
MPCT – Media Propelled Computational Thinking
Eric Freudenthal, Mary K. Roy, Alexandria Ogrey, and Tanja Magoc

University of Texas at El Paso

500 W. University Ave

El Paso, Texas, 79968

915-747-6954

{efreudenthal, mkroy, tmagoc}@utep.edu, anogrey@miners.utep.edu

Alan Siegel

New York University

251 Mercer Street

New York, NY, 10012

212-998-3122

siegel@cs.nyu.edu

ABSTRACT

Media-Propelled Computational Thinking (MPCT – pronounced

impact) is a course designed to introduce programming in the

context of engaging problems in media computation, math, and

physics. Programming concepts are introduced as incremental

steps needed to solve pragmatic problems students already

understand. The problems, graphical API, and hands-on program

features are intended to expose fundamental concepts in

mathematics and quantitative science.

MPCT is offered in an entering students program for freshmen

who plan to specialize in a variety of STEM (science,

technology, engineering and math) and non-STEM subjects. The

curriculum is intended to strengthen student intuition and

interest in mathematical modeling and programming by engaging

students in the direct manipulation of simple mathematical

systems that model and display familiar physical phenomena.

MPCT uses programs as concrete and manipulatable examples of

fundamental concepts to engage a diverse range of students

including women and underrepresented minorities.

Variants of MPCT are being developed for high schools, and as a

means to introduce computational science to upper division

undergraduates studying non-computational STEM disciplines.

This paper provides an overview of MPCT and representative

problem studies including models of ballistics and resonant

systems. The evaluation plan is described and very preliminary

results are presented.

Categories and Subject Descriptors

 K.3.2 Computer and Information Science Education –

curriculum, computer science education

General Terms

Algorithms, Design.

Keywords

First year programs, computational thinking, CS-Zero

1. Introduction
At the University of Texas at El Paso (UTEP), many entering

students must spend two-to-three semesters in remedial math

courses prior to becoming calculus ready and able to enroll in

their first computer science course (CS-1). The attrition rate in

these remedial courses is high. Even after this preparation, only

half of the students remaining in the program pass CS-1 on their

first attempt.

In the Fall of 2007, MPCT was introduced in an effort to reduce

attrition among students who lack the prerequisites for CS-1, and

to maintain student interest in the subject. The first version was

based on Mark Guzdial's Media Programming [1] because it had

documented success in engaging students with weak math skills

[2]. However, Media Programming is designed for students in

Liberal Arts programs, and focuses on aesthetic -- rather than

engineering -- creativity. Our course reviews were consistent

with observations by Guzdial at other institutions [3]: students

enrolled in pre-engineering and other pre-professional programs

(e.g. nursing) enjoyed learning how programs worked, but were

generally not engaged by the aesthetically focused projects that

dominate the Media Programming curriculum [4].

Consequently, we were forced to rethink our course objectives.

Following Guzdial's lead, we realized that programming should

not be taught for its own sake. In response, we designed a

curriculum where students construct simple graphical programs

in Python that simulate familiar physical phenomena. Through

these hands on projects and guided class discussions, students

discover the mathematical principles that relate their program's

iterative execution with the continuous processes that are being

modeled.

MPCT now principally uses image manipulation to strengthen

mathematical intuition at the pre-calculus level, and to illustrate

the modeling of physical processes. Furthermore, we discovered

that it is easier for students to focus on problem-solving and

algorithm development using a minimal and mostly-imperative

graphical library than Java's object-oriented AWT framework.

MPCT has been incorporated into selected sections of a required

first-semester "University Studies" program designed to

strengthen academic skills and to provide career guidance.

These sections offer an accessible introduction to programming

and pre-calculus via Python-based modeling. The content

includes some closed-form calculations for basic concepts such as

slopes, accelerations, summations and parabolas. MPCT

supports the course's career guidance components by providing

experiences representative of actual work in STEM disciplines.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SIGCSE’10, March 10–13, 2010, Milwaukee, Wisconsin, USA.

