeRoze, “The United States defense systems software man-
agement program,” in Proc. AIAA Government Initiatives Soft-

1331 E. B. Swanson, “The dimension of maintenance,” in h o c . 2nd
wore Management Con$ ZZ, 1976.

[34] J . B. Munson, “Software maintainability; a practical concern
I n t Con$ Software Engineering, pp. 492-497, Oct. 1976.

for life-cycle costs,” in Proc. COMPSAC 78, pp. 54-59, Nov.

[351 B. Curtis, “Measurement and experimentation in software enpi-

[361 R. T. Yeh and P. Zave, “Specifying software requirements,” this

1979.

1978.

neering,” this issue, pp. 1144-1 157.

issue, pp. 1077-1085.

The Impact of Abstraction Concerns on Modern
Programming languages

MARY SHAW, MEMBER, IEEE

Absfmcr-The major issues of modern software are its size and com-
plexity, and its major problems involve finding effective techniques and
t d s for organization and maintenance. This paper traces the important
ideas of modem programming l a n g u a g e s to their roots in the problems
and languages of the past decade and shows how these modern languages
respond to contemporary problems in software development. Modern
programming’s key concept for controlling complexity is ubsfruction-
that is, selective emphasis on detail; new developments in programming
languages provide ways to support and exploit abstraction techniques.

I. ISSUES OF MODERN SOFTWARE

HE MAJOR issues of modem software development
stem from the costs of software development, use, and
maintenance-which are too high-and the quality of the

resulting systems-which is too low. These problems are par-
ticularly severe for the large complex programs with long useful
lifetimes that characterize modem software. Such programs
typically involve many programmers, not only during their
development but also for maintenance and enhancement after
they are initially released. As a result, the cost and quality of
software are influenced by both management and software en-
gineering considerations [51, [231.

was supported in part by the National Science Foundation under Grant
Manuscript received April 3, 1980; revised April 29, 1980. This work

MCS77-03883 and by the U.S. Department of Defense Advanced Re-
search Projects Agency, ARPA Order No. 3597, monitored by the Air
Force Avionics Laboratory under Contract F33615-78-(2-1551.

The author is with the Computer Science Department, Carnegie
Mellon University, Pittsburgh, PA 1521 3.

This paper examines one of the themes that run through the
history of attempts to solve the problems of high cost and low
quality: the effect of abstraction techniques and their associ-
ated specification and verification issues on the evolution of
modem programming languages and methods. This theme
places a strong emphasis on engineering concerns, including
design, specification, correctness, and reliability.

The paper begins with a review of the ideas about program
development and analysis that heavily influenced the develop-
ment of current techniques (Section 11). Many of these ideas
are of current interest as well as of historical importance. This
review provides a setting for a survey of the ideas from current
research projects that are influencing modem language design
and software methodology (Section HI). Section IV illustrates
the changes in program organization this work has stimulated
by developing an example in three different languages intended
for production use: Ada, Pascal, and Fortran. Although
Sections I1 and 111 present a certain amount of technical detail,
Section IV illustrates the concepts with an example that
should be accessible to all readers. An assessment of the cur-
rent status and the potential of current abstraction techniques
(Section V) concludes the paper.

11. HISTORICAL REVIEW O F ABSTRACTION TECHNIQUES
Controlling software development and maintenance has

always involved managing the intellectual complexity of pro-
grams and systems of programs. Not only must the systems
be created, they must be tested, maintained, and extended.

0018-9219/80/0900-1119$00.75 0 1980 IEEE

1120 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

As a result, many different people must understand and mod-
ify them at various times during their lifetimes. This section
identifies one set of ideas about managing program complexity
and shows how those ideas have shaped -programming lan-
guages and methodologies over the past ten to fifteen years.

A dominant theme in the evolution of methodologies and
languages is the development of tools for dealing with abstrac-
tions. An abstraction is a simplified description, or specifica-
tion, of a system that emphasizes some of the system’s details
or properties while suppressing others. A good abstraction is
one in which information that is significant to the reader (i.e.,
the user) is emphasized while details that are immaterial or
diversionary, at least for the moment, are suppressed.

What we call “abstraction” in programming systems corres-
ponds closely to what is called “analytic modeling” in many
other fields. It shares many of the same problems: deciding
which characteristics of the system are important, what vari-
ability (i.e., parameters) should be included, which descriptive
formalism to use, how the model can be validated, and so on.
As in many other fields, we often define hierarchies of models
in which lower level models provide more detailed explana-
tions for the phenomena that appear in higher level models.
Our models also share the property that the description is suf-
ficiently different from the underlying system to require ex-
plicit demonstration. We refer to the abstract description of a
model as its specification and to the next lower level model in
the hierarchy as its implementation. The validation that the
specification is consistent with the implementation is called
verification. The abstractions we use for software tend to
emphasize functional properties of the software, emphasizing
what results are to be obtained and suppressing details about
how this is to be achieved.

Many important techniques for program and language orga-
nization have been based on the principle of abstraction. These
techniques have evolved in step not only with our understand-
ing of programming issues, but also with our ability to use the
abstractions as formal specifications of the systems they de-
scribe. In the 1960’s, for example, the important developments
in methodology and languages were centered around functions
and procedures, which summarize a program segment in terms
of a name and a parameter list. At that time, we only knew
how to perform syntactic validity checks, and specification
techniques reflected this: “specification” meant little more
than “procedure header” until late in the decade. By the late.
1970’s, developments were centered on the design of data
structures, specification techniques drew on quite sophisti-
cated techniques of mathematical logic, and programming
language semantics were well enough understood to permit
formal verification that these programs and specifications were
consistent.

Programming languages and methodologies often develop
in response to new ideas about how to cope with complexity
in programs and systems of programs. As languages evolve
to meet these ideas, we reshape our perceptions of the prob-
lems and solutions in response to the new experiences. Our
sharpened perceptions in turn generate new ideas which feed
the evolutionary cycle. This paper explores the routes by
which these cyclic advances in methodology and specification
have led to current concepts and principles of programming
languages.

A, Early Abstraction Techniques
Prior to the late 1960’s, the set of programming topics re-

garded as important was dominated by the syntax of program-

ming languages, translation techniques, and solutions to specific
implementation problems. Thus we saw many papers on solu-
tions to specific problems such as parsing, storage allocation,
and data representation. Procedures were well understood,
and libraries of procedures were set up. These libraries met
with mixed success, often because the documentation (infor-
mal specification) was inadequate or because the parameteri-
zation of the procedures did not support the cases of interest.
Basic data structures such as stacks and linked lists were just
beginning to be understood, but they were sufficiently unfa-
miliar that it was difficult to separate the concepts from the
particular implementations. Perhaps it was too early in the
history of the field for generalization and synthesis to take
place, but in any event abstraction played only a minor role.

Abstraction was f i t treated consciously as a program or-
ganization technique in the late 1960’s. Earlier languages
supported built-in data types including at least integers, real
numbers, and arrays, and sometimes booleans, high-precision
reals, etc. Data structures were first treated systematically in
1968 (the f i t edition of [431), and the notion that a pro-
grammer might define data types tailored to a particular prob-
lem f i t appeared in 1967 (e.g., [671). Although discussions
of programming techniques date back to the beginning of the
field, the notion that programming is an activity that should
be studied and subjected to some sort of discipline dates to
the NATO Software Engineering conferences of 1968 [531
and 1969 [71.

B. Extensible Languages
The late 1960’s also saw efforts to abstract from the built-in

notations of programming languages in such a way that any
programmer could add new notation and new data types to a
base language. The objectives of the extensible language work
included allowing individual programmers to extend the syn-
tax of the programming language, to define new data struc-
tures, to add new operators (including infut operators as well
as ordinary functions) for both old and new data structures,
and to add new control structures to the base language. This
work on extensibility [601 died out, in part because it under-
estimated the difficulty of d e f i g interesting extensions.
The problems included difficulty with keeping independent
extensions compatible when all of them modify the syntax
of the base language, with organizing definitions so that re-
lated infohation was grouped in common locations, and with
finding techniques for describing an extension accurately (other
than by exhibiting the code for the extension). However, it
left a legacy in its influence on the abstract data types and
generic definitions of the 1970’s.

