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Preface

In 2008, the Computer and Information Science and Engineer-
ing Directorate of the National Science Foundation asked the National 
Research Council (NRC) to conduct two workshops to explore the nature 
of computational thinking and its cognitive and educational implications. 
The first workshop focused on the scope and nature of computational 
thinking and on articulating what “computational thinking for everyone” 
might mean. A report of that workshop was released in January 2010.1 
Drawing in part on the proceedings of that workshop, the present report 
summarizes the second workshop, which was held February 4-5, 2010, in 
Washington, D.C., and focused on pedagogical considerations for com-
putational thinking. 

Although this document was prepared by the Committee for the 
Workshops on Computational Thinking based on workshop presenta-
tions and discussions, it does not reflect consensus views of the commit-
tee. Under NRC guidelines for conducting workshops and developing 
workshop report summaries, workshop activities do not seek consensus 
and workshop reports (such as the present volume) cannot be said to 
represent “an NRC view” on the subject at hand. As with the first work-
shop, this second workshop revealed a plethora of perspectives on ways 
to approach pedagogy for computational thinking. The two workshops, 

1  National Research Council, 2010, Report of a Workshop on the Scope and Nature of Computa-
tional Thinking, Washington, D.C.: The National Academies Press. Available at http://www.
nap.edu/catalog.php?record_id=12840. Last accessed February 7, 2011.
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taken together, call attention to the diversity of views on many aspects 
of computational thinking as well as its definition, and it is the hope of 
the committee that the present report, which contains a digest of both 
presentations and discussion, will serve as a vehicle that increases com-
munication on the topic across the community.

The full workshop agenda is provided in Appendix A, and short biog-
raphies of the workshop participants are given in Appendix B. 

Marcia C. Linn, Chair
Committee for the Workshops on Computational Thinking
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1

Introduction

1.1  SCOPE AND APPROACH OF THIS REPORT

This report summarizes the second of two workshops on computa-
tional thinking, which was held February 4-5, 2010, in Washington, D.C., 
under the auspices of the National Research Council’s (NRC’s) Committee 
for the Workshops on Computational Thinking.1 This second workshop 
was structured to gather pedagogical inputs and insights from educators 
who have addressed computational thinking in their work with K-12 
teachers and students.

Questions posed to participants in the second workshop included the 
following:

 
•	 What are the relevant lessons learned and best practices for improv-

ing computational thinking in K-12 education? 
•	 What are some examples of computational thinking and how, if at 

all, does computational thinking vary by discipline at the K-12 level? 
•	 What exposures and experiences contribute to developing compu-

tational thinking in the disciplines? What are some innovative environ-
ments for teaching computational thinking? 

1  The first workshop, held February 19-20, 2009, is summarized in National Research 
Council, 2010, Report of a Workshop on the Scope and Nature of Computational Thinking, Wash-
ington, D.C.: The National Academies Press. Available at http://www.nap.edu/catalog.
php?record_id=12840. Last accessed February 7, 2011.
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•	 Is there a progression of computational thinking concepts in K-12 
education? What are some criteria by which to order such a progression? 

•	 How should professional development efforts and classroom sup-
port be adapted to the varying experience levels of teachers such as 
pre-service, inducted, and in-service levels? What tools are available to 
support teachers as they teach computational thinking?

•	 How does computational thinking education connect with other 
subjects? Should computational thinking be integrated in other subjects 
taught in the classroom? 

•	 How can learning of computational thinking be assessed? How 
should we measure the success of efforts to teach computational thinking? 

This workshop was structured to illuminate different approaches to 
the teaching of computational thinking. Participants often clarified their 
own interpretations of computational thinking in relation to the discus-
sion in the first workshop report. 

To improve readability and to promote understanding, background 
material on some of the topics and ideas raised is interspersed in this 
workshop report. This workshop report also includes some of the material 
discussed in the first workshop that related to pedagogy and how best to 
expose students to the ideas of computational thinking but that was not 
addressed in the first workshop report.

The second workshop was deliberately organized to include indi-
viduals with a broad range of perspectives. For this reason and because 
some of the discussion amounted to brainstorming, this workshop sum-
mary may contain internal inconsistencies that reflect the wide range of 
views offered by workshop participants. In keeping with its purpose of 
exploring the topic, this workshop summary does not contain findings or 
recommendations.

The reader is cautioned that the workshop was not intended to result 
in a consensus regarding the scope and nature of computational thinking. 
As was true in the first workshop, participants in the second workshop 
expressed a host of different views about the scope and nature of compu-
tational thinking. As stated in the first report:

Even though workshop participants generally did not explicitly disagree 
with views of computational thinking that were not identical to their 
own, almost every participant held his or her own perspective on com-
putational thinking that placed greater emphasis on particular aspects or 
characteristics of importance to that individual.2 

2  National Research Council, 2010, Report of a Workshop on the Scope and Nature of Computa-
tional Thinking, Washington, D.C.: The National Academies Press, p. 59. Available at http://
www.nap.edu/catalog.php?record_id=12840. Last accessed February 7, 2011.
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The first report raised the possibility that given this variation in indi-
vidual perspectives, one possibility concerning the structure of computa-
tional thinking is that computational thinking should be regarded simply 
as “the union of these different views—a laundry list of different char-
acteristics” (p. 59). Noting that most participants in the first workshop 
would have found this view deeply unsatisfying, the first report pointed 
out the value of addressing a number of questions that emerged from the 
first workshop, including the following:

•	 What is the core of computational thinking? 
•	 What are the elements of computational thinking?
•	 �What is the sequence or trajectory of development of computa-

tional thinking?
•	 Does computational thinking vary by discipline?

Similar questions regarding the structure and content of computa-
tional thinking were raised in the second workshop as well. For exam-
ple, Joyce Malyn-Smith of the Education Development Center, Inc., said 
that adopting a consistent definition of computational thinking is nec-
essary because people see computational thinking through only their 
own lenses—and efforts to advocate for computational thinking in the 
curriculum will not be credible in the absence of a consensus about its 
structure and content. Al Aho from Columbia University acknowledged 
the community’s need for a common definition of computational think-
ing, which was inherently difficult given the rapidly changing world to 
which computational thinking is often applied. Any static definition of 
computational thinking likely would be obsolete 10 or 20 years from now, 
he argued, and thus, “The real challenge for the entire community is to 
define computational thinking and also to keep it current.”

Recognizing that there is no easy-to-summarize definition of com-
putational thinking, the first report noted the view of many computer 
scientists that computational thinking is a fundamental analytical skill 
that “everyone, not just computer scientists, can use to help solve prob-
lems, design systems, and understand human behavior. [As such,] com-
putational thinking is comparable . . . to the mathematical, linguistic, and 
logical reasoning . . . taught to all children” (p. 3).

The first report also noted that as usually construed, computational 
thinking includes “a broad range of mental tools and concepts from com-
puter science that help people solve problems, design systems, under-
stand human behavior, and engage computers to assist in automating a 
wide range of intellectual processes” (p. 3). The report went on to say that

Computational thinking might include reformulation of difficult prob-
lems by reduction and transformation; approximate solutions; paral-
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lel processing; type checking and model checking as generalizations of 
dimensional analysis; problem abstraction and decomposition; problem 
representation; modularization; error prevention, testing, debugging, 
recovery, and correction; damage containment; simulation; heuristic 
reasoning; planning, learning, and scheduling in the presence of un-
certainty; search strategies; analysis of the computational complexity of 
algorithms and processes; and balancing computational costs against 
other design criteria. Concepts from computer science such as algorithm, 
process, state machine, task specification, formal correctness of solu-
tions, machine learning, recursion, pipelining, and optimization also find 
broad applicability. (p. 3) 

Participants in the first workshop discussed computational thinking 
as a range of concepts, applications, tools, and skill sets; as a language 
for expression; as the automation of abstractions; and as a cognitive tool. 
They further commented on how it is related to thinking skills and habits 
of mind associated with mathematics and engineering, and how various 
aspects of computational thinking (problem solving/debugging, testing, 
data mining and information retrieval, concurrency and parallelism, and 
modeling) are applicable to various disciplines. Many of these ideas were 
reflected in the second workshop as well.

1.2  MOTIVATING AN EXAMINATION OF PEDAGOGY

Participants in the first workshop offered a number of reasons for pro-
mulgating computational thinking skills broadly in the K-12 curriculum. 
These included succeeding in a technological society, increasing interest in 
the information technology professions, maintaining and enhancing U.S. 
economic competitiveness, supporting inquiry in other disciplines, and 
enabling personal empowerment. 

To launch the second workshop, Jeannette Wing, then assistant direc-
tor of NSF’s Computer and Information Science and Engineering Direc-
torate, discussed her goal for a workshop on pedagogy. She argued that 
an application of the science of learning research in designing grade- 
and age-appropriate curricula for computational thinking is necessary to 
maximize its impact on and significance for K-12 students.

Wing pointed to mathematics as a field that has been successful in 
developing learning progressions that have a solid foundation in research 
on the human brain and how it learns mathematical concepts. She noted 
that humans have an innate understanding of relative quantities—they 
have the ability in many situations to distinguish between larger and 
smaller quantities at a very early age. This level of recognition suggests 
that mathematical activities involving concepts of “greater than” and “less 
than” might be appropriate for very young students. Symbolic representa-
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tions require different kinds of mental processing, and such processing is 
usually not possible until later in development, suggesting that activities 
involving symbolic representation would better be undertaken later in 
the K-12 sequence.

As a point of contrast, Wing pointed to the way that computer science 
is typically taught. What is often taught in computer science to middle 
school and high school students, said Wing, reflects a relatively casual 
approach and is a minimally modified version of what is taught to under-
graduates. What makes the approach casual is that it is done without a 
deep appreciation for how students learn at different ages. She noted that 
there is not a body of grounded and research-based knowledge about 
how the various aspects of computational thinking or computing map 
on to brain development. She went on to point out that despite this lack 
of knowledge, many people believe that some of the abstract concepts of 
computational thinking cannot be taught before students enter the eighth 
grade, because of a common assumption that only at that age are students 
able to learn abstract concepts. There are many such assumptions, she 
said, that must be evaluated in light of serious research about learning, 
research that has not yet been done with reference to computing or com-
putational thinking.

1.3  ORGANIZATION OF THIS REPORT

Most of the workshop was devoted to describing and discussing vari-
ous approaches to the teaching of computational thinking. 

This report is organized as follows. Chapter 2 provides what the com-
mittee believes to be the key points raised by workshop participants—that 
is, the committee extracted from the various presentations and discussion 
sessions a number of key points that in its judgment speak most closely 
to the teaching of computational thinking. Chapter 3 presents individual 
committee members’ personal synthesis of points made in the respective 
panel sessions that they moderated. Chapter 4 contains summaries of 
individual presentations by workshop participants, which often elabo-
rate in more detail examples described in Chapter 2. Depending on the 
depth and degree of context in which the reader is interested, the com-
mittee encourages reading back and forth between these different levels 
of summary.