Copyright 2010 ACM 978-1-60558-885-8/10/03...$10.00.

mailto:efreudenthal@utep.edu
mailto:mkroy@utep.edu
mailto:tmagoc@utep.edu
mailto:anogrey@miners.utep.edu
mailto:siegel@cs.nyu.edu

Programming techniques in early courses should be chosen to

minimize cognitive load while maximizing pedagogical value.

The redirection of MPCT to introductory computation included a

significant reevaluation of the programming interfaces used to

support coursework. The original programming interface used

the rich object oriented (OO) Java AWT toolbox. With this

approach, even the design of extremely simple algorithms

requires fairly complex access code before anything can be

programmed. Consequently, the conceptual content embedded

within our introductory programming lessons were often

overwhelmed by the mainly clerical task of managing the access

and manipulation abstractions for pixels in Java.

We developed the alternative shallow Raster class described in

the upper row of Table 1. All pixel accesses explicitly specify

row-column addresses. Thus, a pixel location is just a (row

,column) pair of integers, and a pixel color is just a red-green-

blue triple. Algorithms that visit all pixels in a rectangular

region can be programmed by a pair of nested loops. As reported

in [5], students have little trouble understanding nested iteration

in this context.

The course begins with by presenting simple code that draws

dots and lines. Students adapt it to draw rectangles, triangles,

trapezoids and parallelograms by the end of the second class. The

lower row of Table 1 presents a program examined within the

first two weeks of class that dramatically modifies a familiar

cartoon image. The example was selected to illustrate low-

overhead programming – the code does not even require a

function definition.

In order to facilitate projects that plot mathematical functions and

leverage students‟ incoming knowledge, Raster‟s origin is

located in the lower-left corner, and thus column-row addressing

directly mimics x-y coordinates within the first quadrant of a

Cartesian plane.

In short, the simplifications in the necessary code allow the class

to focus on the logic and the algorithms rather than object-

oriented hierarchies that provide abstractions ill suited to the

problem being addressed. Later projects require the plotting of

functions with negative range that are (deliberately) inconvenient

to be represented with Raster‟s origin, which is located in the

image‟s lower-left corner. MPCT pragmatically utilizes this

inconvenience to motivate the introduction of a PosNegGraph

class that extends Raster. Both Raster and

PosNegGraph are referenced by examples in this paper.

The next section summarizes the curriculum, including example

problems in the newly developed modules on mechanical

resonance and coupling, and planned extensions of MPCT's

pedagogical approach to other courses. Finally, we report on our

in-progress course evaluation and adaptations to the evaluation

plan in response to MPCT‟s evolved focus.

2. Topic Sequence
Table 3 indicates the sequencing and approximate duration of

each of MPCT‟s major educational themes. After familiarizing

students with iteration through generation of geometric shapes,

MPCT proceeds to introduce if-statements and Boolean

expressions in the context of modifying images. Follow-up

projects draw ensembles of lines and curves. For students

intending to study a STEM discipline, the course also includes

the construction of simple programs that model ballistic and

resonant systems. Exercises mimic the familiar phenomenon of

ball bounce and spring resonance, which are frequently poorly

understood, even by students who have completed a semester of

college physics [6].

Table 1.

Random-access Raster class

Public interface

of Raster

Constructors

 Raster((numCols, numRows))

 Raster((filename))

Accessors

Origin is in lower-left corner

Parameters & return values are tuples

 r, g, b = getRGB((col, row))

 setRGB((col, row), (r, g, b))

Controls

 autoRepaint

true: redraw on every access

 ignoreOutOfRange

true: silently ignore out-of-range accesses

Actions

 write(filename)

save to file

 repaint()

redraw now

Program

presented in early

session that

dramatically

recolors a familiar

cartoon image.

url = “http:….jpg"
p = Raster(url)

green = (0, 255, 0)

cols,rows = p.widthHeight()

 for col in range (cols):
 for row in range (rows):

 r,g,b = p.getRGB((x,y))

 if r<40 and g<40 and b<40:

 p.setRGB((col,row), green)

Table 2.