C. Structured Programming
By the early 1970’s, a methodology emerged for constructing

programs by progressing from a statement of the objective
through successively more precise intermediate stages to final
code [171, [7 1] . Called “stepwise refinement” or “topdown
programming,” this methodology involves approaching a prob-
lem by writing a program that is free to assume the existence
of any data structures and operations that can be directly
applied to the problem at hand, even if those structures and
operations are quite sophisticated and difficult to implement.
Thus the initial program is presumably small, clear, directly
problem related, and ‘‘obviously’’ correct. Although the
assumed structures and operations may be specified only
informally, the programmer’s intuitions about them should
make it possible to concentrate on the overall organization

SHAW: THE IMPACT OF ABSTRACTION CONCERNS 1121

of the program and defer concerns about the implementa-
tions of the assumed definitions. When each of the latter
definitions is addressed, the same technique is applied again,
and the implementations of the high-level operations are
substituted for the corresponding invocations. The result
is a new, more detailed program that is convincingly like
the previous one, but depends on fewer or simpler defiii-
tions (and hence is closer to being compilable). Successive
steps of the program development add details of the sort
more relevant to the programming language than to the
problem domain until the program is completely expressed
using the operations and data types of the base language,
for which a compiler is available.

This separation of concerns between the structures that are
used to solve a problem and the way those structures are im-
plemented provides a methodology for decomposing complex
problems into smaller, fairly independent segments. The key
to the success of the methodology is the degree of abstraction
imposed by selecting high-level data structures and operations.
The chief limitation of the methodology, which was not appre-
ciated until the methodology had been in use for some time, is
that the final program does not preserve the series of abstrac-
tions through which it was created, and so the task of modify-
ing the program after it is completed is not necessarily simpler
than it would be for a program developed in any other way.
Another limitation of the methodology is that informal de-
scriptions of operations do not convey sufficiently precise
information. Misunderstandings about exactly what an opera-
tion is supposed to do can complicate the program develop-
ment process, and informal descriptions of procedures often
are not adequate to assure true independence of modules. The
development of techniques for formal program specification
helps to alleviate this set of problems.

At about the same time as this methodology was emerging,
we also began to be concerned about how people understand
programs and how programs can be organized to make them
easier to understand, and hence to modify. We realized that it
is of primary importance to be able to determine what assump-
tions about the program state are being made at any point in
the program. Further, arbitrary transfers of control that span
large amounts of program text interfere with this goal. The
control flow patterns that lend themselves to understandable
programs are the ones that have a single entry point (at the
beginning of the text) and, at least conceptually, a single
exit point (at the end of the text). Examples of statements
that satisfy this rule are the i f . . . then . . . else and the for
and while loops. The chief violator of the rule is the go to
statement.

The fiist discussion of this question appeared in 1968 [161 ,
and we converged on a common set of “ideal” control con-
structs a few years later [171, [35]. Although true consensus
on this set of constructs has still not been achieved, the ques-
tion is no longer regarded as an issue.

D. Program Verification
In parallel with the development of “ideal” control con-

structs-in fact, as part of their motivation-computer scientists
became interested in fiiding ways to make precise, mathemat-
ically manipulatable statements about what a program com-
putes. The ability to make such statements is essential to the
development of techniques for reasoning about programs,
particularly for techniques that rely on abstract specifications
of effects. New techniques were required because procedure
headers, even accompanied by prose commentary, provide in-

adequate information for reasoning precisely about programs,
and imprecise statements lead to ambiguities about responsi-
bilities and inadequate separation of modules.

The notion that it is possible to make formal statements
about values of variables (a set of values for the variables of a
program is called the program state) and to reason rigorously
about the effect of executing a statement on the program’s
state first appeared in the late 1960’s [191, [321. The formal
statements are expressed as formulas in the predicate calculus,
such as

A programming language is described by a set of rules that de-
f i e the effect each statement has on the logical formula that
describes the program state. The rules for the language are
applied to the assertions in the program in order to obtain
theorems whose proofs assure that the program matches the
specification.’ By the early 1970’s, the basic concepts of veri-
fying assertions about simple programs and describing a lan-
guage in such a way that this is possible were under control
[35], [48]. When applied by hand, verification techniques
tend to be error prone, and formal specifications, like informal
ones, are susceptible to errors of omission [201. In response
to this problem, systems for performing the verification steps
automatically have been developed [21 1. Verification requires
converting a program annotated with logical assertions to
logical theorems with the property that the program is correct
if and only if the theorems are true. This conversion process,
called verification condition generation, is well understood,
but considerable work remains to be done on the problem of
proving those theorems.

When the emphasis in programming methodology shifted
to using data structures as a basis for program organization,
corresponding problems arose for specification and verifica-
tion techniques. The initial efforts addressed the question
of what information is useful in a specification [551. Sub-
sequent attention concentrated on making those specifica-
tions more formal and dealing with the verification problems
[33]. From this basis, work on verification for abstract data
types proceeded as described in Section 111.

E. Abstract Data Types
In the 1970’s, we recognized the importance of organizing

programs into modules in such a way that knowledge about
implementation details was localized as much as possible.
This led to language support for data types [34], for specifi-
cations that are organized using the same structure as data
[281, [441, [741, and for generic definitions [611. The lan-
guage facilities are based on the class construct of Simula [81 ,
[9], ideas about strategies for defining modules [54], [561,
and concerns over the impact of locality on program organiza-
tion [73 I. The corresponding specification techniques include
strong typing and verification of assertions about functional
correctness.

Over the past five years, most research activity in abstraction
techniques has been focused on the language and specification
issues raised by these considerations; most of the work is iden-
tified with the concept of abstract data types. Like structured
programniing, the methodology of abstract data types empha-
sizes locality of related collections of information. In this case,
attention is focused on data rather than on control, and the

appear in 149, ch. 31 and 175, ch. 5 1 .
‘ A survey of these ideas appears in 1471; introductions to the methods

1122 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

strategy is to form modules consisting of a data structure and
its associated operations. The objective is to treat modules in
the same way as ordinary types such as integers and reals are
treated; this requires support for declarations, infvr operators,
specification of routine parameters, and so on. The result,
called an abstract data type, effectively extends the set of
types available to a program-it explains the properties of a
new group of variables by specifying the values one of these
variables may have, and it explains the operations that will
be permitted on the variables of the new type by giving the
effects these operations have on the values of the variables.

In a data-type abstraction, we specify the functional proper-
ties of a data structure and its operations, then we implement
them in terms of existing language constructs (and other data
types) and show that the specification is accurate. When we
subsequently use the abstraction, we deal with the new type
solely in terms of its specification. (This technique is discussed
in detail in Section 111.) This philosophy was developed in
several recent language research and development projects,
including Ada [371, Alphard [741, CLU [46], Concurrent Pas-
cal [41, Euclid [441, Gypsy [1], Mesa [221, and Modula [721.

The specification techniques used for abstract data types
evolved from the predicates used in simple sequential programs.
Additional expressive power was incorporated to deal with
the way information is packaged into modules and with the
problem of abstracting from an implementation to a data type
[291 . One class of specification techniques draws on the simi-
larity between a data type and the mathematical structure
called an algebra [28], [45]. Another class of techniques ex-
plicitly models a newly defined type by defining its properties
in terms of the properties of common well-understood types
[741.

In conjunction with the work on abstract data types and for-
mal specifications, the generic definitions that originated in
extensible languages have been developed to a level of expres-
siveness and precision far beyond the anticipation of their
originators. These definitions, discussed in detail in Section
111-C, are parameterized not only in terms of variables that
can be manipulated during program execution, but also in
terms of data types. They can now describe restrictions on
which types are acceptable parameters in considerable detail,
asin [21.

F. Interactions Between Abstraction and Specification
Techniques

As this review shows, programming languages and method-
ologies evolve in response to the needs that are perceived by
software designers andimplementors. However, these perceived
needs themselves evolve in response to experience gained with
past solutions. The original abstraction techniques of struc-
tured programming were procedures or macros? these have
evolved to abstract types and generic definitions. Methodolo-
gies for program development emerge when we find common
useful patterns and try to use them as models; languages evolve
to support these methodologies when the models become so
common and stable that they are regarded as standard. A more
extensive review of the development of software abstractions
appears in [26]. As abstraction techniques have become ca-
pable of addressing a wider range of program organizations,

space, they soon came to be regarded, like macros, as abstraction tools.
'Although procedures were originally viewed as devices to save code

formal specification techniques have become more precise and
have played a more crucial role in the programming process.