Although workshop participants did not agree explicitly on a defini-
tion of computational thinking, the examples they provided during this 
workshop are valuable as indicators of ways that people see the inter-
section of computation, disciplinary knowledge, and algorithms. Other 
examples identify what the participants saw as issues and problems when 
trying to introduce computational thinking into school and non-school 
pedagogical contexts.
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2

Key Points Expressed by 
Presenters and Discussants

2.1  PERSPECTIVES ON COMPUTATIONAL 
THINKING AND COMPUTATIONAL THINKERS

Workshop participants extended the discussion started at the first 
workshop concerning the nature of computational thinking and compu-
tational thinkers. In offering one perspective, Peter Henderson, formerly 
chair of the Department of Computer Science and Software Engineering 
at Butler University, described computational thinking as generalized 
problem solving with constraints. He argued that almost every problem-
solving activity involves computation of some kind. For Henderson, a 
toolsmith metaphor is a convenient means for characterizing the elements 
of computer science and also computational thinking—computer science 
offers sophisticated tools that strengthen problem solving. Henderson 
illustrated his point using an example from Thomas the Tank Engine—a 
series for preschool students. In one situation, Thomas is pulling two cars, 
one red and one green. They are on a track with a siding (connected on 
both sides), and the problem is to reverse the order of the two cars. This 
problem engages students in using a computational algorithm at a very 
early age.

Matthew Stone, a computational linguist at the Rutgers Universi-
ty’s Department of Computer Science and Center for Cognitive Science, 
argued that core ideas of computational thinking arise in many domains 
independent of computer technology. Stone pointed out the universality 
of computational thinking in the context of Jacquard looms that control 
the weaving of patterns, algorithmic approaches to choosing the grocery 
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checkout line with the shortest wait time, and representation of corre-
spondences between symbols and the physical world such as between 
online banking and money.

Robert M. Panoff, founder and executive director of the Shodor Edu-
cation Foundation, Inc., illustrated the generality of computational think-
ing by identifying three fundamental ideas that ground computational 
thinking:

•	 What you have now is what you had before plus what has changed. 
That is, Xnew = Xold + change in X.

•	 I am the average of my neighbors; that is, add up a bunch of num-
bers and divide by the number of numbers. This is the essence of solving 
Laplace’s equation.

•	 When two entities interact with each other, one of the entities 
acquires with some probability a property that the other entity already 
had. For example, if the two entities are people and the property is a wal-
let, there is some probability of a crime—an example found in criminol-
ogy. If the entities are trees and the property is being on fire, there is some 
probability that the tree not on fire will become a tree that is on fire—an 
example from forest management. If the entities are particles and the 
property is momentum, there is some probability that one particle will 
acquire some of the momentum of the other particle—an example often 
found in physics.

Ursula Wolz, associate professor of computer science and interactive 
multimedia at the College of New Jersey, noted that concepts of com-
putational thinking permeate journalism. The similarities stem from the 
reliance of both fields on language. Languages can be natural as found in 
journalism or formal as found in computer science. Both formal and infor-
mal languages involve access to information, aggregation of data, and 
synthesis of information. Concepts of reliability, privacy, accuracy, and 
logical consistency are essential to both formal and informal languages. 
Both involve knowledge representation (e.g., determining the appropri-
ate granularity for reporting a story or taking data) and abstraction from 
cases.

2.2  ACTIVITIES OF COMPUTATIONAL THINKING

Workshop participants extended the discussion of activities associ-
ated with computational thinking that had been initiated at the first work-
shop. During the second workshop participants focused on educationally 
relevant activities.

Robert Tinker, founder of the Concord Consortium, argued that the 
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core of computational thinking is to break big problems into smaller prob-
lems that lend themselves to efficient, automated solutions. This approach 
can be implemented using realistic situations as well as visualizations. 
Tinker advocated introducing computational thinking in science for sev-
eral reasons. Modern science regularly relies on computational models 
that are based on scientific principles and are illustrated using visualiza-
tions. For example, scientists explore visualizations of new proteins or of 
new theoretical accounts of tectonic plate movements. 

Consulting scientist Walter Allan and outreach education coordina-
tor Jeri Erickson, at ScienceWorks for ME of the Foundation for Blood 
Research, echoed this point. They argued that the ability to construct rules 
to specify the behavior of an agent is important to computational think-
ing. These rules might implement a scientific principle. 

Tinker said that he favors exposing students to computational think-
ing in the context of scientific models and visualizations that depict phe-
nomena in a realistic time sequence. Examples include visualizations of 
chemical interactions using software such as Molecular Workbench;1 of 
force and motion; and of plate tectonics. Students can interact with these 
visualizations, explore their behavior and limitations, and learn about 
the science represented in the model. This approach is consistent with 
the way scientists learn from visualizations and also resonates with the 
ways that scientists explore the natural world using the scientific method. 

Mitch Resnick, professor of learning research at the MIT Media Lab, 
said that the ability to use computational media to create, build, and 
invent solutions to problems is central to computational thinking. He 
argued that computational thinkers can express themselves and their 
ideas in computational terms. He explained that meaningful expression 
requires developing both concepts and capacities. He pointed out that 
capacities for design and social cooperation are often neglected in school. 
Yet the capacity to design solutions has become more important as the 
world has increased in complexity. Students need the capacity to design 
solutions to personal problems such as determining energy-efficient home 
heating solutions. Students also have to be able to communicate their 
designs to others and to benefit from the expertise of multiple partici-
pants. As a result, students need a way to design solutions that are rich 
enough to cope with complexity and interactivity in a manner often asso-
ciated with computational expression. And the design environment needs 
to support social cooperation in constructing meaningful expressions. 
Advances of these kinds are synergistic—computing technology itself 
opens up new possibilities for widespread cooperation. 

1  The Molecular Workbench is available at “Molecular Workbench,” website, Concord 
Consortium, http://mw.concord.org/modeler/index.html. Last accessed February 7, 2011.



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

KEY POINTS EXPRESSED BY PRESENTERS AND DISCUSSANTS	 9

Supporting Resnick’s emphasis on social cooperation, Jill Denner—a 
developmental psychologist with Education, Training, Research (ETR) 
Associates—noted that students program differently in pairs than by 
themselves. She found that students in pairs spent more time doing pro-
gramming and housekeeping tasks (e.g., saving and testing their code) 
than did individuals working alone. She observed that most students 
find programming in pairs highly motivating. When they collaborate stu-
dents need to develop the ability to communicate concepts. Similarly, Idit 
Caperton, founder of the World Wide Workshop,2 described the supports 
in the Globaloria approach for collaboration and community. Globaloria 
participants develop original games and publish them on a community 
Wiki. Participants in the Globaloria community—teachers, students, staff, 
and teams—all maintain public blogs as design journals, share resources, 
and build on the products of their peers. 

Danny Edelson, director of the National Geographic Society’s Geo-
Literacy Program, argued that systems thinking is an essential activity of 
computational thinking. Edelson drew insight from his work in promot-
ing geo-literacy. He noted that geo-literacy calls for a systems view of the 
world—an understanding of the world as a set of interconnected human 
social systems and physical environmental systems—and that computa-
tional thinking about complex problems calls for a similar understanding.

Jim Slotta, a professor at the University of Toronto’s Ontario Institute 
for Studies in Education, echoed the point that understanding complex 
systems requires computational thinking. He mentioned a Web-based 
Inquiry Science Environment (WISE)3 unit that uses scientific visualiza-
tions of global climate change to engage students in reasoning about how 
their own activities affect the accumulation of carbon dioxide. He noted 
that the visualizations were designed by Robert Tinker using NetLogo, a 
language created by Uri Wilensky. 

2.3  CONTEXTS FOR COMPUTATIONAL THINKING 

Most workshop participants echoed the notion articulated in the first 
workshop that the power of computational thinking is best realized in 
conjunction with some domain-specific content. Thus, to understand the 
human genome, individuals need to combine computational thinking and 
concepts in genetics. The diversity of possible contexts in which compu-
tational thinking applies illustrates its power. Computational thinking 

2  Globaloria is available at “Globaloria,” website, World Wide Workshop, http://www.
worldwideworkshop.org/programs/globaloria. Last accessed February 7, 2011.

3  “Web-based Inquiry Science Environment,” website, University of California, Berkeley, 
http://WISE.berkeley.edu. Last accessed February 7, 2011.
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occurs in a vast array of domains. Developing expertise in computational 
thinking involves learning to recognize its application and use across 
domains. 

2.3.1  Everyday Life

Many participants provided examples of the use of computational 
thinking in everyday situations. Troubleshooting devices such as comput-
ers, cell phones, and digital cameras involves knowing how to return to 
a known state (typically by turning the device off and restarting) or test 
boundary conditions (such as interactions between two applications). 

Joyce Malyn-Smith, strategic director of the Workforce and Human 
Development Program for the Education Development Center, Inc., noted 
that today’s youth carry their technological learning environment con-
tinuously in the form of cell phones, computers, and gaming devices. 
Schools are finding ways to engage students in using their devices to 
advance learning such as by having them take digital photos for science 
projects. After school, students bring their devices to community-based 
programs where they can engage in science inquiry and to museums 
where they play with exhibits. Taylor Martin, an associate professor of 
education at the University of Texas at Austin, supported this point, 
arguing that schools and after-school programs can exploit computational 
tools such as Facebook.

Lou Gross, at the University of Tennessee and also director of the 
National Institute for Mathematical and Biological Synthesis, emphasized 
the value of incorporating a computational worldview into the everyday 
experiences of students. To illustrate, Gross described an everyday prob-
lem—how to pick a checkout line at a grocery store. Gross asked partici-
pants to generate parameters that might affect one’s decision. Workshop 
participants suggested line length, the presence or absence of a bagger, 
someone writing a check, the number of items in a person’s cart, and 
whether the line is an express line. Gross pointed out that high school 
students often include the presence or absence of someone cute in the 
checkout line, thus illustrating the point that the criteria for decision mak-
ing depend on the nature of the model involved and its purpose.

2.3.2  Games and Gaming

A number of participants described game playing and game develop-
ment as activities well suited to developing computational thinking. They 
stressed the importance of games that involve domain-specific ideas such 
as simulations of political situations.

Jill Denner argued that the programming of computer games connects 
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to computational thinking in several ways. Computer games provide a 
context for the modeling of abstractions. For example, students might 
program a model of their make-believe world, create variables and new 
methods, and think at multiple levels of abstraction. They might consider 
how a player will interact with the game or conceptualize the goal of the 
game. 

Idit Caperton argued that it is possible to learn any subject and to 
master complex topics or social issues by creating functional, represen-
tational, educational multimodal computer games in that domain. The 
Globaloria environment supports the collaborative development of games 
and also provides an opportunity for students to play each others’ games. 
For example, Globaloria provides a unit on game design, in which stu-
dents design an original game about a complex topic (science, math, 
health, civics) and a social issue that matters to them. Students come up 
with an idea, assemble teams, and do research. Another Globaloria unit 
focuses on game development: students develop original game concepts, 
create prototypes, and produce a complete, playable interactive game. 
Each unit contains a structured set of learning topics, and each topic 
contains projects and assignments for students to complete. Assignments 
scaffold4 students to create critical parts of their own games. 