PosNegGraph

Public interface of

PosNegGraph

Extends

Raster

Constructor

 PosNegGraph((numCols, range))

The y axis extends from +range to –range

Public interface

Same as Raster

 only setRGB and getRGB are overloaded

To ensure that students are not intimidated by unfamiliar

mathematical abstractions, we prefer to first introduce evolving

processes using the simplest-possible generators, and then to

guide students into discovering algebraic simplifications they are

fully prepared to understand.

The topics sequence through increasingly complex computational

themes where all of the physical modeling is based on rates of

change or summations (as opposed to integration). Table 4

presents a characteristic exercise associated with each theme.

For problems in mathematics and physics, we endeavor to

minimize the level of outside knowledge required, and prefer

show how processes evolve at an intuitive level and where

incremental changes in the process state can be explained in

physical and computational terms -- much like [7].

Math-centric programming projects generally begin with an

exploration of the effects of rates-of-change. Afterwards,

students are guided to reduce the already familiar summation

problems (implicitly a recursive formulation) to closed form.

Theme A: Introduction to (graphical) programming. In a

manner analogous to an immersive language course, students

begin to „converse‟ in Jython using only three statements to draw

a multitude of geometric objects:

 Raster(size) – Used to “construct” a computer image:

 setRGB(pos, color) – Used to draw a dot:

 for loops - Used for iteration.

Table 3.

Course modules, themes, outcomes, and schedule

Theme

& Wk

Major Course Module Outcomes

A

1-2

First week / teaser

 “Conversational”

introduction to

programming

o Login, start IDE

o Use looping to draw

lines, boxes, triangles,

parallelograms, etc

 Can login to computer

 Knows what a program is

 Can run a program

 Familiarity with variables,

expressions, looping, drawing w/

Raster class

 Ability to draw rectangles and other

simple geometric forms

B

2-3

If-statements, relational, and

Boolean operators

 Conditional re-coloring of

images

 RGB encoded as tuples

 Familiarity w/ if-statements and

Boolean expressions

C

4-8

Generating lines w/

summation and object

extension

 Horiz, vert, slope, y-

intercept

 Relate summation to

closed form (y=mx+b)

 Examine translation,

negative ranges and

PosNegGraph object

 Intuition that slope is a “rate of

change.”

 Functions and objects

 – to reduce complexity

 Intuition re. multiplication

 Greater proficiency at programming

D

9

Touch of OO: (classes)

 Define & use

PosNegGraph

 Plot lines w/ neg range

 Familiar w/ objects

 Can plot fns w/ negative range

E

10-

11

Generating curves

(parabolas)

 Using summation

 Relate to closed form

 Intuition that curves have „slope that

changes‟

 Knowledge: parabolas‟ slope

changes linearly.

 Familiarity w/ linear sums

o Including geometric proofs

F

12

Ballistic motion (in vacuum)

 Acceleration as change-of-

rate

 Gravity as constant

acceleration

 Program that simulates

bounce

 Relationship to parabola

 Intuition: physics models familiar

phenomena

 Familiarity:

o Velocity as rate

o Acceleration as rate of velocity

change

o Gravity as constant accel

o Relationship to parabola

G

13-14

Resonance

 Idealized (linear) spring

 Construct and run

simulation

o Plot position & velocity

o Coupled resonance

 Knowledge:

o Generated by linear acceleration

o Rate-of-change is sinusoidal

o Frequency independent of

amplitude

Together, these commands allow students to:

 Draw lines as a sequence of dots stacked in a row.

 Draw boxes as a sequence of lines stacked in a column

 Draw triangles, parallelograms, and trapezoids by deriving

the inner loop‟s range from the outer loop‟s iteration

variable.

