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ABSTRACT 

Media-Propelled Computational Thinking (MPCT – pronounced 

impact) is a course designed to introduce programming in the 

context of engaging problems in media computation, math, and 

physics.  Programming concepts are introduced as incremental 

steps needed to solve pragmatic problems students already 

understand.  The problems, graphical API, and hands-on program 

features are intended to expose fundamental concepts in 

mathematics and quantitative science. 

MPCT is offered in an entering students program for freshmen 

who plan to specialize in a variety of  STEM (science, 

technology, engineering and math) and non-STEM subjects. The 

curriculum is intended to strengthen student intuition and 

interest in mathematical modeling and programming by engaging 

students in the direct manipulation of simple mathematical 

systems that model and display familiar physical phenomena.  

MPCT uses programs as concrete and manipulatable examples of 

fundamental concepts to engage a diverse range of students 

including women and underrepresented minorities.  

Variants of MPCT are being developed for high schools, and as a 

means to introduce computational science to upper division 

undergraduates studying non-computational STEM disciplines.  

This paper provides an overview of MPCT and representative 

problem studies including models of ballistics and resonant 

systems.  The evaluation plan is described and very preliminary 

results are presented. 

Categories and Subject Descriptors 

  K.3.2 Computer and Information Science Education – 

curriculum, computer science education 

General Terms 

Algorithms, Design. 
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1. Introduction 
At the University of Texas at El Paso (UTEP), many entering 

students must spend two-to-three semesters in remedial math 

courses prior to becoming calculus ready and able to enroll in 

their first computer science course (CS-1).  The attrition rate in 

these remedial courses is high. Even after this preparation, only 

half of the students remaining in the program pass CS-1 on their 

first attempt. 

In the Fall of 2007, MPCT was introduced in an effort to reduce 

attrition among students who lack the prerequisites for CS-1, and 

to maintain student interest in the subject.  The first version was 

based on Mark Guzdial's Media Programming [1] because it had 

documented success in engaging students with weak math skills 

[2].  However, Media Programming is designed for students in 

Liberal Arts programs, and focuses on aesthetic -- rather than 

engineering -- creativity. Our course reviews were consistent 

with observations by Guzdial at other institutions [3]: students 

enrolled in pre-engineering and other pre-professional programs 

(e.g. nursing) enjoyed learning how programs worked, but were 

generally not engaged by the aesthetically focused projects that 

dominate the Media Programming curriculum [4]. 

Consequently, we were forced to rethink our course objectives.  

Following Guzdial's lead, we realized that programming should 

not be taught for its own sake.  In response, we designed a 

curriculum where students construct simple graphical programs 

in Python that simulate familiar physical phenomena.  Through 

these hands on projects and guided class discussions, students 

discover the mathematical principles that relate their program's 

iterative execution with the continuous processes that are being 

modeled. 

MPCT now principally uses image manipulation to strengthen 

mathematical intuition at the pre-calculus level, and to illustrate 

the modeling of physical processes.  Furthermore, we discovered 

that it is easier for students to focus on problem-solving and 

algorithm development using a minimal and mostly-imperative 

graphical library than Java's object-oriented AWT framework. 

MPCT has been incorporated into selected sections of a required 

first-semester "University Studies" program designed to 

strengthen academic skills and to provide career guidance.  

These sections offer an accessible introduction to programming 

and pre-calculus via Python-based modeling. The content 

includes some closed-form calculations for basic concepts such as 

slopes, accelerations, summations and parabolas.  MPCT 

supports the course's career guidance components by providing 

experiences representative of actual work in STEM disciplines. 
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Programming techniques in early courses should be chosen to 

minimize cognitive load while maximizing pedagogical value.  

The redirection of MPCT to introductory computation included a 

significant reevaluation of the programming interfaces used to 

support coursework.  The original programming interface used 

the rich object oriented (OO) Java AWT toolbox.  With this 

approach, even the design of extremely simple algorithms 

requires fairly complex access code before anything can be 

programmed.  Consequently, the conceptual content embedded 

within our introductory programming lessons were often 

overwhelmed by the mainly clerical task of managing the access 

and manipulation abstractions for pixels in Java. 