For an abstraction to be used effectively, its specification
must express all the information needed by the programmer
who uses it. Initial attempts at specification used the notation
of the programming language to express things that could be
checked by the compiler: the name of a routine and the
number and types of its parameters. Other facts, such as the
description of what the routine computed and under what
conditions it should be used, were expressed informally [76].
We have now progressed to the point that we can write precise
descriptions of many important relations among routines, in-
cluding their assumptions about the values of their inputs and
the effects they have on the program state. However, many
other properties of abstractions are s t i l l specified only infor-
mally. These include time and space consumption, interactions
with special-purpose devices, very complex aggregate behavior,
reliability in the face of hardware malfunctions, and many
aspects of concurrent processing. It is reasonable to expect
future developments in specification techniques and program-
ming languages to respond to those issues.

The history of programming languages shows a balance be-
tween language ideas and formal techniques; in each method-
ology, the properties we specify are matched to our current
ability to validate (verify) the consistency of a specification
and its implementation. Thus, since we can rely on formal
specifications only to the extent that we are certain that they
match their implementations, the development of abstraction
techniques, specification techniques, and methods of verifying
the consistency of a specification and an implementation must
surely proceed hand in hand. In the future, we should expect
to see more diversity in the programs that are used as a basis
for modularization; we should also expect to see specifications
that are concerned with aspects of programs other than the
purely functional properties we now consider.

111. ABSTRACTION FACILITIES IN MODERN
PROGRAMMING LANGUAGES

With the historical background of Section 11, we now turn to
the abstraction methodologies and specification techniques
that are currently under development in the programming lan-
guage research community. Some of the ideas are well enough
worked out to be ready for transfer to practical languages, but
others are still under development.

Although the ideas behind modem abstraction techniques
can be explored independently of programming languages, the
instantiation of these ideas in actual languages is also important.
Programming languages are our primary notational vehicle for
expressing a class of very complex ideas; the concepts we must
deal with include not only the functional relations of mathe-
matics, but also constructs that deal with relations over time,
such as sequentiality and synchronization. Language designs
influence the ways we think about algorithms by making some
program structures easier to describe than others. In addition,
programming languages are used for communication among
people as well as for controlling machines. This role is partic-
ularly important in long-lived programs, because a program is
in many ways the most practical medium for expressing the
structure imposed by the designer-and for maintaining the
accuracy of this documentation over time. Thus, even though
most programming languages technically have the same ex-
pressive power, differences among languages can significantly
affect their practical utility.

SHAW: THE IMPACT OF ABSTRACTION CONCERNS 1123

A. The New Ideas
Current activity in programming languages is driven by three

sets of global concerns: simplicity of design, the potential for
applying precise analytic techniques to formal specifications,
and the need to control costs over the entire lifetime of a long-
lived program.

Simplicity has emerged as a major criterion for evaluating
programming language designs. We see a certain tension be-
tween the need for “just the right construct” for a task and the
need for a language small enough to understand thoroughly.
This is an example of a tradeoff between specialization and
generality: if highly specialized constructs are provided, indi-
vidual programs will be smaller, but at the expense of com-
plexity (and feature-by-feature interactions) in the system as
a whole. The current trend is to provide a relatively small
base language that provides facilities for defining special facili-
ties in a regular way[65 1 . An emphasis on simplicity underlies
a number of design criteria that are now commonly used.
When programs are organized to localize information, for ex-
ample, assumptions shared among program parts and module
interfaces can be significantly simplified. The introduction of
support for abstract data types in programming languages
allows programmers to design special-purpose structures and
deal with them in a simple way; it does so by providing a defi-
nition facility that allows the extensions to be made in a regu-
lar, predictable fashion. The regularity introduced by using
these facilities can substantially reduce maintenance problems
by making it easier for a programmer who is unfamiliar with
the code to understand the assumptions about the program
state that are made at a given point in the program-thereby
increasing the odds that he or she can make a change without
introducing new errors.

Our understanding of the principles underlying programming
languages has improved to the point that formal and quantita-
tive techniques are both feasible and useful. Current methods
for specifying properties of abstract data types and for verifying
that those specifications are consistent with the implementa-
tion are discussed in Section 111-B. Critical studies of testing
methods are being performed [361, and interest in quantitative
methods for evaluating programs is increasing [581. It is inter-
esting to note that there seems to be a strong correlation be-
tween the ease with which proof rules for language constructs
can be written and the ease with which programmers can use
those constructs correctly and understand programs that use
them.

The 1970’s mark the beginning of a real appreciation that
the cost of software includes the costs over the lifetime of the
program, not just the costs of initial development or of execu-
tion. For large, long-lived programs, the costs of enhancement
and maintenance usually dominate design, development, and
execution costs, often by large factors. Two classes of issues
arise [151. First, in order to modify a program successfully,
a programmer must be able to determine what other portions
of the program depend on the section about to be modified.
The problem of making this determination is simplified if the
information is localized and if the design structure is retained
in the structure of the program. Off-line design notes or other
documents are not an adequate substitute except in the un-
likely case that they are meticulously (and correctly) updated.
Second, large programs rarely exist in only one version. The
major issues concerning the control of large-scale program de-
velopment are problems of management, not of programming.
Nevertheless, language-related tools can significantly ease the

problems. Tools are becoming available for managing the
interactions among many versions of a program.

B. Language Support for Abstract Data Types
Over the past five years, the major thrust of research activity

in programming languages and methodology has been to ex-
plore the issues related to abstract data types. The current
state has emerged directly from the historical roots described
in Section 11-E. The methodological concerns included the
need for information hiding [541, [561 and locality of data
access [731, a systematic view of data structures [341, a pro-
gram organization strategy exemplified by the Simula class
construct [81, [9 I, and the notion of generic definition [6 11 .
The formal roots included a proposal for separating abstract
properties from implementation [331 and a debate on the
philosophy of types, which finally led to the view that types
share the formal characteristics of abstract algebras [271, [281,
[451, [511 .

Whereas structured programming involved progressive devel-
opment of a program by adding detail to its control structure,
programming with abstract data types involves partitioning the
program in advance into modules that correspond to the major
data structures of the final system. The two methodologies
are complementary, because the techniques of structured pro-
gramming may be used within type definition modules, and
conversely. An example of the interaction of the two design
styles appears in this issue 161.

In most languages that provide the facility, the definition of
an abstract data type consists of a program unit that includes
the following information.

I) Visible Outside the Type Definition: The name of the
type and the names and routine headers of all operations (pro-
cedures and functions) that are permitted to use the represen-
tation of the type; some languages also include formal specifi-
cations of the values that variables of this type may assume
and of the properties of the operations.

2) N o t Visible Outside the Type Definition: The representa-
tion of the type in terms of built-in data types or other defined
types, the bodies of the visible routines, and hidden routines
that may be called only from within the module.

An example of a module that defines an abstract data type
appears in Fig. 5.

The general question of abstract data types has been ad-
dressed in a number of research projects. These include
Alphard 1741, CLU [461, Gypsy 1 1 1 , Russell [121, Concurrent
Pascal [41, and Modula [721. Although they differ in detail,
they share the goal of providing language support adequate to
the task of abstracting from data structures to abstract data
types and allowing those abstract definitions to hold the same
status as built-in data types. Detailed descriptions of the dif-
ferences among these projects are best obtained by studying
them in more detail than is appropriate here. As with many
research projects, the impact they have is likely to take the
form of influence on other languages rather than complete
adoption. Indeed, the influence of several of the research
projects on Ada [371 and Euclid [44] is apparent.

Programming with abstract data types requires support from
the programming language, not simply managerial exhortations
about program organization. Suitable language support re-
quires solutions to a number of technical issues involving both
design and implementation. These include the following.
I) Naming: Scope rules are required to ensure the appro-

priate visibility of names. In addition, protection mechanisms

1124 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

C V e c t o r s t h a t c o n t a i n f m p l o y e e i n f o r m a t i o n
C Name i s i n FmpNam (2 4 c h a r s) , P l l o n e i s i n FmpFon (i n t e g e r)
C S a l a r y i n i n f m p S a l (r e a l) , D i v i s i o n i s i n EmpOiv (4 c h a r s)

r e a l F l n p S a l (I O O O)
i n t e g e r F m p F o n (1 0 0 0) . F m p O i v (1 0 0 0)

d o u b l e p r e c i s i o n F m p N a m (3 . 1 0 0 0)

C V e c t o r s t h a t c o n t a i n P h o n e l i s t i n f o r m a t i o n
C Name i s i n DivNam (24 c h a r s) . Phone i s i n O i v F o n (i n t e g e r)

i n t e g e r I) i v F o n (1000)
d o u b l e p r e c i s i o n D i v N a m (3 . 1 0 0 0)

C d e c l a r a t i o n s o f s c a l a r s u s e d i n p r o g r a m
i n t e g e r S t a f S z . O i v S 7 , i. j
i n t e g e r W h i c h D
d o u b l e p r e c i s i o n q

Fig. 1 . Declarations for Fortran version o f telephone l i t program.