2.3.3  Science

Robert Tinker advocated the use of simple models of physical phe-
nomena such as temperature, light, and force to teach computational 
thinking. He described activities in which students use temperature 
probes to capture data and use graphing programs to develop a model 
to explain their data. A student makes progress by manipulating and 
refining the model to reflect increasingly sophisticated understanding of 
the scientific concepts. The student learns both about the physics of the 
phenomena and about computational thinking. 

John Jungck, at Beloit College and also founder of the BioQUEST Cur-

4  According to Susanne P. Lajoie, 2005, “Extending the Scaffolding Metaphor,” Instructional 
Science 33:541-557 (https://www.tlu.ee/~kpata/haridustehnoloogiaTLU/scaffoldinglajoie.
pdf; last accessed May 20, 2011). “The term ‘scaffolding’ was used by Jerome Bruner (Wood 
et al., 1976) to describe the process in which a child or novice could be assisted to achieve a 
task that they may not be able to achieve if unassisted, until they are able to perform the task 
on their own. This definition was influenced by Vygotsky’s (1978) conception of the zone 
of proximal development which is ‘the distance between the actual developmental level 
as determined by independent problem solving and the level of potential development as 
determined through problem solving under adult guidance or in collaboration with more 
capable peers’ (p. 86). The implication is that individuals have learning potential that can be 
reached with scaffolding provided by tutors, parents, teachers, and peers.”
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riculum Consortium, explained the interconnections between computa-
tional thinking and biology and described activities that engage students 
in linking the two. He pointed out that modern biology is essentially 
an information science. Today, biological data—environmental data and 
genomic data, for example—is multivariate, multidimensional, and mul-
ticausal, and it exists at multiple scales in enormous volume (increasing 
at terabytes of data per day). He noted that in BioQUEST,5 students pose 
original problems, iteratively apply computational thinking to solve those 
problems, and persuade their peers that their solution is useful and valid. 
For example, in one activity students pose problems about evolution-
ary similarities among genes. Using powerful databases they can align 
multiple sequences of the same gene from different organisms onto one 
three-dimensional structure. They iteratively refine their representation 
to illustrate evolutionary conservation across organisms. They use their 
representation to clarify the comparative biology of sequences in terms of 
structure, function, and phylogeny.

Walter Allan and Jeri Erickson described computational thinking in 
ecology and environmental science using a modeling approach. Using 
simulations to address topics found in the curriculum, they created activi-
ties to help students understand complex systems. For example, their 
Runaway Runoff simulation called for students to conduct experiments 
on phosphorus pollution using a simulated lake ecosystem.6 This simu-
lation depicts a lake ecosystem, with fish, zooplankton, and algae that 
are visible to students as well as bacteria that are invisible to students. 
Students conduct experiments to develop a food web for the ecosystem. 
They examine the contents of the digestive tracts of the trout and zoo-
plankton to see how changes in phosphorus affect the populations in the 
lake and the concentration of dissolved oxygen. They predict the impact 
of increasing levels of phosphorus on the different populations of fish 
and zooplankton. 

Allan and Erickson explained that the activity scaffolds students to 
follow a cognitive pattern. This pattern features the same iterative refine-
ment approach described by Jungck. Students start by making a predic-
tion about how a system works. They use a simulation for testing, tinker-
ing, and playing. They record their observations, refine their model of 
how the system works, and make further predictions. They summarize 
their findings in essays or posters that describe how runoff affects lake 

5  BioQUEST Curriculum Consortium is available at “BioQUEST,” website, BioQUEST 
Curriculum Consortium, http://bioquest.org/. Last accessed February 7, 2011. 

6  A sample student worksheet from the project can be seen at “Runaway Runoff Exercise 
1: Who’s Who,” Worksheet, available at http://simbio.com/files/EBME_WSExamples/
RunawayRunoff_WkSh1_example.pdf. Last accessed February 7, 2011.
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ecology. These artifacts show that the students learn to make fairly sophis-
ticated models of the lake ecosystem.

Allan and Erickson also described how they implemented this pattern 
in the “Program a Bunny” environment. In this environment, the bunny 
is an agent that the student programs to find and eat carrots in a field. 
The environment is probabilistic, so that carrots are not always located 
in the same places in the field. A program for a successful bunny must 
account for the randomness in the bunny’s environment. Students can test 
different programming strategies in a number of increasingly complex 
scenarios and refine their program. The initial  “out of the box” solution 
is, by design, inadequate for bunny success. Thus, students must learn 
to modify the program. Modification of the program initiates a cognitive 
cycle similar to that of the Runaway Runoff simulation involving iterative 
refinement. The student observes the bunny’s success in finding carrots, 
develops a model of how the program works, and then thinks of another 
modification that is intended to further improve the bunny’s performance. 

Lou Gross illustrated ways to use environmental science as a platform 
for computational thinking. Beginning with an aerial image of Wash-
ington, D.C., from Google Earth, students are asked, How would you 
describe this image? After listing typical topographic features such as 
buildings, roads, and trees, students eventually describe the image by 
saying how much of the image is this color or that color, how much is 
made up of buildings, how much of roads, and so on. Gross described 
these observations as the basis for describing the image as a vector where 
the components consist of the fraction of the image that is of each type. 
One interpretation of this vector is that it represents a probability distribu-
tion of the landscape for a discrete number of components. Students are 
scaffolded to realize that spatial aspects of the image are not included in 
the vector description. They explore how some large-scale temporal varia-
tions (such as the growth of cities) could be captured by a time-varying 
vector. This activity prepares students to use prepackaged software to 
take advantage of computational methods for looking at change across a 
landscape, e.g., coupling between an image, a dynamically changing vec-
tor, in this case a bar graph, and then an overall descriptor.

Danny Edelson showed how geography and earth science involve 
computational thinking. Edelson described some of the issues that arise 
for students learning to understand geographic data:

•	 Continuous versus discrete data sets. Students learn about the issues 
in transforming a map from a continuous representation to a map repre-
sented in discrete pixels or cells. They can articulate all the positive and 
negative implications of each representation and learn how the represen-
tation affects the results of their data analysis. 
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•	 Color representations of temperature. Students explore the implica-
tions of using color to represent temperature on a map. For example, 
although it makes physical sense to subtract two temperatures (e.g., Janu-
ary’s temperature from July’s temperature), it does not make much sense 
to subtract yellow from red. Color representations on the map cannot be 
manipulated in the same way as the underlying physical parameters. 
To resolve the paradox, students need to realize that temperature maps 
consist of regular arrays of numerical data. They can be transformed into 
colors, but their underlying mathematical character is maintained.

•	 Boolean operations. Boolean operations are key analytic tools for 
interpreting maps. Students gain insight into Boolean operations by test-
ing and refining solutions to problems. For example, to analyze geo-
graphic data students might be asked to find counties in the United States 
whose African American population exceeds the Caucasian population. 

•	 Spatial relationships as specifications of sets. In working with geo-
graphic data, a student might want to find the intersection of two regions 
on a map, where the regions are specified according to some nonspatial 
criteria. Managing such operations intellectually calls for thinking about 
them as combinations in one sense and as spatial entities in another sense. 

•	 Satisfaction of multiple constraints in problem solving. Students might 
be asked to locate a power plant in areas that are both accessible to rail-
road transportation and close to large bodies of water. Students learn how 
to use logic tools to locate specific geographic features.

Robert Panoff advocated teaching computational thinking through 
computational science, in part because this approach develops metacog-
nitive skills or the ability to monitor understanding of computational 
results. Panoff drew on quantitative reasoning and multiscale modeling 
to illustrate various anomalies in how people conceptualize quantity. 
Examples include:

•	 Inconsistent and faulty intuitions about numbers. Many people believe 
that two-fifths (2/5) is a small number, whereas 40 percent feels like a 
large number to them. Panoff noted that one metropolitan police depart-
ment assigned more officers to patrols on Friday and Saturday night 
because a careful analysis of the data showed that just under 30 percent 
of car break-ins were on either a Friday or a Saturday night. Since 2/7 is 
29 percent, the frequency of car break-ins was actually consistent across 
weekdays and weekends! 

•	 Representations of numbers in computational media. In principle, the 
arithmetic expression given by 355/113 – 101/113 – 101/113 – 101/113 – 
52/113 should equal zero. But when the expression is evaluated on most 
calculators, a non-zero result is obtained. Because most students realize 
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that “something’s not right” when they are confronted with this expres-
sion, such a realization can be the beginning of a serious exploration of 
how numbers are represented in a computer.

•	 Interpretation of orders of magnitude. Panoff noted that many people 
have difficulty recognizing the degree of precision necessary to make 
an inference. He illustrated the point by asking what a student needs to 
know in order to answer the question, How much bigger is Earth than 
Pluto? An obvious way to approach this problem is to perform Internet 
searches for the mass of Earth and the mass of Pluto. But an Internet 
search for the mass of Earth generates 20 or 30 different values, which 
have a spread of several percent. How does one know which value to use 
or how to proceed? Here context matters—why is one asking the ques-
tion about relative sizes? If the question relates to how big an object has 
to be in order to be a planet, then in the absence of a formal definition 
of “planet,” one needs to know only that the ratio MEarth/MPluto is on the 
order of a few hundred—and a difference of “several percent” is simply 
irrelevant to knowing which value of MEarth to use. 

2.3.4  Engineering 

Christine Cunningham, vice president at the Museum of Science, 
Boston, described engineering as a focus of computational thinking for 
elementary education. Echoing discussions from the first computational 
thinking workshop, she pointed to intellectual parallels between com-
putational thinking and solving engineering problems. Cunningham 
stressed that understanding engineering habits of mind and mental pro-
cesses is an important goal of elementary science. She illustrated how 
these habits of mind require important aspects of computational thinking. 
Cunningham identified 20 topics that are commonly covered in elemen-
tary science programs, paired each with an engineering specialty, and 
illustrated the pairing with a particular technological device or process. 
For example, environmental engineering can be introduced using water 
filtration devices to help students understand the human impacts on the 
water cycle. In another example, a solar cooker can illustrate principles of 
energy and connect to sustainable engineering.

2.3.5  Journalism

Ursula Wolz described the use of the language arts and journalism as 
a vehicle for exploring computational thinking. She argued that insights 
into computational thinking can come from comparing the precision of 
computer languages to the challenges of precise communication in jour-
nalism using natural language. Journalism involves principled storytell-
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ing and information dissemination. Journalism students are constructors 
of aggregated content (rather than just consumers). To produce a story, 
students must inquire, create, build, invent, iterate on the account, polish, 
and publish. Wolz emphasized that students iterate on defining the prob-
lem, researching it, drafting a solution, and testing it. They copy edit and 
fact check. In the end, they publish and get more feedback. All of these 
same notions arise in other instances of computational thinking.