We developed the alternative shallow Raster class described in 

the upper row of Table 1. All pixel accesses explicitly specify 

row-column addresses. Thus, a pixel location is just a (row 

,column) pair of integers, and a pixel color is just a red-green-

blue triple.  Algorithms that visit all pixels in a rectangular 

region can be programmed by a pair of nested loops.  As reported 

in [5], students have little trouble understanding nested iteration 

in this context.   

The course begins with by presenting simple code that draws 

dots and lines.  Students adapt it to draw rectangles, triangles, 

trapezoids and parallelograms by the end of the second class. The 

lower row of Table 1 presents a program examined within the 

first two weeks of class that dramatically modifies a familiar 

cartoon image.  The example was selected to illustrate low-

overhead programming – the code does not even require a 

function definition.  

In order to facilitate projects that plot mathematical functions and 

leverage students‟ incoming knowledge, Raster‟s origin is 

located in the lower-left corner, and thus column-row addressing 

directly mimics x-y coordinates within the first quadrant of a 

Cartesian plane.   

In short, the simplifications in the necessary code allow the class 

to focus on the logic and the algorithms rather than object-

oriented hierarchies that provide abstractions ill suited to the 

problem being addressed.  Later projects require the plotting of 

functions with negative range that are (deliberately) inconvenient 

to be represented with Raster‟s origin, which is located in the 

image‟s lower-left corner.  MPCT pragmatically utilizes this 

inconvenience to motivate the introduction of a PosNegGraph 

class that extends Raster.   Both Raster and 

PosNegGraph are referenced by examples in this paper.  

The next section summarizes the curriculum, including example 

problems in the newly developed modules on mechanical 

resonance and coupling, and planned extensions of MPCT's 

pedagogical approach to other courses.  Finally, we report on our 

in-progress course evaluation and adaptations to the evaluation 

plan in response to MPCT‟s evolved focus.   

2. Topic Sequence  
Table 3 indicates the sequencing and approximate duration of 

each of MPCT‟s major educational themes.  After familiarizing 

students with iteration through generation of geometric shapes, 

MPCT proceeds to introduce if-statements and Boolean 

expressions in the context of modifying images.  Follow-up 

projects draw ensembles of lines and curves.  For students 

intending to study a STEM discipline, the course also includes 

the construction of simple programs that model ballistic and 

resonant systems.  Exercises mimic the familiar phenomenon of 

ball bounce and spring resonance, which are frequently poorly 

understood, even by students who have completed a semester of 

college physics [6].   

Table 1.  

Random-access Raster class 

Public interface 

of Raster   

Constructors 

 Raster((numCols, numRows)) 

 Raster((filename)) 

Accessors  

Origin is in lower-left corner 

Parameters & return values are tuples 

 r, g, b = getRGB((col, row)) 

 setRGB((col, row), (r, g, b)) 

Controls 

 autoRepaint 

true: redraw on every access 

 ignoreOutOfRange 

true: silently ignore out-of-range accesses 

Actions 

 write(filename) 

save to file 

 repaint() 

redraw now 

Program 

presented in early 

session that 

dramatically 

recolors a familiar 

cartoon image. 

url = “http:….jpg"  
p = Raster(url) 

green = (0, 255, 0) 

cols,rows =  p.widthHeight() 

 for col in range (cols): 
  for row in range (rows): 

     r,g,b = p.getRGB((x,y)) 

     if r<40 and g<40 and b<40: 

        p.setRGB((col,row), green) 

Table 2. 

PosNegGraph  

Public interface of  

PosNegGraph  

 

Extends 

Raster 

Constructor 

 PosNegGraph((numCols, range)) 

The y axis extends from +range to –range 
  

Public interface 

Same as Raster 

 only setRGB and getRGB are overloaded 

To ensure that students are not intimidated by unfamiliar 

mathematical abstractions, we prefer to first introduce evolving 

processes using the simplest-possible generators, and then to 

guide students into discovering algebraic simplifications they are 

fully prepared to understand.   

The topics sequence through increasingly complex computational 

themes where all of the physical modeling is based on rates of 

change or summations (as opposed to integration).  Table 4 

presents a characteristic exercise associated with each theme.  

For problems in mathematics and physics, we endeavor to 

minimize the level of outside knowledge required, and prefer 

show how processes evolve at an intuitive level and where 

incremental changes in the process state can be explained in 

physical and computational terms -- much like [7].   