Table 4.

Characteristic projects for each theme

Theme A – geometric shapes

nCols, nRows = 100,100

p = Raster((nCols, nRows))

for row in range(0, 30):

 for col in range (0, row):

 p.setRGB((row+20, col+20), white)

Themes C-D

def drawLine(row=45, step=-1):

 nCols, range = 100,50

 i = PosNegRaster((nCols, range))

…

 row = 45 # y-intercept

 step = -2 # slope

 for col in range(numCols):

 i.setRGB((col, row), white)

 i.setRGB((col, slope), green)

 row += step

def parabola(): # Theme E

 …

 row=45; slope=0 # initial params

 rate = -.1 # acceleration

 for col in range(numCols):

 i.setRGB((col, row), white)

 i.setRGB((col, slope), green)

 row += slope

 slope += rate
def bounce(): # Theme F

 …

 row=45; slope=0; rate = -0.2

 decay = .8 # bounce

 for col in range(numCols):

 i.setRGB((col, row), green)

 i.setRGB((col, slope), blue)

 if (row <= 0 and slope < 0):

 slope *= -decay # bounce!

 row += slope

 slope += rate

 # Theme G

def harmonic(pos = 45, speed=0):

 i = PostNegGraph()

 springConst = 0.01

 interval = 0.1; mass = 0.01

 for x in range(i.width):

 i.setRGB((x, pos), green)

 i.setRGB((x, speed), blue)

 force = -pos * springConst

 accel = force / mass

 speed += accel * interval

 position += speed * interval

Initial programming exercises are sufficiently short to be

conveniently typed directly to the interpreter. The first exercises

contain no explicit arithmetic operations, which are gradually

introduced to implement increasingly sophisticated computation.

The difficulty of reliably typing more advanced programs

motivates their storage within files.

The overall program is designed to foster experimentation and to

encourage students to review fundamental concepts in algebra

and geometry in a way where motivated understanding leads to

successful program-generated displays.

Theme B: Control flow and Boolean expressions: The program

presented at the bottom of Table 1, which is adapted from

Guzdial‟s Media Programming course, introduces RGB

encoding, relational operators, Boolean expressions, and if-

statements in the context of re-coloring images. Students are

very engaged by this project and enjoy manipulating images

taken by their camera or discovered on the web.

Theme C: Drawing lines. Once students are familiar with

Python‟s syntax and semantics, follow-up projects examine

various approaches to drawing lines. Early projects utilize only

progressive generators such as drawLine. Even this project is

intended to review (or revitalize) such basic mathematical

concepts as slope and y-intercept in a hands-on visceral way that

is difficult to match with pencil and paper or a graphing

calculator.

Theme D Functions and Objects: Projects in this theme will

plot multiple graphs with both positive and negative ranges. The

equivalence of progressive and standard “closed form” equations

of lines are also discussed in class and reinforced with short

programming assignments that draw parallel lines and

manipulate the dynamic range of grayscale images. User-defined

functions and the PosNegGraph class are introduced as an

approach to simplify the task of programming through

modularization.

Theme E: Examination and generation of curves. The main

study concerns curves whose slope changes linearly as shown in

the parabola in Table 3. Projects in Theme E examine the effect

of various initial conditions and rates of change including

examples where the slope and rate have different and same signs.

These are intended to provide students with intuitive

understandings necessary to examine ballistic motion in Theme

F. Finally, the relationship between parabolas and quadratic

functions are made concrete through geometric proofs such as

depicted in Figure 1.

Theme F: Ballistics. In ballistic problems, objects are

accelerated only by gravity. Their trajectory is parabolic. The

slope of their trajectory with respect to time corresponds to

velocity. The slope of their velocity with respect to time

corresponds to acceleration. The mapping of trajectories to

parabolas is straightforward: slope corresponds to velocity, and

the slope‟s constant rate of change maps to acceleration.