2.3.6  Abstracting Problem Solving from Specific Contexts

Given the diversity of contexts discussed and even the diversity of 
problems within a single context, a number of workshop participants 
discussed the use of computational thinking across contexts or topics. 
For instance, several noted that individuals were likely to need different 
(though overlapping) sets of computational thinking skills. Thus, physi-
cians need to learn how to use visualization tools, as do teachers. Joyce 
Mayln-Smith of the Education Development Center suggested that the 
computational thinking abilities needed by users of information technol-
ogy tools and applications are different from those needed by producers 
or developers of such tools and applications. Consequently, the pedagogi-
cal approaches needed for developing these skills must be suited to the 
goal.

Michelle Williams, assistant professor of science education at Michi-
gan State University, made a similar point, arguing for helping students 
and their teachers recognize that the computational thinking skills they 
use to make sense of representations of scientific knowledge work for 
multiple representations. Williams showed how a WISE project can scaf-
fold students to use computational thinking skills as they engage with a 
number of computer-based representations. In her project students used 
simulations of mitosis to understand phases of cell division, and Punnett 
squares to determine the genotypes and phenotypes of different genera-
tions of plants, and they interacted with the Audrey’s Garden animation7 
to make distinctions between inherited and acquired traits. 

7  See “Case of Audrey,” website, Exploring Younger Children’s Understanding of Hered-
ity, http://education.msu.edu/research/projects/nsf-heredity/curriculum.html. Last ac-
cessed March 14, 2011.
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2.4  PEDAGOGICAL ENVIRONMENTS FOR 
COMPUTATIONAL THINKING

2.4.1  Foci for Pedagogical Environments

Many presenters stressed that interactive visualizations or simula-
tions are at the heart of computational thinking. This perspective cut 
across multiple disciplines. For example, John Jungck argued that the 
key to computational thinking in a biological context is in the power of 
visualization. Robert Tinker stressed the value of visualizations in simple 
models of scientific concepts such as temperature, light, and force to 
teach computational thinking. (See Figure 2.1.) Danny Edelson argued 
that Earth models are best understood in terms of dynamic and spatial 
models, and he illustrated the point using a NetLogo model for infiltra-
tion and runoff processes in a region in the presence of precipitation. 
Jim Slotta pointed to visualizations of global climate change. Michelle 
Williams emphasized visualizations in understanding genetic inheritance. 
Mike Clancy, senior lecturer in the Department of Computer Science at 
the University of California, Berkeley, suggested that the causal relation-
ships depicted in models are similar to the causal relationships entailed 
in understanding what a computer program actually does in execution, so 
that, for example, a student needs to understand what causes a program 
bug or a program to perform in a certain way.

A second focus for pedagogical environments is the modeling and 
troubleshooting of data sets. For example, Robert Panoff noted the impor-
tance of understanding limitations in the underlying data. Danny Edelson 
noted that anomalous data often catch people’s attention and generate 
a teachable moment by motivating them to understand the cause of the 
anomaly. Panoff stated that even experts sometimes miss anomalies. Uri 
Wilensky of Northwestern University stressed the advantages seen when 
students collect data themselves and then use those data to try to fit mod-
els to those data, rather than using data provided by others. Christina 
Schwarz of Michigan State University illustrated how students benefit 
from iteratively refining their models of data they collect.

A third focus is searching for patterns in large data sets. John Jungck 
illustrated the forms of computational thinking students use to explore, 
analyze, interpret, and synthesize massive amounts of biological data. 
Similarly, Stephen Uzzo, vice president of technology at the New York 
Hall of Science, pointed out that e-science, which focuses on managing, 
modeling, and making discoveries in massive amounts of captured data, 
seeks patterns, dynamics, influences, and complex and emergent behav-
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ior in whole systems.8 The computational thinking needed to engage in 
e-science addresses, among other things, complexity; data visualization; 
network science (that often results in theoretical generalizations); data 
interoperability, data sharing, and other collaboration skills; and the use 
of semantics for searching or creating more effective data structures. 

2.4.2  Illustrative Pedagogical Environments 

Workshop participants illustrated the potential of pedagogical envi-
ronments for scaffolding learning, supporting iterative refinement, and 
enabling students to use visualizations or large data sets. Several alterna-
tive approaches were described.

•	 WISE (the Web-based Inquiry Science Environment). Jim Slotta 
described how WISE is designed to provide scaffolding for inquiry activi-
ties in science classrooms. WISE guides students to engage in computa-
tional thinking using scientific visualizations, simulations, models, com-
plex data, or long-term projects. A typical WISE project might engage 
students in designing solutions to problems that require computational 
thinking (e.g., design a desert house that stays warm at night and cool dur-
ing the day using simulations of the day/night cycle and other resources), 
debating contemporary science controversies using a variety of evidence 
(e.g., the causes of declining amphibian populations using systems think-
ing), critiquing scientific claims based on modeling (e.g., arguments for 
the occurrence of global climate change), or conducting virtual experi-
ments (e.g., exploring a simulation of airbag deployment and studying 
factors such as velocity and driver height). Tools and interactive materials 
provided in the WISE environment support collaborative activities and 
cognitive guidance to promote reflection and critique.

•	 Scratch. Mitch Resnick described a computational environment 
called Scratch for facilitating individual expression. The MIT Media Lab 
developed Scratch as a companion to an online computational thinking 
community to help engage people in creative learning experiences and to 
facilitate creative thinking. A graphical programming language, Scratch 
gives its user the ability to build programs by snapping graphical blocks 
together. The blocks control the actions of different dynamic actors on 
a screen. This approach to program construction enables users to avoid 
issues of syntax and other details that often distract them from the critical 
processes of designing, creating, and inventing. Using Scratch, it is easy to 
engage in iterative refinement. Scratch also facilitates social cooperation 

8  See, for example, Defining e-science, website, U.K. National e-Science Centre, http://
www.nesc.ac.uk/nesc/define.html. Last accessed February 7, 2011.



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

20	 PEDAGOGICAL ASPECTS OF COMPUTATIONAL THINKING

Click the green flag
Move the mouse to eat
the small fish

open-mouth

mouse-pointer

mouse-pointer

got-me

chomp

mouth-animation
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increase score

score

mouth-animation

closed-mouth

open-mouth

score

Figure 1

FIGURE 2.2 Scratch programming example—a screen-shot of a game made in 
Scratch. The goal of the game is to maneuver the big fish to eat the small fish. The 
programming scripts for the big fish are in the middle panel of the screen-shot. 
This program highlights several concepts, including the idea of an algorithm 
(e.g., iteratively point toward the mouse-pointer and take a few steps toward it); 
computational concepts like variables (shown in the “score” variable); and com-
putational practices like modularization and abstraction (shown in the scripts for 
“increase-score” and “mouth-animation”). The graphical nature of the Scratch 
programming language makes it easier to focus on computational concepts and 
practices without worrying about syntax issues (which have no conceptual value). 
Also, the nature of the Scratch interface makes it easy to build up scripts in an 
incremental, iterative style aligned with modern software development practices.

by making it very easy for a user to share his or her design with others 
for comment and feedback. (See Figure 2.2.) 

•	 Storytelling Alice. Storytelling Alice is a programming environment 
designed to motivate a broad spectrum of middle school students to learn 
to program computers through creating short three-dimensional animated 
movies.9 Jill Denner engages students with a use-modify-create approach. 
First, students play other students’ Alice games and work through three 

9  Caitlin Kelleher, 2007, “Storytelling Alice,” website, Alice.org, http://www.alice.org/
kelleher/storytelling/. Last accessed February 7, 2011.
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tutorials that illustrate how to program with Alice. The goal of the “use” 
phase is for students to learn about the Storytelling Alice interface and the 
kinds of games that they might make. Second, students learn to modify 
an existing game through a series of graduated self-paced challenges. The 
goal of the “modify” phase is to understand the mechanisms that they 
will use to program a game. Third, a student creates an original game 
using the language. Students work with specific computational think-
ing concepts such as event handling, parallelism, additional methods, 
parameters, alternation, iteration, and conditional execution, and many of 
Denner’s students created their own methods and used parameters that 
illustrate the use of modeling and abstraction. 

•	 Globaloria. Idit Caperton described Globaloria as a project-based 
learning environment for stimulating computational thinking, creativity, 
and inventiveness in youth and educators. Globaloria supports project-
based, multidisciplinary, innovative and creative learning (of any subject) 
through software design and programming. Globaloria emphasizes six 
abilities, including the ability to program an educational game, wiki, or 
simulation; to use project management skills in developing programma-
ble wiki systems in a Web 2.0 environment; to produce animated media 
and to program, publish, and distribute interactive purposeful digital 
media in social networks; to learn in a social constructionist manner and 
to participate actively in the exchange of ideas and artifacts; to undertake 
information-based learning, search, and exploration as they relate to the 
abilities above; and to surf websites and use web applications thought-
fully as they relate to the earlier abilities enumerated. (See Figure 2.3.)

Many presenters testified to the pedagogical value of features found 
in the environments described above. Panoff, Tinker, and Jungck, among 
others, stressed the importance of supporting iterative refinement. Denner, 
Caperton, Gross, Resnick, and others described sequences of activities 
that culminated in complex projects.

2.5  DEVELOPMENTAL CONSIDERATIONS 
AND COMPUTATIONAL THINKING

An important issue for many workshop participants was the develop-
ment in novices of facility with computational thinking. Presenters offered 
varied perspectives on how computational thinking might develop and 
on what constraints should be considered. Those favoring project work 
generally argued that students working collaboratively on a compelling 
problem could use much more advanced forms of reasoning than teachers 
might expect. Others argued that young children have some impressive 
capabilities but also some very serious limitations. 
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Find out how healthy
these foods are

Save the farms from evil pollution!

Figure 3 bitmapped

FIGURE 2.3 Globaloria example—a depiction of the Globaloria learning environ-
ment, where students develop computational thinking skills through team design 
and creation of computer games. Students are tasked with using Web 2.0 tools and 
media in developing various games on topics such as health, civics, and science.
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Robert Tinker noted that because students begin as concrete thinkers, 
it remains a challenge to identify the age or grade level at which children 
can handle abstraction. As an example, he said that second graders can 
hook up a probe to measure temperature and understand how the device 
works. Fourth graders can demonstrate reliable interpretations of heating 
and cooling curves and use the results to gain understanding of abstract 
principles. Even adults, however, often have difficulty with concepts such 
as thermal equilibrium or insulation. He reported on studies showing that 
even well-educated scientists were not sure about the value of wrapping 
a cold drink in a sweater to keep it cold.

The workshop participants argued that many theories of learning are 
relevant. Participants mentioned theories of multiple intelligences, knowl-
edge integration, experience-based learning, how novices and experts 
learn, and how groups learn.

2.5.1  Development of Scientific Thinking in Children

Deanna Kuhn, a developmental psychologist at Columbia University, 
spoke about the evolution of young learners through different intellectual 
stages with respect to scientific thinking. She focused on how they use 
data and evidence and on their facility with scientific thinking.

For Kuhn, the first accomplishment of development involves accept-
ing the possibility of false belief. The child must conceive of data as 
possibly not representing the complete reality. Very young students can 
recognize simple covariation in causal models; that is, Did A cause O? in 
simple cases. But they have difficulty with covariation in a multivariate 
context (e.g., Which A caused O?) or a negative antecedent and outcome 
(e.g., Not A and O). Such students often interpret data in isolation and do 
not look for large patterns. 