Math-centric programming projects generally begin with an 

exploration of the effects of rates-of-change.  Afterwards, 

students are guided to reduce the already familiar summation 

problems (implicitly a recursive formulation) to closed form.   

Theme A:  Introduction to (graphical) programming.  In a 

manner analogous to an immersive language course, students 

begin to „converse‟ in Jython using only three statements to draw 

a multitude of geometric objects: 

 Raster(size) – Used to “construct” a computer image:  

 setRGB(pos, color) – Used to draw a dot: 

 for loops -  Used for iteration. 

Table 3.  

Course modules, themes, outcomes, and schedule 

Theme 

& Wk 

Major Course Module Outcomes 

A 

1-2 

First week / teaser 

 “Conversational” 

introduction to 

programming 

o Login, start IDE 

o Use looping to draw 

lines, boxes, triangles, 

parallelograms, etc  

 Can login to computer 

 Knows what a program is 

 Can run a program 

 Familiarity with variables, 

expressions, looping, drawing w/ 

Raster class 

 Ability to draw rectangles and other 

simple geometric forms 

B 

2-3 

If-statements, relational, and 

Boolean operators 

 Conditional re-coloring of 

images 

 RGB encoded as tuples 

 Familiarity w/ if-statements and 

Boolean expressions 

C 

4-8 

Generating lines w/ 

summation and object 

extension 

 Horiz, vert, slope,  y-

intercept 

 Relate summation to 

closed form (y=mx+b) 

 Examine translation, 

negative ranges and 

PosNegGraph object 

 Intuition that slope is a “rate of 

change.” 

 Functions and objects  

 – to reduce complexity 

 Intuition re. multiplication 

 Greater proficiency at programming 

D 

9 

Touch of OO: (classes) 

 Define & use 

PosNegGraph 

 Plot lines w/ neg range  

 Familiar w/ objects 

 Can plot fns w/ negative range 

E 

10- 

11 

Generating curves 

(parabolas) 

 Using summation 

 Relate to closed form 

 Intuition that curves have „slope that 

changes‟ 

 Knowledge: parabolas‟ slope 

changes linearly. 

 Familiarity w/ linear sums 

o Including  geometric proofs  

F 

12 

Ballistic motion (in vacuum) 

 Acceleration as change-of-

rate 

 Gravity as constant  

acceleration 

 Program that simulates 

bounce 

 Relationship to parabola 

 Intuition: physics models familiar 

phenomena 

 Familiarity:  

o Velocity as rate 

o Acceleration as rate of velocity 

change 

o Gravity as constant accel  

o Relationship to parabola 

G 

13-14 

Resonance 

 Idealized (linear) spring 

 Construct and run 

simulation 

o Plot position & velocity 

o Coupled resonance 

 Knowledge:  

o Generated by linear acceleration 

o Rate-of-change is sinusoidal 

o Frequency independent of 

amplitude 

Together, these commands allow students to: 

 Draw lines as a sequence of dots stacked in a row. 

 Draw boxes as a sequence of lines stacked in a column 

 Draw triangles, parallelograms, and trapezoids by deriving 

the inner loop‟s range from the outer loop‟s iteration 

variable. 

Table 4.  

Characteristic projects for each theme 

# Theme A – geometric shapes 

nCols, nRows = 100,100 

p = Raster((nCols, nRows)) 

for row in range(0, 30): 

 for col in range (0, row): 

  p.setRGB((row+20, col+20), white) 

 
# Themes C-D 

def drawLine(row=45, step=-1):  

  nCols, range = 100,50 

  i = PosNegRaster((nCols, range)) 

… 

  row = 45        # y-intercept 

  step = -2      # slope 

  for col in range(numCols): 

    i.setRGB((col, row), white) 

    i.setRGB((col, slope), green) 

    row += step 
 

def parabola():        # Theme E 

  … 

  row=45; slope=0 # initial params 

  rate = -.1      # acceleration 

  for col in range(numCols): 

    i.setRGB((col, row), white) 

    i.setRGB((col, slope), green) 

    row += slope 

    slope += rate  
def bounce():         # Theme  F 

  … 

  row=45; slope=0; rate = -0.2   

  decay = .8      # bounce  

  for col in range(numCols): 

    i.setRGB((col, row), green) 

    i.setRGB((col, slope), blue) 

    if (row <= 0 and slope < 0): 

      slope *= -decay # bounce! 