[41], [521 should be considered in order to guarantee that
hidden information remains private. Further, programmers
must be prevented from naming the same data in more than
one way (“aliasing”) if current verification technology is to
be relied upon.

2) Type Checking: It is necessary to check actual parameters
to routines, preferably during compilation, to be sure they will
be acceptable to the routines. The problem is more complex
than the type checking problem for conventional languages
because new types may be added during the compilation pro-
cess and the parameterization of types requires subtle decisions
in the definition of a useful type checking rule.

3) Specification Notation: The formal specifications of an
abstract data type should convey all information needed by the
programmer. This goal has not yet been achieved, but current
progress is described below. As for any specification formal-
ism, it is also necessary to develop a method for verifying that
a specification is consistent with its implementation.

4) Distributed Properties: In addition to providing opera-
tions that are called as routines or infix operators, abstract
data types must often supply definitions to mpport type-
specific interpretation of various constructs of the proogram-
ming language. These constructs include storage allocation,
loops that operate on the elements of a data structure without
knowledge of the representation, and synchronization. Some
of these have been explored, but many open questions remain
[461, [621, [651.

5) Separate Compilation: Abstract data types introduce
two new problems to the process of separate compilation. First,
type checking should be done across compilation units as well
as within units. Second, generic definitions offer significant
potential for optimization (or for inefficient implementation).

Specification techniques for abstract data types are the topic
of a number of current research projects. Techniques that have
been proposed include informal but precise and stylized
English [311, models that relate the new type to previously
defiied types [741, and the algebraic axioms that specify new
types independently of other types [27]. Many problems
remain. The emphasis to date has been on the specification
of properties of the code; the correspondence of these specifi-
cation to informally understood requirements is also impor-
tant [111. Further, the work to date has concentrated almost
exclusively on the functional properties of the definition with-
out attending, for example, to the performance or reliability.

Not all the language developments include formal specifica-
tions as part of the code. For example, Alphard includes
language constructs that associate a specification with the
implementation of a module; Ada and Mesa expect interface
definitions that contain at least enough information to support

C G e t d a t a f o r d i v i s i o n W h i c h D only

D i v S z = 0
d o 200 i = 1 . S t a f S z

if (E m p D i v (i) . n e . W h i c h D) go t o 200
D i v S z = D i v S z + 1
l l i v N a m (l . D i v S z) = FmpNam(1. i)
D i v N a m (2 , D i v S z) = FmpNam(2, i)
I) i v N a m (3 , D i v S z) = FmpNam(3, i)
l l i v F o n (D i v S r) = f m p f o n (i)

200 c o n t i n u e

C S o r t t e l e p h o n e l i s t

do 220 i = I . 0 i v S z
if (l l i v s z . e q . 0) g o t o 210

do 230 j = i + l . D i v S z
if (D i v N a m (1 . i) . g t . D i v N a m (1 , j)) g o t o 240
i f (D i v Y a m (1 . i) . I t . D i v N a m (1 . j)) g o t o 230
if (l l i v N a m (2 , i) . g t . D i v N a m (2 . j)) g o t o 240

if (D i v N a m (3 . i) . g t . D i v N a m (3 . j)) go t o 240
if (l l i v N a m (2 . i) ,It. D i v N a m (2 . j)) g o t o 2 3 0

g o to 230
d o 250 k = 1.3 240

D i v N a m (k , i) = D i v n a m (k . j)
q = D i v N a m (k . i)

250 D i v N a m (k . j) = q
k = l l i v F o n (i)
D i v F o n (i) = D i v F o n (j)
D i v F o n (j) = k

2 3 0 c o n t i n u e
2 2 0 c o n t i n u e
210 c o n t i n u e

Fig. 2. Code for Fortran version of telephone list program.

separate compilation. All the work, however, is based on the
premise that the specification must include all information
that should be available to a user of the abstract data type.
When it has been verified that the implementation performs
in accordance with its public specification [331, the abstract
specification may safely be used as the definitive source of
information about how higher level programs may correctly
use the module. In one sense we build up “bigger” definitions
out of “smaller” ones; but because a specification alone suf-
ices for understanding, the.new definition is in another sense
no bigger than the preexisting components. It is this regimen-
tation of detail that gives the technique its power.

C. Generic Definitions
A particularly rich kind of abstract data type definition

allows one abstraction to take another abstraction (e.g., a data
type) as a parameter. These generic definitions provide a
dimension of modeling flexibility that conventionally param-
eterized definitions lack.

For example, consider the problem of defining data types
for an application that uses three kinds of unordered sets: sets
of integers, sets of reals, and sets of a userdefied type for
points in three-dimensional space. One alternative would be
to write a separate definition for each of these three types.
However, that would involve a great deal of duplicated text,
since both the specifications and the code will be very similar
for all the definitions. In fact, the programs would probably
differ only where specific references to the types of set ele-
ments are made, and the machine code would probably differ
only where operations on set elements (such as the assignment
used to store a new value into the data structure) are per-
formed. The obvious drawbacks of this situation include du-
plicated code, redundant programming effort, and complicated
maintenance (since bugs must be fmed and improvements
must be made in all versions).

Another alternative would be to separate the properties of
unordered sets from the properties of their elements. This is
possible because the definition of the sets relies on very few

SHAW: THE IMPACT OF ABSTRACTION CONCERNS 1125

specific properties of the elements-it probably assumes only
that ordinary assignment and equality operations for the ele-
ment type are defined. Under that assumption, it is possible
to write a single definition, say

type U n O r d e r e d S e t (T ; type) is . . .

that can be used to declare sets with several different types of
elements, as in

var
Counters: UnOrderedSet(intege1’) :
T i m e r s : U n O r d e r e d S e t (i n t e g e r) ;
S i z e s : U n O r d e r e d S e t (r e a 1) ;
P l a c e s : U n O r d e r e d S e t (P o i n t I n 3 S p a c e) ;

using a syntax appropriate to the language that supports the
generic definition facility. The definition of UnOrderedSet
would provide operations such as Insert, TestMembership,
and so on; the declarations of the variables would instantiate
versions of these operations for all relevant element types,
and the compiler would determine which of the operations
to use at any particular time by inspecting the parameters
to the routines.

The flexibility provided by generic definitions is demon-
strated by the algorithmic transformation of [21, which auto-
matically converts any solution of one class of problems to
a solution of the corresponding problem in a somewhat larger
class. This generic definition is notable for the detail and pre-
cision with which the assumptions about the generic parameter
can be specified.

IV. PRACTICAL REALIZATIONS
A number of programming languages provide some or all of

the facilities required to support abstract data types. In addi-
tion to implementations of research projects, several language
efforts have been directed primarily at providing practical im-
plementations. These include Ada [37], Mesa [221, Pascal
[401, and Simula [81. Of these, Pascal currently has the
largest user community, and the objective of the Ada develop-
ment has been to make available a language to support most of
the modem ideas about programming. Because of the major
roles they play in the programming language community,
Pascal and Ada will be discussed in some detail.

A . A Small Example Program
In order to illustrate the effects that modem languages

have on program organization and programming style, we will
carry a small example through the discussion. This section
presents a Fortran program for the example; Pascal and Ada
versions are developed in Sections IV-B and IV-C.

The purpose of the program is to produce the data needed
to print an internal telephone list for a division of a small com-
pany. A data base containing information about all employees,
including their names, divisions, telephone numbers, and
salaries is assumed to be available. The program must pro-
duce a data structure containing a sorted list of the employees
in a selected division and their telephone extensions.

Suitable declarations of the employee data base and the
divisional telephone list for the Fortran implementation are
given in Fig. 1. A program fragment for constructing the tele-
phone list is given in Fig. 2.

The employee data base is represented as a set of vectors,
one for each unit of information about the employee. The
vectors are used “in parallel” as a single data structure-that is,
part of the information about the ith employee is stored in the

ith element of each vector. Similarly, the telephone list is
constructed in two arrays, DivNam for names and DivFon for
telephone numbers.