Students first simulate a single “toss,” and then are challenged to

simulate a bounce as an inelastic collision with the ground,

where at each bounce, velocity is reduced by 20%. This leads to

an exponential decay in the maximum height achieved after each

bounce. The parabola program‟s overlaid plot of position and

velocity illustrates both continuous and discontinuous evolution

of physical parameters.

Figure 1.

Graphical depiction of linear sums in

closed form as a quadratic function

Figure 2

Simulation of Coupled Resonance

Theme G: Resonance. MPCT completes with an example of

coupled resonance illustrating the principle underlying an opera

singers‟ wine-glass shattering trick and the catastrophic failure of

the Tacoma Narrows bridge (see Figure 3) in 1940 and the

crashes of several Lockheed Electras around 1960.

Figure 2 illustrates the result of an advanced project that

examines coupling when both the oscillator and resonator are

tuned to the same frequency. Like the catastrophic failures

enumerated above, this resonator quickly accumulates energy

from the oscillator.

3. Extensions to other courses
A new introductory course in computational science intended for

upper-division students of STEM disciplines that traditionally do

not include computation such as biology, geology, finance, and

math is planned for the Spring of 2010. This course will

introduce programming using examples from MPCT, and then

will proceed to implement simulations modeling more dynamic

systems in which a sudden action could change the “normal” or

expected behavior such as production-consumer markets,

investment valuation, predator-prey models, and biological

processes.

We are also adapting this approach of motivating math from

concrete problems to the teaching of algorithms. There, the

objective is to use specific problems as a vehicle for teaching

algorithms as general methods that can be adapted to solve

related problems of interest. We find that by teaching

algorithmic schemas to solve “purified” problems, students can

follow the reasoning far more easily and can sometimes develop

the computational idea themselves. As in MPCT, the layered

elaborations are introduced step-by-step to solve increasingly

complex problems as described in [9].

Figure 3

The Tacoma Narrows Bridge [8]

4. Evaluation
More than half of the students entering UTEP intending to study

CS are not “calculus ready,” as required for CS1. First-attempt

pass rates for CS-1 range from 50 to 70%, which surely

contributes both to student time-to-graduation and attrition.

Thus the need for intervention is clear. During the development

of MPCT, several variants of Media Programming were offered

at UTEP. In all versions, almost all students demonstrated

proficiency at basic programming concepts and passed.

UTEP is a member of the Computing Alliance of Hispanic

Institutions (CAHSI), which is evaluating various CS-zero

courses offered at multiple institutions serving predominantly

Hispanic populations of students. These evaluations include

intermittent classroom observations and both pre- and post-

course surveys examining preparation, social context, student

engagement with the course, interest in further study of

computation, and success in subsequent coursework.

In their 2008 report, the CAHSI evaluator measured high levels

of both interest and confidence [10] among entering students

prior to attending the course, though less than 20% had

previously programmed. Post-course surveys of students

attending the precursor courses indicate that 25% of the students

were not motivated to continue studies related to computer

science. This is likely a positive result if the course helped

students correct unrealistic expectations about computer science

early in their academic careers.

Students who attended a variety of CS-0s (including Media

Programming at UTEP and Alice at other institutions) had

similar passing rates that were similar to the general population.

The mathematically-oriented revisions to MPCT have required

several semesters of development and have only recently been

implemented – hence no longitudinal data is available yet.

During the Spring 2009 term, the evaluation was broadened to

include instruments that examine changes in interest, self-

efficacy and competence related to mathematics. Several open-

ended essay questions were included in order to guide the

selection of relevant questions for the intended Fall evaluation.

Our longitudinal evaluation will be broadened to also compare

the academic success of students in subsequent math courses

with the academic success of students who do not attend MPCT.