    row += slope 

    slope += rate 
 

                      # Theme G 

def harmonic(pos = 45, speed=0): 

 i = PostNegGraph() 

 springConst = 0.01 

 interval = 0.1; mass = 0.01 

 for x in range(i.width): 

   i.setRGB((x, pos), green) 

   i.setRGB((x, speed), blue) 

   force = -pos * springConst 

   accel = force / mass 

   speed += accel * interval 

   position += speed * interval 

 

Initial programming exercises are sufficiently short to be 

conveniently typed directly to the interpreter.  The first exercises 

contain no explicit arithmetic operations, which are gradually 

introduced to implement increasingly sophisticated computation.  

The difficulty of reliably typing more advanced programs 

motivates their storage within files.   

The overall program is designed to foster experimentation and to 

encourage students to review fundamental concepts in algebra 

and geometry in a way where motivated understanding leads to 

successful program-generated displays. 

Theme B: Control flow and Boolean expressions: The program 

presented at the bottom of Table 1, which is adapted from 

Guzdial‟s Media Programming course, introduces RGB 



encoding, relational operators, Boolean expressions, and if-

statements in the context of re-coloring images.  Students are 

very engaged by this project and enjoy manipulating images 

taken by their camera or discovered on the web.  

Theme C: Drawing lines.  Once students are familiar with 

Python‟s syntax and semantics, follow-up projects examine 

various approaches to drawing lines.  Early projects utilize only 

progressive generators such as drawLine.  Even this project is 

intended to review (or revitalize) such basic mathematical 

concepts as slope and y-intercept in a hands-on visceral way that 

is difficult to match with pencil and paper or a graphing 

calculator.  

Theme D Functions and Objects: Projects in this theme will 

plot multiple graphs with both positive and negative ranges.  The 

equivalence of progressive and standard “closed form” equations 

of lines are also discussed in class and reinforced with short 

programming assignments that draw parallel lines and 

manipulate the dynamic range of grayscale images.  User-defined 

functions and the PosNegGraph class are introduced as an 

approach to simplify the task of programming through 

modularization.  

Theme E: Examination and generation of curves. The main 

study concerns curves whose slope changes linearly as shown in 

the parabola in Table 3.  Projects in Theme E examine the effect 

of various initial conditions and rates of change including 

examples where the slope and rate have different and same signs.  

These are intended to provide students with intuitive 

understandings necessary to examine ballistic motion in Theme 

F.  Finally, the relationship between parabolas and quadratic 

functions are made concrete through geometric proofs such as 

depicted in Figure 1. 

Theme F: Ballistics.  In ballistic problems, objects are 

accelerated only by gravity.  Their trajectory is parabolic.  The 

slope of their trajectory with respect to time corresponds to 

velocity. The slope of their velocity with respect to time 

corresponds to acceleration.  The mapping of trajectories to 

parabolas is straightforward: slope corresponds to velocity, and 

the slope‟s constant rate of change maps to acceleration.  

Students first simulate a single “toss,” and then are challenged to 

simulate a bounce as an inelastic collision with the ground, 

where at each bounce, velocity is reduced by 20%.  This leads to 

an exponential decay in the maximum height achieved after each 

bounce.  The parabola program‟s overlaid plot of position and 

velocity illustrates both continuous and discontinuous evolution 

of physical parameters.   

 

 

Figure 1.   

Graphical depiction of linear sums in  

closed form as a quadratic function 

 

 

Figure 2 

Simulation of Coupled Resonance 

 

Theme G: Resonance.  MPCT completes with an example of 

coupled resonance illustrating the principle underlying an opera 

singers‟ wine-glass shattering trick and the catastrophic failure of 

the Tacoma Narrows bridge (see Figure 3) in 1940 and the 

crashes of several Lockheed Electras around 1960.   

Figure 2 illustrates the result of an advanced project that 

examines coupling when both the oscillator and resonator are 

tuned to the same frequency.  Like the catastrophic failures 

enumerated above, this resonator quickly accumulates energy 

from the oscillator.   

3. Extensions to other courses 
A new introductory course in computational science intended for 

upper-division students of STEM disciplines that traditionally do 

not include computation such as biology, geology, finance, and 

math is planned for the Spring of 2010.  This course will 

introduce programming using examples from MPCT, and then 

will proceed to implement simulations modeling more dynamic 

systems in which a sudden action could change the “normal” or 

expected behavior such as production-consumer markets, 

investment valuation, predator-prey models, and biological 

processes.   