Kuhn pointed out that although young children can do fundamental 
experimental design, they often close their inquiry prematurely. Prema-
ture closure sometimes occurs when children are presented with confirm-
ing evidence. Children often stop the inquiry at this point, not realizing 
that the inquiry remains unfinished and that confirming evidence is not 
sufficient to rule out competing hypotheses. Mitch Resnick noted that 
even adults identify one cause (of potentially many) and assume that a 
partial inquiry is completely explicative.

Although young children can successfully employ some of the intel-
lectual skills of scientific thinking, they can have a hard time articulating 
how they know something. In particular, they do not understand the epis-
temological difference between claim and evidence. For example, looking 
at a photo of a boy standing on an award podium with a sign labeled 
with the number “1” and holding a trophy, a child is asked, “How do 
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you know that this boy won the race?” A child will often answer not with 
evidence of how she knows (e.g., “He is holding a trophy or the podium 
has a number 1 on it”) but with a theory of why the outcome makes sense 
(e.g., “His sneakers were fast”). 

Students as old as 12 sometimes focus on evidence and data frag-
ments that support their story, while ignoring or minimizing those that 
do not. For example, in explaining what causes an avalanche, a student 
may report that in case A, it was the slope angle that caused an avalanche. 
Yet the same student will claim that in case B, the slope angle did not 
make a difference because the slope angle was small and something else 
caused the avalanche. These students are having trouble distinguishing 
between a variable and a variable’s magnitude. The educational challenge 
at this level is to help the child see the data as evidence rather than as an 
example of a favored claim. Kuhn argues that when a child develops a 
sort of meta-awareness (control) over this sorting and attribution process, 
true scientific thinking can begin. Several participants noted that even 
graduate students sometimes ignore contradictory evidence and focus on 
supportive evidence.

Jill Denner reported on several lessons learned from her research. 
For example, she pointed out that individual differences matter a great 
deal, because individual students have different starting levels, willing-
ness to fail, and motivations. Students are sometimes more comfortable, 
sometimes less, with the idea of following step-by-step instructions to 
carry out a task. Some students are more afraid than others to fail and 
thus are unwilling to tackle problems that entail the risk of failure (e.g., 
of using a concept incorrectly). Denner found it necessary to balance stu-
dent engagement on a problem with motivating students to learn more 
complex or difficult concepts needed for their programs. 

Denner also pointed out that students with poor reading skills face 
special challenges. Although the challenges of modifying programs are 
a good way to ease into game programming, understanding an existing 
program is a text-heavy exercise and thus is difficult for English-language 
learners and students who have reading difficulties.

2.5.2  Possible Progressions

As a preliminary point, a number of workshop participants felt that 
it is often possible to get students to use even advanced computational 
thinking without invoking the use of that term. For example, Robert 
Panoff argued that once students are thinking about a leaky bucket as a 
time and rate problem, they are in fact doing calculus. When they take 
the difference between two things and divide by the interval between 
those two things, they are taking derivatives. When they’re averaging, 
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they are doing integration. Panoff’s philosophy here is to help students 
break a big problem into smaller problems and let the computer do the 
small parts—a process that helps to empower students. Taylor Martin 
argued that educators could see this approach as being a “sneaky” way 
to get students to use computational reasoning. Once engaged, students 
continue to use computational thinking and even begin to see its applica-
tions across contexts.

As a point of departure for considering learning progressions, Joyce 
Malyn-Smith proposed a sequence:

•	 Grades K-4, to focus on computational thinking literacy, career 
awareness, and computational thinking skills for learning. An overarch-
ing theme in this time frame might be the lesson that learning is cumu-
lative—a student can learn more by building on something he or she 
already knows. 

•	 Grades 5-8, to continue to address computational thinking literacy 
but add career exploration and learning about computational thinking 
skills for various careers in science, technology, engineering, and math-
ematics (STEM). This exploratory phase would offer students an oppor-
tunity to test their interest in various careers. 

•	 High school, a final preparatory phase, to prepare students to have 
the credentials to be able to keep doors open so that they can move into 
computing careers and careers in other STEM fields in which computa-
tional thinking will give them really strong opportunities.

Others, including Panoff, Allan and Erickson, and Denner, proposed 
looking at a learning progression for the development of computational 
thinking by applying the use-modify-create continuum over and over 
again. For example, a student first runs a model to see what happens. 
Then she may modify it by moving a slider bar, or two or three slider bars. 
And then she may change the number of slider bars. Finally, she writes a 
model that calls for the use of slider bars to change parameters. By iterat-
ing on this pattern, the student gains progressively more capabilities in 
the area of computational thinking.

Peter Henderson would start with computational thinking activi-
ties involving pattern recognition and naming in pre-K, although for 
the first several years, the term would not be introduced explicitly. Only 
later would the notion of computational thinking be explored as such. In 
this sequence, traditional mathematics, discrete mathematics, and logical 
reasoning are taught at all grade levels. This has important implications 
for high school, where an advanced placement (AP) course in discrete 
mathematics would replace the current AP course in computer science. A 
freshman discrete mathematics sequence would be introduced, similar to 
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that currently present for calculus. This approach would allow students 
to link mathematics and science following the traditional engineering 
educational model. This model emphasizes the connections across the 
science and math foundations of the disciplines (e.g., physics, chemistry, 
calculus). Clancy pointed out that this approach could also apply in col-
lege course sequences.

2.6  ASSESSMENTS FOR COMPUTATIONAL THINKING

Many workshop participants stressed the importance of student eval-
uation for pedagogical purposes. For example, Christine Cunningham 
pointed out that both teachers and students in the Museum of Science’s 
Engineering is Elementary project pay much more attention to material 
when student understanding of such material will be evaluated. She cau-
tioned that narrow goals for evaluation are counterproductive. Students 
and teachers need to appreciate the links among topics, and goals for 
courses need to acknowledge these dependencies. If students and teachers 
know that an evaluation will involve student knowledge of, for example, 
looping, they proceed to learn and teach looping. However, if teachers 
and students realize that an evaluation will involve student knowledge 
of program design, and knowledge of looping helps students understand 
program design, both students and teachers are more likely to connect 
looping and program design.

To evaluate the connections and interdependencies in computational 
thinking in introductory programming courses, Mike Clancy uses a case 
study approach and lab-centric instruction. A case study is a worked-out 
solution accompanied by a narrative of how the solution was identi-
fied. The narrative discusses design tradeoffs, evidence for alternatives, 
methods for testing the solution, debugging, and other issues such as 
optimizing. Students respond to questions that require them to consider 
new alternatives, critique design choices, develop test suites, and interpret 
results of tests conducted by others. 

Lab-centric instruction emphasizes hands-on lab hours supervised 
by a teaching assistant rather than lecture and discussion. But because 
there is more lab time than in most lecture/discussion courses, the course 
has room for a number of embedded assessment activities. Lab instruc-
tors can also monitor most of what the students are doing, and have a 
window into much of their thinking and not just their finished work. 
Thus lab instructors can notice confusion when it occurs and address it 
immediately to provide targeted tutoring. Clancy reported that students 
in lab-centric courses are less likely to drop the course, possibly because 
their confusions are caught before they become too burdensome.
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2.7  TEACHERS AND COMPUTATIONAL THINKING

Teaching computational thinking requires both knowledge of the dis-
cipline and skill in teaching when students collaborate to solve complex 
problems (sometimes referred to as pedagogical content knowledge). John 
Jungck argued that the primary challenge for teachers of computational 
thinking is placing student interests at the center of problem posing. In 
courses where students pose and solve problems teachers lose much of 
the control they traditionally have over the learning process and may 
become uncomfortable. They need new skills to guide individual learn-
ers. Supporting students engaging in self-directed collaborative processes 
requires an ability to diagnose difficulties and give hints rather than sup-
plying solutions. Designing effective assignments is also challenging, but 
many programs such as BioQUEST offer excellent options.

Michelle Williams stressed that to be effective, teachers have to under-
stand where students are starting. Further, teachers need to determine 
the types of understandings that students must have to be successful and 
to design new ideas or computational activities to provoke students to 
engage in computational thinking.

Jungck noted that students in some cases may have more techni-
cal skills than their teachers in the area of using computers. Williams 
pointed out that teachers often find ways to make individual students 
class “experts” on troubleshooting the operating system or accessing 
online materials to take advantage of available technical skills. Williams 
also noted that teachers need professional development to become pro-
ficient in teaching computational thinking. In her work she found that 
teachers followed a learning progression, becoming more proficient over 
time in using technology and guiding students with inquiry questions. 
Thus teachers of computational thinking may well be called on to assume 
new and unfamiliar roles in the classroom and need support to become 
proficient in performing these roles. 

Cunningham argued for the importance of building on what teachers 
know or feel comfortable doing. It is well known that many elementary 
school teachers are uncomfortable with science because of their limited 
preparation in this area. Cunningham argued that engineering (and pre-
sumably computational thinking) is even more terrifying. To build on 
what teachers know, Cunningham and colleagues begin their professional 
development by connecting exercises in literacy—an illustrated storybook 
for children—with engineering. The story has significant engineering 
content, but it is presented as a reading exercise so that teachers can use 
established skills to lead their classes. Students receive a very general 
introduction to engineering and to some computational thinking concepts 
from the book. The book provides context for the hands-on engineering 
activities that the kids will be doing in their classes.
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2.7.1  Professional Development and Other 
Needs for Teacher Support

Participants described a number of alternative views concerning 
methods and models for professional development. Cunningham sug-
gested starting small. Teachers tend to be more willing to invest a couple 
of class periods to experiment with a new concept, rather than an entire 
school semester or year. The success of one individual teacher with a 
particular concept or topic can catalyze others, as his or her students tell 
their friends about an interesting new experience in class. Other teachers 
also hear about such a program and often want to try it themselves. These 
efforts build grassroots support for change. 

Jim Slotta agreed that teachers are more willing to use materials for 
a short period to see if their students benefit from a particular approach. 
He described the experience of the Technology-Enhanced Learning in 
Science (TELS) center, where teachers first used a 1-week unit featuring 
visualizations. He also noted that asking teachers to identify the topics 
for professional development was effective. Initially teachers asked for 
help with the technology. These issues were resolved, and the teachers 
then asked for guidance on using inquiry questions. Next teachers asked 
for help with using visualizations. Successful professional development 
involved making videos of varied teaching practices and conducting a 
dialog where teachers discussed the alternatives and identified a set of 
best practices. 

Jill Denner reported a number of challenges in promoting computa-
tional thinking in middle school. These included mundane issues such as 
difficulties with hardware and software and with Internet access, consis-
tent with the comments of Slotta. Taylor Martin emphasized that access 
to computers and provision of technical support are important, stressing 
that computers are the tool students will use in the workplace. Teaching 
computation without them is not really preparing students for the real 
world. Many schools lack access to computers or only have productivity 
tools like word processing rather than the computational environments 
mentioned in the workshop (e.g., WISE, Scratch, or Globaloria). 