Entering STEM students attended MPCT during the Fall

semester of 2008, and non-STEM students attended distinct

sections during both the Fall and Spring semesters. The

mathematics included in the section was first offered Spring

2009, and therefore was only attended by non-STEM students. A

post-course survey of the Spring 2009 non-STEM cohort

examined changes in (1) perceptions of knowledge and

understandings of key concepts, (2) perceptions of mathematics‟

relevance to „real life‟ scenarios, and (3) attitudes toward

learning math concepts in the context of programming.

As described in [11], the preliminary findings from the non-

STEM section are encouraging. Although the sample size was

too small to draw reliable conclusions, they reflect the

instructors‟ observations of student motivation and engagement.

Survey results indicate shifts from low level to higher levels of

understanding math concepts introduced in MPCT, positive

attitude toward MPCT structure and its intended objectives, and

highly favorable perceptions of MPCT‟s relevance to real-life

applications. We expect statistically reliable results from the

Fall 2009 cohort, which is much larger, containing more than

sixty pre-STEM and twenty non-STEM students.

5. Conclusion
Continuing evaluation of introductory programming offerings at

UTEP targeting pre-STEM students have motivated evolutions in

curriculum, course objectives, and evaluation strategies.

Interestingly, the resulting course, MPCT, which engages

students in a “computational reasoning,” integrates both

programming and mathematics, is engaging to both pre-STEM

and non-STEM students with weak math skills. Results from

early evaluation efforts are encouraging and have lead to

refinements in evaluation strategy that mirror the course‟s

evolution.

6. Acknowledgement
This report is based on work supported by the National Science

Foundation through grants CNS-0540592, IIS-0829683, and

DUE-0717877. Any opinions, findings, and conclusions or

recommendations expressed in the paper are those of the authors

and do not necessarily reflect the views of the NSF.

7. References
 [1] Guzdial, Computing and Programming with Python, a Multimedia

Approach, Prentice Hall, 2006.

[2] Guzdial, Design Process for a Non-Majors Computing Course,

Proc.36th ACM Technical Symposium on Computer Science Education

(SIGCSE), ACM, 2005.

 [3] Guzdial, Narrating Data Structures: The Role of Context in CS2, The

Journal of Educational Resources in Computing (JERIC), ACM, 2008.

[4] Freudenthal,, Roy, Ogrey, Terrell, Kosheleva, Gonzalez, and Gates,

Work in progress – Initial evaluation of an introductory course in

programming that assists in career choices, Proc. FIE, 2008.

[5] Freudenthal, Roy, Ogrey, Gates, A Creatively Engaging Introductory

Course in Computer Science that Gently Motivates Exploration of

Mathematical Concepts, Proc. ASEE, 2009

[6] Hestenes, Wells, and Swackhamer, Force Concept Inventory, The

Physics Teacher, Vol. 30, March 1992, pp 141-158.

[7] Kalman, Elementary Mathematical Models, Mathematical Association

of America (Press), 1997.

[8] Prelinger archive photo released to the public domain

http://www.archive.org/details/prelinger

[9] Siegel and Freudenthal, Experiments in teaching an engaging and

demystifying introduction to algorithms: Installment 1: Huffman Codes,

UTEP Computer Science Technical Report UTEP-CS-09-12, April

2009.

[10] Thiry, Barker, and Hug, CAHSI Evaluation Progress Report, The

Computing Alliance for Hispanic Serving Institutions, 2009,

http://cahsi.cs.utep.edu/Portals/0/2008InterimEvaluationReport.pdf

[11] Suskavcevic, Kosheleva, Gates, and Freudenthal, Preliminary

Assessment of Attitudes towards Mathematics for a Non-STEM Section

of Computational Computer Science Zero, UTEP CS Technical Report

UTEP-CS-09-13, May 2009.

http://cahsi.cs.utep.edu/Portals/0/2008InterimEvaluationReport.pdf

	Introduction
	Topic Sequence
	Extensions to other courses
	Evaluation
	Conclusion
	Acknowledgement
	References