The telephone list is constructed in two stages. First, the
data base is scanned for employees whose division (EmpDiv(i))
matches the division desired (WhichD). When a match is
found, the name and phone number of the employee are added
to the telephone list. Second, the telephone list is sorted using
an insertion

There are several important thing to notice about this pro-
gram. First, the data about employees is stored in four arrays,
and the relation among these arrays is shown only by the simi-
lar naming and the comment with their declarations. Second,
the character string for each employee’s name must be handled
in eightcharacter segments, and there is no clear indication in
either the declarations or the code that character strings are
in~o lved .~ The six-line test that determines whether

DivNam (*, i) < DivNam (*, j)

could be reduced to three tests if it were changed to a test
for less than or equal, but this would make the sort unstable.
Third, all the data about employees, including salaries, is easily
accessible and modifiable; this is undesirable from an adminis-
trative standpoint.

E. Pascal
Pascal [40] is a simple algebraic language that was designed

with three primary objectives. It was to support modem pro-
gramming development methodology; it was to be a simple
enough language to teach to students; and it was to be easy
to implement reliably, even on small computers. It has, in
general, succeeded in all three respects.

Pascal provides a number of facilities for supporting struc-
tured programming. It provides the standard control constructs
of structured, programming, and a formal definition [351 fa-
cilitates verification of Pascal programs. It supports a set of
data organization constructs that are suitable for d e f i g ab-
stractions. These include the ability to define a list of arbi-
trary constants as an enumerated type, the ability to define
heterogenous records with individually named fields, data
types that can be dynamically allocated and referred to by
pointers, and the ability to name a data structure as a type
(though not to bundle up the data structure with a set of
Operations).

The language has become quite widely used. In addition to
serving as a teaching language for undergraduates, it is used
as an implementation language for microcomputers [3] and
it has been extended to deal with parallel programming [41.
An international standardization effort is currently under-
way [391.

Pascal is not without its disadvantages. It provides limited
support for large programs, lacking separate compilation fa-
cilities and block structure other than nested procedures.
Type checking does not provide quite as much control over
parameter passing as one might wish, and there is no support
for the encapsulation of related definitions in such a way that

However, most readers will recognize the algorithm, and the topic of
’This selection is not an endorsement of insertion sorting in general.

this paper is the evolution of programming languages, not sorting
techniques.

41ndeed, the implementations of floating point in some versions of
Fortran interferes with this type violation. Character strings are dealt
with more appropriately in the Fortran77 standard.

1126 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

S t r i n g = a r r a y [l . , 2 4 1 of c h a r ;
S h o r t s t r i n g = a r r a y [1 . . 8] o l c h a r ;
FmpRec = record

N a m e : S t r i n g ;

S a 1 a r y : r e a l ;
Pl1one:integer;

D i v i s i 0 n : S h o r t S t r i n g ;
end;

PhoneRec = r e c o r d N a m e : S t r i n g : P h o n e : i n l e g e r : end;

var
S t a f f : a r r a y [l . . l O O O] 01 FmpRec;

S t a f f s i z e . D i v S i 7 e . i . j : i n t e g e r ;
Phones: array [l . .lOOO] of PhoneAec;

WhichDiv : char ;
q: PhoneRec;

Fig. 3. Declarations for Pascal version of telephone list program.

they can be isolated from the remainder of the program.
Many of the disadvantages are addressed in extensions, deriva-
tive languages, and the standardization effort.

We can illustrate some of Pascal’s characteristics by returning
to the program for creating telephone lists. Suitable data struc-
tures, including both type definitions and data declarations,
are shown in Fig. 3. A program fragment for constructing the
telephone list is given in Fig. 4.

The declarations open with definitions of four types which
are not predefined in Pascal. Two (String and Shortstring) are
generally useful, and the other two (EmpRec and PhoneRec)
were designed for this particular problem.

The definition of String and Shortstring as types permits
named variables to be treated as single units; operations are
performed on an entire string variable, not on individual groups
of characters. This abstraction simplifies the program, but,
more importantly, it allows the programmer to concentrate on
the algorithm that uses the string as names, rather than on
keeping track of the individual fragments of a name. The dif-
ference between the complexity of the code in Figs. 2 and 4
may not seem large, but when it is compounded over many
individual composite structures with different representations,
the difference can be large indeed. If Pascal allowed pro-
grammer-defined types to accept parameters, a single defini-
tion of string that took the string length as a parameter could
replace String and Shortstring; Ada does allow this, and the
change is made in the Ada program of Section IV-C.

The type definitions for EmpRec and PhoneRec abstract
from specific data items to the notions “record of information
about an employee” and “record of information for a tele-
phone list.” Both the employee data base and the telephone
list can thus be represented as vectors whose elements are
records of the appropriate types.

The declarations of Staff and Phones have the effect of indi-
cating that all the components are related to the same informa-
tion structure. In addition, the definition is organized as a
collection of records, one for each employee-so the primary
organization of the data structure is by employee. On the
other hand, the data organization of the Fortran program was
dominated by the arrays that correspond to the fields, and the
employees were secondary.

Just as in the Fortran program, the telephone list is con-
structed in two stages (Fig. 4). Note that Pascal’s ability to
operate on strings and records as single units has substantially
simplified the manipulation of names and the interchange step
of the sort. Another notable difference between the two pro-
grams is in the use of conditional statements. In the Pascal
program, the use of i f . . . then . . . statements emphasizes
the conditions that will cause the bodies of the if statements

(G e t d a t a f o r d i v i s i o n W l l i c h D i v o n l y)

D i v S i z e : = 0 ;
for i : = 1 to S t a f f s i z e d o

if S t a f f [i] . D i v i s i o n = Y h i c h D i v t h e n
b e g i n
D i v S i 7 e : = D i v S i z e + 1;
Pl1011es[DivSi7e] .Naae : = S t a f f [i] . N a a e ;

e n d ;
P l ~ o ~ ~ e s [D i v S i z e] . P h o n e : = S t a f f [i] . P h o n e :

(S o r t t e l e p h o n e l i s t 1

for i : = 1 l o D i v S i z e d o
for j : = i + l l o D i v S i 7 e d o

il Phones[i] .Name > Phones[j] .Name then

q : = P h o n e s l i] :
begin

P l ~ o n e s [i] : = P h o n e s [j] ;
P h o n e s [j] : = q ;
end ;

Fig. 4. Code for Pascal version of telephone list program.

to be executed. The Fortran if statements with go to’s,
however, describe conditions in which code is nor to be exe-
cuted, leaving the reader of the program to compute the con-
ditions that actually correspond to the actions.

It is also worth mentioning that the Pascal program will not
execute the body of the sort loop at all if no employees work
in division WhichDiv (that is, if DivSize is 0). The body of the
corresponding Fortran loop would be executed once in that
situation if the loop had not been protected by an explicit test
for an empty list. While it would do no harm to execute this
particular loop once on an empty list, in general it is necessary
to guard Fortran loops against the possibility that the upper
bound is less than the lower bound.

C. Ada
The Ada language is currently being developed under the

auspices of the Department of Defense in an attempt to reduce
the software costs of embedded computer systems. The project
includes components for both a language and a programming
support environment. The specific objectives of the Ada de-
velopment include significantly reducing the number of pro-
gramming languages that must be learned, supported, and
maintained within the Department of Defense. The language
design emphasized the goals of high program reliability, low
maintenance costs, support for modern programming meth-
odology, and efficiency of compilers and object programs
[371, [381.

The language developed through competitive designs con-
strained by a set of requirements [131. It is undergoing final
revisions and will be frozen in mid-1980’s. Development of
the programming environment will continue over the next
two years [141. Since compilers for the language are not yet
available, it is too soon to evaluate how well the language
meets its goals. However, it is possible to describe the way
various features of the language are intended to respond to the
abstraction issues raised here.

Although Ada grew out of the Pascal language philosophy,
extensive syntactic changes and semantic extensions make it a
very different language from Pascal. The major additions in-
clude module structures and interface specifications to large-
program organizations and separate compilation, encapsulation
facilities and generic definitions to support abstract data types,
support for parallel processing, and control over low-level
implementation issues related to the architecture of object
machines.