Several participants emphasized the importance of combining profes-
sional development with solid curricular materials. Because precollege 
teachers are often inexperienced with the subject matter of engineering, 
teaching materials have to be explicit and clear. Cunningham argued that 
when learning objectives drive the experiences embedded in curricular 
units, objectives need to be very explicit and specific rather than high-
level and abstract. She argued that learning objectives should also be few 
in number and relatively narrow so that a high degree of student success 
is possible. She suggested that the materials provide ways of specifically 
assessing the scope and extent of student mastery and comprehension.
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Cunningham and colleagues have found that hands-on experiences 
are particularly important for young learners. They have fielded many 
requests to replace physically manipulative experiences in handling 
objects with a click-and-drag interface on the computer that students can 
use to connect objects on the screen. But knowledge about the physical 
world that teachers take for granted cannot be assumed in students. For 
example, students don’t necessarily know that a fuzzy pompom will pick 
up pollen better than a smooth marble. In fact, that fact is engineering 
knowledge, and it’s “common sense” only if one has real-world experi-
ence with pompoms and marbles.

Experience with the physical world varies across populations. 
Cunningham reported that many students, including especially girls and 
underrepresented minorities, lack cultural experiences that illustrate the 
value of learning about engineering or the benefits of advances in engi-
neering. She and her colleagues use hands-on materials as well as story-
books that bring these ideas to life.

Williams reported on her experience working with precollege teach-
ers. She stressed the importance of engaging teachers in reviewing student 
work. She has found it valuable to have teachers use the scoring rubrics 
developed by the curriculum designers. She observed that teachers can 
make big gains in the sophistication of their teaching by making changes 
based on the gaps in their students’ knowledge.

2.7.2  Teachers and Career Awareness

Joyce Malyn-Smith pointed out that teachers can play an important 
role in helping students make connections between what they know and 
what they are learning. Teachers can encourage students to connect the 
new ideas to activities they would like to perform either in the present 
or in the future. Teachers can help students understand the connection 
between computational thinking and future earning power. Malyn-Smith 
said that students often have understanding of details about compu-
tational thinking from their areas of interest but lack the historical and 
cultural frameworks for placing such information in context. Teachers 
can help students to validate what they know and to understand how it 
is important and how it relates to what they are learning in class.

Williams added that instructional materials that connect to personally 
relevant problems can help teachers make connections between science 
and students’ ideas. Questions such as determining the origin of one’s eye 
color or distinguishing among possible ways to reduce the accumulation 
of greenhouse gases stimulate exciting conversations between students 
and teachers. 
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2.8  LEARNING CONTEXTS AND COMPUTATIONAL THINKING 

Workshop participants contrasted formal, informal, and ubiquitous 
learning contexts. They noted that computational thinking may fit better 
in some contexts than others.

2.8.1  Aligning with Standards

Several presenters stressed the challenges posed by a tightly packed 
curriculum that does not necessarily stress abstract thinking skills but 
that could provide a framework for integrating curricular content. Cun-
ningham underscored the importance of integrating the new material—in 
this case, engineering—with what schools are already teaching. Successful 
integration can show how the new material contributes to understanding. 
Arguing for new material as a primary focus, however, is not likely to 
succeed because of preexisting curriculum demands.

Cunningham noted the importance of articulating how new content 
and skills in the Engineering is Elementary project connect to existing 
educational standards. Such connections could include, for example, core 
concepts of technology such as systems, processes, feedback, controls, 
and optimization; the design process as a purposeful method of planning 
practical solutions to problems; inclusion in the design process of such 
factors as the desired elements and features of a product or system or the 
limits that are placed on the design; and the need for troubleshooting.

Paulo Blikstein of Stanford University noted that often typical instruc-
tion is oriented toward declarative knowledge, whereas computational 
thinking is oriented toward procedural knowledge. In this view, declara-
tive knowledge provides content (and is essential to particular fields or 
careers), whereas computational thinking is most useful for integrating 
and building connections in the midst of such knowledge. Those accus-
tomed to thinking primarily in terms of declarative knowledge may find 
it difficult to appreciate educational themes oriented toward procedural 
knowledge.

Allan and Erikson reported that the development effort for the Eco-
ScienceWorks10 project approached the use of programming instrumen-
tally. Downplaying the use of programming was a response to the devel-
opers’ concern that some teachers might rebel because the Maine learning 
standards did not mention programming. They feared that they would 
have a hard time justifying spending scarce classroom time on program-

10  EcoScienceWorks is available at “EcoScienceWorks: Exploring and Modeling Ecosystems 
Using Information Technology (IT),” website, Foundation for Blood Research, http://www.
fbr.org/swksweb/esw.html. Last accessed March 14, 2011. 
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ming, even if focusing explicitly on programming might have significant 
educational value.

Robert Tinker observed that students involved in a very tightly 
packed K-12 curriculum do not have the time to master programming. 
His preferred approach is thus to use a programming environment such 
as NetLogo11 or AgentSheets12 that allows users to focus on the concepts 
represented rather than on the details of programming. Janet Kolodner of 
the Georgia Institute of Technology noted that another option is the use of 
powerful software suites in which the student can manipulate important 
parameters. 

Several participants noted that learning about engineering or compu-
tational thinking may meet teacher goals that are not necessarily based 
in educational standards but are expected outcomes for students. For 
example, Cunningham observed that many elementary school teachers 
want to find ways to help their students work together in teams. Persuad-
ing students to work together, to respect each other, and to communicate 
what they’re doing is something that many teachers want to accomplish 
at the beginning of each year, because learning to work in groups is a 
skill elementary teachers are expected to develop in their young pupils. 
Educational activities that call for collaboration can often be an important 
part of such persuasion.

2.8.2  Out-of-School Computational Thinking

Given the issues relating to introducing computational thinking into 
schools, a number of workshop participants pointed to out-of-school 
venues as providing significant opportunities for exposure to computa-
tional thinking. In out-of-school venues, students have the time to engage 
in complex projects that are needed to nurture computational thinking. 
Malyn-Smith noted that learners need opportunities for thoughtful, 
reflective engagement with phenomena—not just a “drive-by” experi-
ence. Teachers in Malyn-Smith’s program are encouraged to think broadly 
about the knowledge base that students are developing in all of their 
activities, not just those provided in program settings. Teachers also 
engage in conversations with students about their interests and what they 
are learning in other settings, such as in museums, in watching television 
and listening to the radio, by playing games, and through what they’re 
doing with their friends.

11  NetLogo is available at “NetLogo.com,” website, Northwestern University, http://ccl.
northwestern.edu/netlogo/. Last accessed March 14, 2011. 

12  AgentSheets is available at “AgentSheets, Inc.,” website, AgentSheets, Inc., http://
www.agentsheets.com/index.html. Last accessed March 14, 2011.
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Out-of-school environments can provide curricular flexibility, appro-
priate staff capacity, infrastructure access, and access to effective pro-
grams, Malyn-Smith explained. This is especially valuable in rural areas. 
These interrelated challenges have constrained many previous educational 
innovations, and computational thinking is no different, she argued. For 
example, although nearly every middle school student learns from the 
textbook that trees help mitigate pollution, students in an after-school 
program can have a chance to go further, using modeling tools to map the 
trees in their school yard and to record relevant data on species, health, 
growing conditions, and the like.13 Students can use automated models to 
calculate the benefits of the trees in terms of pollution removal and runoff 
mitigation, and they can model alternative growth scenarios as they either 
“plant” new trees, let the existing trees continue to grow, or remove the 
trees for expanded parking. Re-running the model leverages the power of 
automation to quickly adjust the underlying parameters and see what the 
impacts are. This iterative process just doesn’t fit in a curriculum packed 
with hundreds of discrete topics that are connected loosely at best. Time 
allocations that allow for depth and complexity are possible in these pro-
grams. Schools have to provide this type of time allocation as part of the 
culture change needed for computational thinking to take root. 

Stephen Uzzo promotes computational thinking as a way to help 
future scientists cope with the transformational effect of data-rich science. 
New York Hall of Science activities entail developing exhibits, implement-
ing them, and then evaluating them for pedagogical efficacy in conveying 
the relevant concepts to students. 

For example, Uzzo discussed a project developed cooperatively with 
the School of Library and Information Science (SLIS) at Indiana Univer-
sity. The SLIS macroscope helps to identify patterns, trends, and outliers 
in very-large-scale static or streaming data sets. The macroscope is an 
expandable and integrated set of applications that scientists can use to 
share scientific data sets and algorithms and to assemble them into work-
flows. Macroscopes continuously evolve as scientists add and upgrade 
existing plug-ins and remove obsolete ones to arrive at a set that is truly 
relevant for their work. This project requires little or no help from com-
puter scientists. 

Uzzo argued for a new generation of science students who know 
what it means to be an e-scientist, taking advantage of online data. He 
suggested that informal learning institutions may be in the best position 

13  This example is further elaborated in ITEST Small Group on Computational Thinking, 
2010, Computational Thinking for Youth, Newton, Mass.: Education Development Center. 
Available at http://itestlrc.edc.org/resources/computational-thinking-youth-white-paper. 
Last accessed May 20, 2011.
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to advance the cause of e-science. Specifically, he said that informal sci-
ence institutions have an opportunity to integrate computational think-
ing in a broad range of science activities. These institutions are in a good 
position to conduct learning research on computational thinking and to 
integrate such research into professional development and curriculum 
development for K-12 formal education.

2.9  RESEARCH AND UNANSWERED QUESTIONS 
REGARDING COMPUTATIONAL THINKING

The first workshop report identified five open questions that at 
least some participants in that workshop believed were worth further 
exploration:

1.	 What is the structure of computational thinking?
2.	 How can a computational thinker be recognized?
3.	� What is the connection between technology and computational 

thinking?
4.	 What is the best pedagogy for promoting computational thinking?
5.	� What is the proper institutional role of the computer science com-

munity with respect to computational thinking?

Several of these questions were discussed in the second workshop: 
question 2 is related to the discussion of student assessment (Section 
2.6); question 3 is addressed in Section 2.9.2; and responding to ques-
tion 4 is implicitly the purpose of Sections 2.3 and 2.4. In addition, 
participants in the second workshop raised additional issues that are 
described below.

2.9.1  The Importance of a Process for 
Defining Computational Thinking 

As noted above, the first workshop identified the structure of compu-
tational thinking as an important open question. A number of participants 
in this second workshop amplified this observation by pointing to the 
importance of a process for defining computational thinking.

For example, Joyce Malyn-Smith argued that the field needs a rigor-
ous and valid way of bringing people together and figuring out what 
computational thinking is. It is necessary to have consistency because 
not everyone understands what computational thinking is about, or they 
see it only through their own lens. Absent a rigorous process for defining 
computational thinking, efforts to promulgate computational thinking in 
the curriculum will lack credibility. Whatever else it may be, computa-
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tional thinking in the curriculum cannot be just a bunch of examples that 
are placed into the curriculum at the discretion of individual teachers.

2.9.2  The Role of Technology

Elaborating on the first workshop’s question regarding the connection 
between technology and computational thinking, Malyn-Smith identified 
two research questions. First, to what degree and in what ways does the 
technology expertise of youth contribute to their computational thinking? 
A related second question is, How and to what degree can the use of tech-
nological tools and systems and processes facilitate transfer of learning in 
STEM careers and in the sciences?