We are also adapting this approach of motivating math from 

concrete problems to the teaching of algorithms. There, the 

objective is to use specific problems as a vehicle for teaching 

algorithms as general methods that can be adapted to solve 

related problems of interest.  We find that by teaching 

algorithmic schemas to solve “purified” problems, students can 

follow the reasoning far more easily and can sometimes develop 

the computational idea themselves.  As in MPCT, the layered 

elaborations are introduced step-by-step to solve increasingly 

complex problems as described in [9]. 

 

Figure 3  

The Tacoma Narrows Bridge [8] 



4. Evaluation 
More than half of the students entering UTEP intending to study 

CS are not “calculus ready,” as required for CS1.  First-attempt 

pass rates for CS-1 range from 50 to 70%, which surely 

contributes both to student time-to-graduation and attrition.  

Thus the need for intervention is clear.  During the development 

of MPCT, several variants of Media Programming were offered 

at UTEP.  In all versions, almost all students demonstrated 

proficiency at basic programming concepts and passed.   

UTEP is a member of the Computing Alliance of Hispanic 

Institutions (CAHSI), which is evaluating various CS-zero 

courses offered at multiple institutions serving predominantly 

Hispanic populations of students.  These evaluations include 

intermittent classroom observations and both pre- and post-

course surveys examining preparation, social context, student 

engagement with the course, interest in further study of 

computation, and success in subsequent coursework.   

In their 2008 report, the CAHSI evaluator measured high levels 

of both interest and confidence [10] among entering students 

prior to attending the course, though less than 20% had 

previously programmed.  Post-course surveys of students 

attending the precursor courses indicate that 25% of the students 

were not motivated to continue studies related to computer 

science. This is likely a positive result if the course helped 

students correct unrealistic expectations about computer science 

early in their academic careers.  

Students who attended a variety of CS-0s (including Media 

Programming at UTEP and Alice at other institutions) had 

similar passing rates that were similar to the general population.  

The mathematically-oriented revisions to MPCT have required 

several semesters of development and have only recently been 

implemented – hence no longitudinal data is available yet.   

During the Spring 2009 term, the evaluation was broadened to 

include instruments that examine changes in interest, self-

efficacy and competence related to mathematics.  Several open-

ended essay questions were included in order to guide the 

selection of relevant questions for the intended Fall evaluation.   

Our longitudinal evaluation will be broadened to also compare 

the academic success of students in subsequent math courses 

with the academic success of students who do not attend MPCT.  

Entering STEM students attended MPCT during the Fall 

semester of 2008, and non-STEM students attended distinct 

sections during both the Fall and Spring semesters.  The 

mathematics included in the section was first offered Spring 

2009, and therefore was only attended by non-STEM students.  A 

post-course survey of the Spring 2009 non-STEM cohort 

examined changes in (1) perceptions of knowledge and 

understandings of key concepts, (2) perceptions of mathematics‟ 

relevance to „real life‟ scenarios, and (3) attitudes toward 

learning math concepts in the context of programming.  

As described in [11], the preliminary findings from the non-

STEM section are encouraging.  Although the sample size was 

too small to draw reliable conclusions, they reflect the 

instructors‟ observations of student motivation and engagement. 

Survey results indicate shifts from low level to higher levels of 

understanding math concepts introduced in MPCT, positive 

attitude toward MPCT structure and its intended objectives, and 

highly favorable perceptions of MPCT‟s relevance to real-life 

applications.  We expect statistically reliable results from the 

Fall 2009 cohort, which  is much larger, containing more than 

sixty pre-STEM and twenty non-STEM students. 

5. Conclusion 
Continuing evaluation of introductory programming offerings at 

UTEP targeting pre-STEM students have motivated evolutions in 

curriculum, course objectives, and evaluation strategies.  

Interestingly, the resulting course, MPCT, which engages 

students in a “computational reasoning,” integrates both 

programming and mathematics, is engaging to both pre-STEM 

and non-STEM students with weak math skills.  Results from 

early evaluation efforts are encouraging and have lead to 

refinements in evaluation strategy that mirror the course‟s 

evolution. 
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