There are three major abstraction tools in Ada. The package
is used for encapsulating a set of related definitions and iso-

SHAW: THE IMPACT OF ABSTRACTION CONCERNS 1127

package Employee is

type FrnpRec is
restricted type P r i v S t u f f isprivate;

record
Name: s t r i n g (1 . . 2 4) ;
P h o n e : i n t e g e r ;
P r l v P a r t : P r i v S t u f f ;

end record;
procedure S e t S a l a r y (W h o : inout FrnpRec; S a l : f l o a t) :
function GetSalary(Wl1o: FmpReu) return f l o a t :
procedure S e t D l v (Y l 1 u : inout FmpRec; O i v : S t r i n g (1 . . 8)) :
function t ietDiv(Yl1u: FrnpRec) return s t r i n g (I . . a) ;

type P r i v S t u f f is
private

record

D i v i s i o n : s t r i n g (1 . . 8) ;
S a l a r y : f l o a t :

end record:
end Frnployee:

Fig. 5 . Ada package defmition for employee records.

declare

Fig. 6.

use F m p l o y e e ;

type PlluneRec is
record

Name: s t r i n g (1 . . 2 4) ;
P h o n e : i n t e g e r ;

end record;

S t a f f : array (1 . . 1 0 0 0) of FmpRec;

S t a f f S i 7 e . D i v S i 7 e . i. j: i n t e g e r range 1 . . 1 0 0 0 ;
Phones: array (1 . . 1 0 0 0) of PhoneRec;

W h l c h D i v : s t r i n g (I . . E) ;
q : PhoneRec;

Declarations for Ada version of telephone list program.

lating them from the rest of the program. The type determines
the values a variable (or data structure) may take on and how
it can be manipulated. The generic definition allows many
similar abstractions to be generated from a single template,
as described in Section 111-C.

The incorporation of many of these ideas into Ada can be
illustrated through the example of Section IV-A. The data
organization of the Pascal program (Figs. 3 and 4) could be
carried over almost directly to the Ada program, and the re-
sult would use Ada reasonably well. However, Ada provides
additional facilities that can be applied to this problem. Recall
that neither the Fortran program nor the Pascal program can
allow a programmer to access names, telephone numbers, and
divisions without also allowing him to access private informa-
tion, here illustrated by salaries. Ada programs can provide
such selected access, and we will extend the previous example
to do so.’

We now organize the program in three components: a defi-
nition of the record for each employee (Fig. 5), declarations
of the data needed by the program (Fig. 6) , and code for con-
struction of the telephone list (Fig. 7).

The package of information about employees whose specifi-
cation is shown in Fig. 5 illustrates one of Ada’s major addi-
tions to our tool kit of abstraction facilities. This definition
establishes EmpRec as a data type with a small set of privjleged
operations. Only the specification of the package is presented
here. Ada does not require the module body to accompany
the specification (though it must be defined before the pro-
gram can be executed); moreover, programmers are permitted
to rely only on the specifications, not on the body of a pack-

’This Ada program is written in the preliminary version of Ada [371.
Revisions are currently (April 1980) being made, so this program may
have become invalid when this paper appears.

- - G e t d a t a for d i v i s i o n Y h i c h O i v o n l y

D i v S i z e : = 0;
for i in 1 , . S t a f f S i ~ e loop

if G e t D i v (S t a f f (i)) = W h i c l i D i v then
D i v S 1 z e : = O i v S i 7 e + 1;
P h o n e s (D i v S i 7 e) : = (S t a f f (i) . N a r n e . S t a f f (i) . P h o n e f :

end if:
end loop;

- - S o r t t e l e p h o n e l i s t

for i in l . . D i v S i 7 e loop
for J in i+l. . D i v S i 7 e loop

if P h o n e s (i) . N a m e D P h o n e s (j) . N a m e then

Phones(i) : = P l i o n e s (j) ;
q : = P h o n e s (i) ;

Phones(j) : = q :
end i f ;

end loop;
end loop:

Fig. 7. Code for Ada version of telephone program.

age. The specification itself is divided into a visible part
(everything from package to private) and a private part (from
private to end). The private part is intended only to provide
information for separate compilation.

Assume that the policy for using EmpRec’s is that the Name
and Phone fields are accessible to anyone, that it is permissible
for anyone to read but not to write the Division field, and that
access to the S a l a r y field and modification of the Division field
are supposed to be done only be authorized programs. Two
characteristics of Ada make it possible to establish this policy.
First, the scope rules prevent any portion of the program out-
side a package from accessing any names except the ones listed
in the visible part ,of the specification. In the particular case of
the Employee package, this means that the Salary and Division
fields of an EmpRec cannot be directly read or written outside
the package. Therefore the integrity of the data can be con-
trolled by verifying that the routines that are exported from
the package are correct. Presumably the routines SetSalary,
GetSalary, SetDiv, and GetDiv perform reads and writes as
their names suggest; they might also keep records showing who
made changes and when. Second, Ada provides ways to con-
trol the visibility of each routine and variable name. As a re-
sult, unauthorized portions of the program may be discouraged
from calling routines SetSalary, GetSalary, and SetDiv; at the
same time, the field names of EmpRec and routine GetDiv
may be freely available everywhere.6

Although the field name PrivPart is exported from the Em-
ployee package along with Name and Phone, there is no danger
in doing so. An auxiliary type was defined to protect the
s a l a r y and division information; the declaration

restricted type P r i v S t u f f is private

indicates not only that the content and organization of the data
structure are hidden from the user (private), but also that all
operations on data of type PrivStuff are forbidden except for
calls on the routines exported from the package. For restricted
types, even assignment and comparison for equality are for-
bidden. Naturally, the code inside the body of the Employee
package may manipulate these hidden fields; the purpose of
the packaging is to guarantee that only the code inside the
package body can do so.

6Alternatively, a password could be added as a parameter to the sensi-
tive routines.

1128 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

The ability to force manipulation of a data structure to be
carried out only through a known set of routines is central to
the support of abstract data types. It is useful not only in ex-
amples such as the one given here, but also for cases in which
the representation may change radically from time to time and
for cases in which some kind of internal consistency among
fields, such as checksums, must be maintained. Support for
secure computation is not among Ada’s goals. It can be
achieved in this case, but only through a combination of an
extra level of packaging and some management control. Even
without guarantees about security, however, the packaging of
information about how employee data is handled provides a
useful structure for the development and maintenance of the
program.

The declarations of Fig. 6 are much like the declarations of
the Pascal program. The Employee package is used instead of
a simple record, and there are minor syntactic differences
between the languages. The clause

use Employee:

says that all the visible names of the Employee package are
available in the current block. (The names of the routines
for manipulating Salary and changing Division must be hidden
at a different point in the program.) Since Ada, unlike Pascal,
allows nonprimitive types to take parameters, Name’s and
Division’s are declared as String’s of specified length.

In the code of the Ada program itself (Fig. 7), we assume
that visibility rules allow the nonprivate field names of Emp-
Recs and the GetDiv function to be used. Ada provides a way
to create a complete record value and assign it with a single
statement; thus the assignment

Phones(DivSize) : = (Staff(i).Name, Staff(i).Phone):

sets both fields of the PhoneRec at once. Aside from this and
minor syntactic distinctions, this program fragment is very
much like the Pascal fragment of Fig. 4 .

V. STATUS AND POTENTIAL
It is clear that methodologies and analytic techniques based

on the principle of abstraction have played a major role in the
development of software engineering and that they will con-
tinue to do so. In this section, we describe the ways our cur-
rent programming habits are changing to respond to those
ideas. We also note some of the limitations of current tech-
niques and how future work may deal with them, and we con-
clude with some suggestions for further reading on abstraction
techniques.

A. How New Ideas Affect Programming
As techniques such as abstract data types have emerged, they

have affected both the overall organization of programs and
the style of writing small segments of code.

The new languages will have the most sweeping effects on
the techniques we use for the high-level organization of pro-
gram systems, and hence on the management of design and
implementation projects. Modularization features that impose
controls on the distribution of variable, routine, and type
names can profoundly shape the strategies for decomposing a
program into modules. Further, the availability of precise
(and enforceable) specifications for module interfaces will
influence management of software projects [761. For example,
the requirements document for a large avionics system has
already been converted to a precise, if informal, specification
[3 11. Project organization wiU also be influenced by the grow-

ing availability of support tools for managing multiple modules
in multiple versions [68 I .

The organization and style of the code within modules will
also be affected. Section IV shows how the treatment of both
control and data changes within a module as the same problem
is solved in languages with increasingly powerful abstraction
techniques.

The ideas behind the abstract data-type methodology are
still not entirely validated. Projects using various portions of
the methodology-such as design based on data types, but no
formal specification, or conversely specification and verifica-
tion without modularity-have been successful, but a complete
demonstration on a large project has not yet been completed
[63]. Although complete validation experiments have not
been done, some of the initial trials are encouraging. A large,
interesting program using data-type organization in a language
without encapsulation facilities has been written and largely
verified [21 1, and abstract data types specified via algebraic
axioms have proved useful as a design tool [301.

B. Limitations o f Current Abstraction Techniques
Efforts to use abstract data types have also revealed some

limitations of the technique. In some cases problems are not
comfortably cast as data types, or the necessary functionality
is not readily expressed using the specification techniques now
available. In other cases, the problem requires a set of d e f i -
tions that are clearly very similar but cannot be expressed by
systematic instantiation or invocation of a data type definition,
even using generic definitions.