2.9.3  The Need for Interoperability

Al Aho noted that “the software world of today is largely a Tower 
of Babel, with lots of incompatible infrastructures and a lot of expense 
regarding who pays, who collects the data, who maintains the data, who 
maintains and evolves the software.” Stephen Uzzo said this was espe-
cially true in an e-science environment in which data is produced in 
prodigious quantities and there is a premium on making large data sets 
available to researchers reliably and promptly. In this view, computational 
thinking efforts would be facilitated by interoperability between applica-
tions used by researchers, and it must provide easy-to-use tools for pro-
cessing, manipulating, and combining multiple data types. 

Jim Slotta echoed these points when he observed that content from 
most platforms is not portable across platforms. Further, the environ-
ment of a given platform is generally unable to interact with other 
applications that are running on the machine. To address some of these 
limitations, Slotta and his team engaged with the computer science 
department to develop a new open-source architecture called SAIL 
(Scalable Architecture for Interactive Learning) for content display and 
manipulation that separates the various layers of the learning environ-
ment (and in particular the content and the user interface) wherever 
possible. 

SAIL has been used in a number of other science education efforts 
as well. For example, SAIL is an integral element of the Science Created 
by You (SCY) project of the European Union.14 SCY is a large project that 
provides a flexible, open-ended learning environment for adolescents. 
Within this environment—called SCY Lab—students engage in personally 

14  This discussion of SCY includes material found at “Science Created by You,” website, 
http://www.scy-net.eu/. Last accessed February 7, 2011.
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meaningful learning activities that can be completed through constructive 
and productive learning. Examples of such learning activities include 
browsing for information, generating a hypothesis, and distributing tasks.

Slotta has also developed a technology framework called SAIL 
SmartSpace (S3) to support a complex orchestration of people, materials, 
resources, groups, conditions, and so on. This framework can be regarded 
as a “smart classroom” infrastructure that facilitates cooperative learning 
in a milieu of physical and semantic spaces. From a technical standpoint, 
S3 supports aggregating, filtering, and representing information on vari-
ous devices and displays (e.g., handheld devices, laptop computers); loca-
tional dependencies (i.e., allowing different things to happen depending 
on the physical location of a student); interactive learning objects; and an 
intelligent agent framework. The S3 environment is highly customizable 
and supports the coordination of people, activities, and materials with 
real-time sensitivity to inputs from students.

2.9.4  The Need for a Career Framework

Joyce Malyn-Smith contended that for computational thinking to get 
traction in the K-12 education community, it needs to be connected to 
frameworks and standards that are already implemented nationwide. An 
analysis of the Information Technology Career Cluster Initative’s model, 
for example, provides a way to organize a hierarchy of skills and knowl-
edge that can be repurposed to support the integration of computational 
thinking in the K-12 arena. At the most basic level, this information tech-
nology skills framework calls for literacy and the ability to use com-
mon technology applications. Further up the hierarchy is fluency with 
information technology, which involves core knowledge and skill sets 
of technology-enabled workers employed in any industry sector. At the 
highest level of this model are the skill sets necessary for information 
technology producer or developer careers—those that involve the design, 
development, support, and management of hardware, software, multime-
dia, systems integration, and services. In short, individuals engaged in 
different activities are likely to need different (though overlapping) sets 
of technology skills. 
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3

Committee Member Perspectives

3.1  ALFRED AHO

Committee member Alfred Aho, a professor of computer science at 
Columbia University, commented on several topics: motivations for com-
putational thinking in education, potential pitfalls in ineffectively teach-
ing computational thinking, the need for investment in infrastructure 
and tools to facilitate learning of computational thinking, and the role of 
assessment. 

Motivation for Computational Thinking

Echoing the sentiments of Matthew Stone, Aho described three com-
mon motivations for explicitly introducing computational thinking into 
education. First, he argued, computational thinking has an impact on 
virtually every area of human endeavor, as illustrated by the first work-
shop report’s discussion of computational thinking applications in fields 
as diverse as law, medicine, archeology, journalism, and biology.

Second, he noted dangers in computational thinking done badly. 
He recounted a story—“A number of years ago when I was doing some 
consulting for NASA, I came to Washington and noticed an article in 
the Washington Post that said global warming wasn’t as bad as scientists 
feared because the empirical measure of the rate of rise of Earth’s oceans 
wasn’t as bad as the computer models had predicted. It turned out to 
be a software error. So if we’re going into this world of modeling and 
simulation, I would like to put in a plea for good software engineering 
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practices and making sure not only that the data are correct but also that 
the programs are correct.” To underscore this point, Aho cited an article 
in Nature about bad software in computational science.1

Third, Aho suggested that computational thinking plays an important 
role in developing new and improved ways of creating, understand-
ing, and manipulating representations—representations that can change, 
sometimes dramatically, the way in which people see problems.

Humanization of Computational Thinking

Aho observed that a number of workshop participants pointed to the 
humanizing effect of computational thinking. Recalling Idit Caperton’s 
thoughts that using information technology in an appropriate manner 
“engages people, engages their souls, their passion, and their productiv-
ity, and people care,” Aho described similar experiences in working with 
undergraduates. He found that using creative programming projects to 
hone and develop computational thinking skills motivated students to 
pursue further education in computer science. Aho described classes in 
which students work in small teams to create their own innovative pro-
gramming language and then to build a compiler for it, and he reported 
that “often the students say the most important things that they learned 
from this course are not principles of programming languages or compiler 
design but the interactions that they had with the other students and the 
fun they had in doing the projects.” 

Aho also suggested that this kind of response to the use of technology 
was an effective rebuttal to those who argue that computers and informa-
tion technology are dehumanizing, as illustrated by Jaron Lanier’s argu-
ments in You Are Not a Gadget.

Computational Thinking as a Moving Target

Aho acknowledged the community’s need for a common definition 
of computational thinking, development of which is inherently difficult 
given the rapidly changing world to which computational thinking is 
often applied. Any static definition of computational thinking would 
likely be obsolete 10 or 20 years for now, he argued, and thus, ”The real 
challenge for the entire community is to define computational thinking 
and also to keep it current.”

With that thought in mind, Aho stated that he was particularly taken 

1  Zeeya Merali, 2010, “Computational Science: . . . Error: . . . Why Scientific Program-
ming Does Not Compute,” Nature 467(7317):775-777. Available at http://www.nature.com/
news/2010/101013/full/467775a.html.
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with a point made during Deanna Kuhn’s presentation, that computer sci-
ence and education communities should use computational thinking not 
just to teach old things but also to teach new things, both new methods 
and new ideas, to solve new problems, because that’s what the people we 
will be educating are going to be doing in the future. 

Need to Apply Learning Science to the Problem of Teaching/Learning 
Computational Thinking

Echoing Jeannette Wing’s original charge for the workshop series, 
Aho said he also believed that educational theory and developmental 
psychology would help to inform the teaching of computational think-
ing regarding what particular content to teach and when to teach it. 
For example, developmental psychology could help identify the specific 
concepts of computational thinking that would be most appropriate for 
young children. More generally, he argued that for computational think-
ing to be taught effectively, any curriculum for computational thinking 
should be phased according to a developmental sequence characteristic 
of the students engaged with that curriculum. 

Finally, he also suggested that developmental psychology might 
have value in contributing to different pedagogical models for learners 
with different cognitive styles and in shaping the infrastructure and tools 
needed to teach computational thinking.

Infrastructure for Computational Thinking

Addressing the issue of the infrastructure needed to support a seri-
ous educational effort to promote computational thinking broadly, Aho 
noted that such an infrastructure did not consist only of hardware but 
also necessarily included continuing funding streams, instruments for 
gathering data needed to analyze outcomes, and an ongoing data collec-
tion effort. He added that the infrastructure would also require ongoing 
maintenance for and the development of new tools to support compu-
tational thinking. 

A key element of infrastructure, Aho argued, is the ability to integrate 
applications. Aho warned that “unless these issues get resolved, we are 
going to find ourselves in a world of the future which may resemble 
the software world that we’re currently in, which is largely a Tower of 
Babel, [with] lots of incompatible infrastructures and a lot of expense.” 
This comment prompted Stephen Uzzo to argue that interoperability, 
access, usability, and portability of data are problems that can be explored 
through collaboration. 
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How Do You Know What Students Are Learning? 

Aho reflected concerns shared by a number of workshop participants 
that determining what students are learning in computational thinking 
activities may be difficult. He noted that assessing how a student has 
internalized the abstractions of computational thinking may be challeng-
ing, and even assessing programming skills can be difficult. For example, 
he indicated that although program correctness is an essential goal of 
good programming, a student who writes a correct program (i.e., one 
that exhibits the appropriate behavior) nevertheless may not have made 
the conceptual connections that one might expect from someone who 
has written a correct program. He illustrated this point in commenting 
on Walter Allan’s presentation, in which he observed that “[in thinking 
about] the kind of thought process that a student is following to get the 
bunny to eat these carrots, I am not sure what the student is actually learn-
ing about some of these much deeper issues that a serious programmer 
would have to face.”

3.2  URI WILENSKY 

Committee member Uri Wilensky, a Northwestern University profes-
sor and director of the Center for Connected Learning and Computer-
Based Modeling, shared his observations on a number of key issues dis-
cussed at the workshop, including the motivation and value in teaching 
computational thinking, the challenges arising from the continuing non-
convergence on one definition of computational thinking, and identifi-
cation of the best environment and tools for conveying computational 
thinking to different audiences. 

Motivation

Wilensky noted that in recent years, many branches of science and 
engineering have changed in ways that require researchers to be facile 
with computational thinking. Disciplines such as biology, physics, math-
ematics, and so on utilize computational methods to analyze problems 
and model phenomena.2 Computational thinking in many ways offers a 
new way to interact and learn about the world and scientific phenomena. 
According to Wilensky, in order to effectively engage and contribute to 
modern science and engineering, future scientists and engineers must be 

2  National Research Council, 2010, Report of a Workshop on the Scope and Nature of Computa-
tional Thinking, Washington, D.C.: The National Academies Press. Available at http://www.
nap.edu/catalog.php?record_id=12840. Last accessed February 7, 2011.
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able to do computational thinking. Thus early in their academic careers, 
key computational thinking concepts should be introduced and mastered. 

A second reason for encouraging computational thinking is the power 
that it affords for greater automation of tedious tasks and the ability to 
manage more complexity for all types of learning and discovery. Mechani-
cal automation allows one to delegate certain tedious tasks and simple 
problem solving in favor of more complex tasks and problem solving. 
Indeed, as the problems at hand become more complex from a process 
and computational perspective, increasingly computational tools and 
abstractions are needed to analyze and understand them. 

A third reason is that computational thinking supports the capacity 
for complex design and simulation. It enables one to naturally create 
designs within a specific context that do not require access to different 
kinds of materials because the materials are represented computationally 
in the form of data and bits. Wilensky also noted that such simulations 
could be used to inform public debate and discourse about issues of 
public policy—simulations could be used as modeling tools to explore 
alternative scenarios for situations in which the interactions and feedback 
loops among the relevant elements (e.g., resources) are tightly coupled.