A number of familiar, well-structured program organizations
do not fit well into precisely the abstract data-type paradigm.
These include, for example, filters and shells in the Unix spirit
[42] and interactive programs in which the command syntax
dominates the specification. These organizations are unques-
tionably useful and potentially as well understood as abstract
data types, and there is every reason to believe that similarly
precise formal models can be developed. Some of these alterna-
tive points of view are already represented in high-level design
systems for software 1251, [571.

Although facilities for d e f i g routines and modules whose
parameters may be generic (i.e., o f types that cannot be ma-
nipulated in the language) have been developed over the past
five years, there has been little exploration of the generality
of generic definitions. Part of the problem has been lack of
facilities for specifying the precise dependence of the defini-
tion on its generic parameters. A specific example of a com-
plex generic definition, giving an algorithmic transformation
that can be applied to a wide variety of problems, has been
written and verified [21.

The language investigations described above, together with
other research projects [211, 1281, [301, 1331, [451, 1561,
have addressed questions of functional specification in con-
siderable detail. That is, they provide formal notations such as
input-output predicates, abstract models, and algebraic axioms
for making assertions about the effects that operators have on
program values. In many cases, the specifications of a system
cannot be reduced to formal assertions; in these cases we resort
to testing in order to increase our confidence in the program
1251. In other situations, moreover, a programmer is con-
cerned with properties other than pure functional correctness.
Such properties include time and space requirements, memory
access patterns, reliability, synchronization, and process inde-
pendence; these have not been addressed by the data type
research. A specification methodology that addresses these

SHAW: THE IMPACT O F ABSTRACTION CONCERNS 1129

properties must have two important characteristics. First, it
must be possible for the programmer to make and verify asser-
tions about the properties rather than simply analyzing the
program text to derive exact values or complete specifications.
This is analogous to our approach to functional specifications
-we do not attempt to formally derive the mathematical func-
tion defined by a program; rather, we specify certain properties
of the computation that are important and must be preserved.
Further, it is important to avoid adding a new conceptual
framework for each new class of properties. This implies
that mechanisms for dealing with new properties should be
compatible with the mechanisms already used for functional
correctness.

A certain amount of work on formal specifications and veri-
fication of extra-functional properties has already been done.
Most of it is directed at specific properties rather than at tech-
niques that can be applied to a variety of properties; the results
are, nonetheless, interesting. The need to address a variety of
requirements in practical real-time systems was vividly demon-
strated at the conference on Specifications of Reliable Software
[66], most notably by Heninger [3 1 1. Other work includes
specifications of security properties [181, [SO], 1691, reli-
ability [701, performance [59], [64], and communication
protocols [241.

C. Further Reading
This paper has included extensive citations in order to make

further information about briefly discussed topics easy to
obtain. The purpose of this section is to identify the books
and papers that will be most helpful for general or background
reading.

General issues of software development, including both
management and implementation issues, are discussed in
Brook’s very readable book [5 1. The philosophy of structured
programming and the principles of data organization that
underlie the representation issues of abstract data types receive
careful technical treatment in [101. The proceedings of the
conference on Specifications of Reliable Software [66] con-
tain papers on both prose descriptions of requirements and
mathematical specification of abstractions.

More specific (and more deeply technical) readings include
Parnas’ seminal paper on information hiding [561, Guttag and
Homing’s discussion of the use of algebraic axioms as a design
tool [301, London’s survey of verification techniques [47],
and papers on specification techniques including algebraic
axioms [271 and abstract models [74].

REFERENCES

[1] A. L. Ambler, D. I. Good, J. C. Browne, W. F. Burger, R. M.
Cohen, C. G. Hoch, and R. E. Wells, “Gypsy: A language for
specification and implementation of verifiable programs,” Ass.

[2] J. L. Bentley and M. Shaw, “An Alphard specification of acorrect
Comput. Mach. SIGPLANNotices, vol. 12, 3, Mar. 1977.

and efficient transformation on data structures,” in Proc. IEEE
Con$ Specifications of Reliable Software, pp. 222-237, Apt.
1979.

[31 K. L. B o d e s , MicrocomputerProblem Solving UsingPascal. New

[4] P. Brinch Hansen, “The programminglanguage Concurrent Pascal,”
York: Springer-Verlag, 1977.

[SI F. P. Brooks, Jr. The Mythical Man-Month: Essays on Software
IEEE Tmns. Software Eng., vol. SE-1, June 1975.

[6] J. C. Browne, “The interaction of operating systems and software
Engineering. Reading, MA: Addison-Wesley, 1975.

[7] J. N. Buxton and B. Randell, E&., Software Engineering Tech-
engineering,” this issue, pp. 1045-1049.

niques. NATO, 1970. Report on a Conference Sponsored by the
NATO Science Committee (Rome, Italy), Oct. 27-31, 1969.

(81 0.4. Dahl, Simula 67 Common Base Language, Norwegian Com-
puting Center, Oslo, Norway, 1968.

191 0.J. Dahl and C. A. R. Hoare, “Hierarchial program structures,”
in Structured Programming. New York: Academic Press, 1972,

[101 0.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured Pro-

[1 1 1 A. M. Davis and T. G. Rauscher, “Formal techniques and auto-
gramming. New York: Academic Press, 1972.

matic processing to ensure correctness in requirements specifica-
tions,” in Proc. IEEE Con$ Specifications o f Reliable Software,

[121 A. J. &men and J . E. Donahue, “Data types, parameters and
IEEE Comput SOC., pp. 15-35, 1979.

type checking,” in Proc. ACM Symp. Principles of Programming
Languages, ACMSIGACTandSIGPLAN, pp. 12-23, Jan. 1980.

[13) Department of Defense, Steelman Requirements f o r High Order
Computer Progmmming Languages, 1978.

[14] Department of Defense, Requirements for Ada Programming
Support Environments: Stoneman, 1980.

[1 5] F. DeRemer and H. H. Kron, “Programming-in-the-Large vs.
Programming-in-the-small,“ IEEE Trans. Software Eng., vol.

Pp. 175-220.

SE-2, June 1976.
161 E. W. Dijkstra, “GOTOstatement considered harmfu1,”Commun.

171 -, “Notes on structured programming,” in Structured Program-
Ass. Comput. Mach., vol. 11, no. 3, Mar. 1968.

ming. New York: Academic Press, 1972, pp. 1-82.
181 R. Feiertag and P. G. Neumann, “The foundations of a provably

secure operating system (PSOS),” in Proc. Nut. Computer Con$,

191 R. W. Floyd, “Assigning meanings t o programs,” in Roc . Symp.
Applied Mathematics, American MathematicdSociety, pp. 19-32,

201 S . Gerhart and L. Yelowitz, “Observations of fallibility in appli-
1967.

cations of modern programming methodologies,” IEEE Trans.

Pp. 329-334,1979.

Software Eng., vol. SE-2; Sept. 1976.
[21] S. L. Gerhart and D. S. Wile, “Preliminary report on the Delta ex-

periment: Specification and verification of a multiple-user fde
updating module,” in Proc. IEEE Con$ Specifications of Reliable
Software, IEEEComput. Soc., pp. 198-211, 1979.

[2 2] C. M. Geschke, J. H. Morris, Jr., and E. H. Satterthwaite, “Early
experience with Mesa,” Commun. Ass. Comput. Mach., vol. 20,

[2 3] J . Goldberg, Proc. Symp. High Cost of Software, Stanford Res.
no. 8, Aug. 1977.

[2 4] D. I. Good, “Constructing verified and reliable communications
Inst., Sept. 1973.

processing system,” ACM Software Eng. Notes, vol. 2 , no. 5 ,

[2 5] J. B. Goodenough and C. L. McGowan, “Software quality assur-
Oct. 1977.

ance: Testing and validation,” this issue, pp. 1093-1098.
[261 L. R. Guarino, “The evolution of abstraction in programming

languages,” Carnegie-Mellon Univ., Pittsburgh, PA, Tech. Rep.
CMU-CS78-120, May 1978.

1271 J. V. Guttag, “Abstract data types and the development of data
structures,” Commun. Ass. Comput. Mach., vol. 20, no. 6 , June
1977.

I281 J. V. Guttag, E. Horowitz, and D. R.Musser, “Abstract data types
and software validation,” Commun. Ass. Compur. Mach., vol. 2 1,

(291 J. V. Guttag, “Notes on type abstraction (version 2) , ” IEEE
no. 12, Dec. 1978.

(301 J. Guttag and J. J. Homing, “Formal Specification as a design
Trans. Softwnre Eng., vol. SE-6, pp. 13-23, Jan. 1980.

tool,” in Proc. ACM Symp. Principles of Programming Languages,
ACMSIGACTand SIGPLAN, pp. 251-261, Jan. 1980.

[31 1 K. L. Heninger, “Specifying software requirements for complex
systems: New techniques and their applications,” in R o c . IEEE
Con$ Specifications of Reliable Software, IEEE Compur. SOC.,

[32] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Commun. Ass. Comput. Mach., vol. 12, Oct. 1969.

[331 -, “Proof of correctness of data representations,” Acta Infor-
matica,vol. l , n o . 4 , 1 9 7 2 .

[3 4] -, “Notes on data structuring,” in Structured Programming.
New York: Academic Press, 1972, pp. 83-174.

[3 5] C. A. R. Hoare and N. Wirth, “An axiomatic definition of the
programming language Pascal,” Acta Infonnatica, vol. 2 , no. 4 ,
1973.

I361 W. E. Howden, “An analysis of software validation techniques for
scientific programs,” Dep. Math., Univ. of Victoria, Victoria, B.C.,
Tech. Rep. DM-171-IR, Mar. 1979.

[37] J. D. Ichbiah er d., “Preliminary Ada reference manual,” Ass.
Comput. Mach. SIGPLANNotices, vol. 14, no. 6A, June 1979.

[3 8] J. D. Ichbiah e t d., “Rationale for the design of the Ada pro-
gramming language,” Ass. Comput. Mach. SIGPLAN Notices,
vol. 14, no. 6B, June 1979.

[391 Draft Specification f o r rhe Computer Programming Language
Pascal. International Organization for Standardization, 1979.
(ISOJTC 97JSC 5 N.)

1401 K. Jensen and N. Wirth, Pascal User Manual and Report. New
York: Springer-Verlag, 1974.

[4 1] A. K. Jones and B. H. Liskov, “An access control facility for pro-

PP. 1-14, 1979.

1130 PROCEEDINGS OF THE IEEE, VOL. 68, NO. 9, SEPTEMBER 1980

gramming languages,” M.I.T. Computation Structures Group and
Carnegie-Mellon Univ., 1976.

1421 B. W. Kernighan and P. J. Plauger, Software Tools. Reading, MA:
Addison-Wesley, 1976.

I431 D. E. Knuth, The Art of Computer Progmmming, vol. 1 : Funda-
mental Algorithms, 2nd ed. Reading, MA: AddisonWesley,
1973.

[441 B. W. Lampson, J. J. Homing, R. L. London, J. G. Mitchell, and
G. J. Popek, “Report on the programming language Euclid,” Ass.
Comput. Mach. SIGPLANNotices, vol. 12, no. 2, Feb. 1977.

[45 1 B. H. Liskov and S. N. Zilles. “Specification techniques for data
abstractions,” IEEE Trans. Software Eng., vol. SE-1, Mar. 1975.

[4 6] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert, “Abstrac-
tion mechanisms in CLU,” Commun. Ass. Comput. Mach., vol.

(471 R. L. London, “A view of program verification,” in Proc. Int.
20, no. 8, Aug. 1977.

[4 8] R. L. London, J. V. Guttag, J. J. Homing, B. W. Lampson, J. G.
Conf. ReliableSoftware, pp. 534-545,Apr. 1975.

guage Euclid,” Acta Informatica, vol. 10, no. 1, pp. 1-26, 1978.
Mitchell, and G. J. Popek, “Proof rules for the programming lan-

(491 Z. Manna, Mathematical Theory of Computation. New York:
McGraw-Hill, 1974.

[SO] J. K. Millen. “Security kernel validation in practice,”Commun.
Ass. Comput. Mach.,vol. 19, no. 5,May 1976.

[5 1] J. H. Morris, “Types are not sets,” in R o c . ACM Symp. Principles
of Programming Languages, pp. 120-1 24, 1973.

[52 1 J . H. Moms, “Protection in programming languages,” Commun.
Ass. Comput. Mach., vol. 16, Jan. 1973.

[5 3] P. Naur and B. Randell, Eds., Softwore Engineering. NATO,
1969, Report on a Conference Sponsored by the NATO Science
Committee (Garmisch, Germany), Oct. 7-1 1, 1968.

[541 D. L. Parnas, “Information distribution aspects of design method-
ology,” in P r o c . IFIP Congr., booklet TA-3, pp. 26-30, 1971.

[551 -, “A technique for software module specification with exam-

I561 -, “On the criteria to be used in decomposing systems into
ples,” Commun. Ass. Comput. Mach., vol. 15, May 1972.

modules,” Commun. Ass. Comput. Mach., vol. 15, no. 12, Dec.
1972.

[5 7] L. Peters, “Software design engineering,” this issue, pp. 1085-
1093.

[581 Workshop on Quantitative Software Models for Reliability, Com-
plexity, and Cost: an Assessment o f rhe State of the Ar t , 1979.
(IEEE Catalog no. TH0067-9.)

[591 L. H. Ramshaw, “Formalizing the analysis of algorithms,” Ph.D.
dissertation, Stanford Univ., 1979.

(601 S. A. Schuman, Ed., “Proceedings of the internationalsymposium

on extensible languages,” Ass. Comput. Mach. SIGPLAN Notices,

(611 S. A. Schuman, “On generic functions,” in New Directions in
vol. 6, Dec. 1971.

Algorithmic Languages-1975, 1976, pp. 169-192.
1621 M. Shaw, W. A. Wulf and R. L. London “Abstraction and verifi-

cation in Alphard: Defining and specifying iteration and gener-

1631 M. Shaw, G. Feldman, R. Fitzgerald, P. Hilfmger, I. Kimura, R.
atom,” Commun. Ass. Comput. Mach., vol. 20, no. 8, Aug. 1977.

abstraction techniques,” in Proc. ACM Nat. Conf., ACM, pp. 106-
London, J. Rosenberg, and W. A. Wulf, “Validating the utility of

[6 4] M. Shaw, “A formal system for specifying and verifying program
110, Dec. 1978.

performance,” Carnegie-Mellon Univ., Tech. Rep. CMU-CS-79-
129, June 1979.

[6 5] M. Shaw and W. A. Wulf, “Toward relaxing assumptions in lan-
guages and their implementations,” SIGPLAN Notices, vol. 13,

[a61 Proc. Conf. Specifications of Reliable Software, (Long Beach,
no. 3, pp. 45-61, Mar. 1980.

[6 7] T. A. Standish, “A data defmition facility for programming lan-
CA), 1979. (IEEE Catalog no. 79CH1401-9C.)

guages,” Ph.D. dissertation, Dep. Comput. Sci., Carnegie-Mellon
Univ., 1967.

681 Tutorial: Automated Tools for Software Engineering, 1979.
(IEEE Catalog no. EH0150-3.)

691 B. J. Walker, R. A. Kemmerer, and G. J. Popek, “Specification
and verification of the UCLA security kernel,” Commun. ACM,
vol. 23, no. 2, Feb. 1980.

701 J. H. Wensley, L. Lamport, M. W. Green, K. N. Levitt, P. M.
Metliar-Smith, R. E. Shostak, andC. B.Weinstock, “SIFT: Design
and analysis of a fault-tolerant computer for aircraft control,”
Proc. IEEE, vol. 66, pp. 1240-1255, Oct. 1978. ..

(71 I N. Wuth, “Program development by stepwise refinement,”
Commun. Ass. Comput. Mach., vol. 14, no. 4 ,Apr. 1971.

1 72 1 -, “Modula: A language for modular programming,” Software
Pmctice Experience, vol. 7, no. 1, Jan. 1977.

[7 3] W. Wulf and M. Shaw, “Global variable considered harmful,” Ass.
Comput. Mach. SIGPLANNotices, vol. 8, Feb. 1973.

1 741 W. A. Wulf, R. L. London, and M. Shaw, “An introduction to the
construction and verification o f Alphard programs,” IEEE Trans.
Software Eng., vol. SE-2, Dec. 1976.

1 75] W. A. Wulf, M. Shaw, L. Flon, and P. N. Hilfmger, Fundamental
Structures of Computer Science. Reading, MA: Addison-Wesley,
1980, to be published.

[7 6] R. T. Yeh and P. Zave, “Specifying software requirements,” this
issue, pp. 1077-1085.