Fourth, computational thinking (and computational tools) can 
enhance self-expression and collaboration, supporting the use of many 
different forms of expression and the easy sharing of those expressions. 
The potential for expression and collaboration can be very motivating to 
many individuals, especially children. Wilensky suggested that the use of 
computation in art, music, and other kinds of expressive media is under-
explored in much of the available research.

As a fifth reason to motivate computational thinking, Wilensky 
recalled Caperton’s argument that educators do not always have to start 
with kids but rather can focus on those in positions of leadership. That 
is, Wilensky paraphrased, “If we are thinking about the citizenship value 
of computational thinking, then it is shortsighted to not pay attention to 
the people who are actually empowered to make a difference and to try 
to change the discourse among that group so that they are computation-
ally literate enough to be able to understand this complex world they are 
being asked to lead.” 

Last, Wilensky argued that computational thinking, much like the 
use of Arabic numerals, democratizes access to knowledge. He noted that 
the significance of Arabic numerals was not that they were essential to 
multiplication and division (indeed, there were algorithms for multiply-
ing and dividing Roman numerals), but rather that because they were so 
much less cumbersome, Arabic numerals enabled many more people to 
perform multiplications and divisions. Wilensky then said, “The claim 
I was making is that we can now use computational representation—
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which similarly affords greater access to knowledge and new knowledge 
development.”

As an example, Wilensky pointed to work he has done with seventh- 
grade students to use computational thinking and computer modeling to 
study segregation patterns in Chicago. 

They started by using some of the NetLogo variation models that were 
based on the work of the Harvard economist Thomas Schelling, who 
actually won a Nobel Prize for that . . . last year. Schelling, who was a 
very learned and skilled economist, took many months to build these 
segregation models by using lots of checkered boards and moving coins 
around and flipping them back and forth according to determinant rules. 
He had the basic thinking that was needed to do those models. What he 
didn’t have was tools that could actually do it quickly enough so that 
he could consider all kinds of alternative scenarios. Now these seventh 
graders were doing that and they were asking all kinds of questions 
that pushed well beyond Schelling, like what would happen if there 
were some Asians that desired only integrated neighborhoods or what 
would happen if you had many more sets of groups that had different 
criteria. All those things could be easily explored within the foundational 
framework—[but] really [were] pretty much impossible without compu-
tational thinking and related tools.

Epistemological Diversity Regarding Computational Thinking

Wilensky said that although he saw a lot of common ground on cer-
tain aspects of computational thinking among educators and researchers, 
there were a number of significant areas where workshop participants 
saw things differently. (This diversity of perspective was also reflected 
in the first workshop report.) Specifically, he thought that the different 
ways of understanding computational thinking discussed in the second 
workshop fell into several categories: ways of seeing and knowing, ways 
of doing or capacities, a method of inquiry, and ways of collaborating. 

He noted that some panelists talked about computational thinking 
as ways of seeing and knowing. For example, he pointed to Robert Tinker’s 
presentation in which Tinker talked about breaking up the world into dif-
ferent simple processes or pieces as a way of seeing the world not just as 
objects but rather as various informational pieces that can be attached to 
objects and processes and manipulated. Wilensky said that in this view, 
computational thinking as ways of seeing and knowing really represents 
a different way of understanding the world. 

Ways of doing and capacities was another conception of computational 
thinking present in many of the different presentations. According to 
Wilensky, this view emphasizes the importance of building, design-
ing, and going through various “constructionist” kinds of activities, as 
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Seymour Papert would call them. In this sense, ways of doing includes 
issues of modeling and thinking using computation as a way of repre-
senting the world and being able to experiment and explore alternative 
scenarios within the simulated world. 

Computation as a method of inquiry was interesting to Wilensky because 
the computer is protean enough to afford users the ability to explore and 
manipulate all kinds of processes within a small space. Illustrating this 
view, Wilensky cited John Jungck’s presentation in which Jungck talked 
about the very small range in the evolutionary possibility scale that is 
actually represented in real creatures. Through computational thinking 
researchers can create simulated worlds in which one can explore evo-
lutionary trajectories that never actually came into being, creatures that 
could have evolved but did not.

Last, Wilensky noted that a number of speakers described computa-
tional thinking as though it was a way of collaborating. These presenters 
focused on the ways in which collaboration can be extended as a result 
of computation and computational tools. New ways to connect and form 
different groups are no longer necessarily limited by geography. Wilen-
sky held that “instead of a spatial model of collaboration, we have this 
kind of network model of collaboration where there are many different 
opportunities for synching up, and that capacity is becoming more and 
more important in our society, and computation is another way to facili-
tate that.” 

A Diversity of Venues for Computational Thinking

Represented at the workshop were a number of different perspec-
tives regarding the most effective environment and tools for teaching 
computational thinking. Wilensky distilled the points of view as those 
favoring formal curricular learning versus extracurricular learning and 
those favoring lab-based learning versus in-the-field learning. 

The case for making computational thinking a part of the formal 
school curriculum was made by several speakers. Wilensky pointed to 
arguments made by Tinker that the right place for computational thinking 
is in schools, specifically within the science curriculum, because science 
already uses computational thinking and computers in major ways. With 
computational thinking, educators can facilitate all kinds of modeling 
activities in science that really represent ways of actually doing real-world 
science as opposed to just sort of learning about science. Wilensky argued 
that social science research may also be a fertile ground for computational 
thinking, saying that “social science is another very fertile area to inte-
grate computational thinking because tools now enable us to be able to 
mine large data sets or to create models that were not possible.” The con-
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structs of new representational infrastructure and meta-representational 
capacities in computational thinking offer possibilities for substantial 
advances in social science.

Others argued that computational thinking should be its own subject 
within the formal curriculum. Wilensky pointed to Caperton’s presenta-
tion, which demonstrated that educators can actually design a curriculum 
around computational thinking. Tinker and others did note a concern that 
the fact of already packed school curricula may generate some push back 
on the idea of computational thinking taught as a separate subject. To 
this point, Wilensky responded that this may be more a strategic discus-
sion rather than a pedagogical one. Work presented by Paulo Blikstein 
and others shows that there is room even in current science curricula to 
introduce computational thinking concepts in a way that they fit, and 
also mutually support learning of other complex concepts. Others further 
argue that computational thinking fits best in an extracurricular context. 
Wilensky argued that each option should be explored.

Lab-based approaches were discussed, as were in-the-field approaches. 
Wilensky argued that this theme is an important one because it reflects the 
fact that the public in general and educators in particular “tend to think 
of computing as these kinds of things that are built into our computers 
and we tend to do them inside. But there were at least some hints of 
capacities beyond that.” Wilensky pointed to presenters Tinker, Jungck, 
and Uzzo, whose presentations discussed the use of various probes and 
sensors in the field to collect data for computational learners to analyze 
and manipulate. Wilensky stated that these options illustrate that “we 
are not necessarily limited by this [indoor] model of what computation 
is. Instead we can think of ubiquitous computation and all the different 
kinds of ways in which we can do things.” Thus in-the-field approaches 
to computational thinking education must be explored, just as lab-based 
approaches must be developed. 

Speaking for himself, Wilensky argued that computational thinking is 
important enough that it should not have to be squeezed in on the mar-
gins or sneaked in on the side. He acknowledged the pragmatic benefits of 
such an approach but noted that it is perhaps inconsistent with a serious 
view of computational thinking as a major new mode of thinking that can 
be powerful for everybody, not just for an elite few. 

Wilensky also believed that it is sometimes a red herring to assert that 
there is no room in the standard curriculum to accommodate a serious 
examination of computational thinking. Indeed, he argued, sometimes 
important ideas in computational thinking can be introduced incremen-
tally along with standard content in a way that makes the standard con-
tent easier to learn (and vice versa).
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Different Tools for Computational Thinking

Wilensky indicated that another theme emphasized in the discussion 
was what kinds of tools are being used to enable computational thinking. 
The workshop revealed a range of approaches in use, many of which were 
related, although Wilensky noted that the main distinguishing factor in 
these approaches was the question of whether the tools were developed 
with a target audience in mind. Thus the question is whether, even with 
children, educators want to use these specially designed learning tools 
or whether professional tools should be used. For example, Wilensky 
proposed that maybe tools such as Scratch are designed more with an 
audience of children in mind—for a target audience especially tuned to 
learning and motivation through things such as games. That is, using 
games can be a major motivational tool for an audience of children learn-
ing computational thinking. 

Other tools may have been designed specifically to target a profes-
sional community. Caperton argued for use of professional-level tools 
such as Flash, one of the most prevalently used animations programs in 
the world, in computational thinking activities because this use of authen-
tic tools can be a kind of motivation for students to continue learning. 
Wilensky pointed to modeling tools such as NetLogo, AgentSheets, and 
many others that particularly help in science. He reiterated that presenter 
John Jungck demonstrated the “extent [to which] biology has changed 
dramatically as a result of computation and all the different kinds of tools 
that are now in the regular toolbox of biologists that just were not there 
several decades ago.” He went on to say that “these tools have changed 
what the discipline is and made the science of biology much less a natural 
descriptive one and much more one that involves modeling and analy-
sis with very large sets of data, for example,” suggesting that students 
interested in pursuing careers in biology may be motivated to learn com-
putational thinking as a result of having access to authentic professional 
biology research tools. 

Create and Modify as Complementary Approaches

Wilensky noted the difference between students writing programs 
starting from a blank screen versus students modifying existing pro-
grams, but argued that both approaches have value in conveying concepts 
of computational thinking. However, he did caution that the canonical 
“use-modify-create” sequence is not the only viable approach to teaching 
the skills of computational thinking. In his words,

It could be in the very first class that kids might create something, like it 
might be in a biology class where we might say, “Start with some kind 
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of creature and give some rule of birthing and dying and see what hap-
pens to the system.” That’s a very small creation, but nonetheless it’s a 
creation, and there will be a diversity of different possible choices that 
people will come up with, and a comparison of those can lead to lots of 
insights. So we can think of ”creating” in small bites as well, and some-
times creation is a lot easier than modifying as a different kind of entry 
point, and all of the outcomes are ones that we want.

An Affective Dimension

Wilensky also noted an affective dimension to some of the presen-
tations. Specifically, many of the participants in the activities that were 
reported in the workshop had done sophisticated programming work 
in developing genuinely useful applications but nevertheless did not 
believe that they were, in fact, programming. Wilensky saw this discon-
nect between their capabilities and their self-reported assessments as a 
problem worth addressing, and pointed to the importance of boosting the 
students’ confidence that in fact they can master complex topics.

He further drew an analogy to the teaching of reading—“I am struck 
by how much effort we as a school system put into reading. It is a really 
difficult process, yet we think it is so valuable that we invest enormous 
amounts of resources in it in the schools. I want to think of us as being 
bold enough to try to make the claim that computational thinking and 
computational literacies are becoming important enough that we ought 
to be investing major resources into it.” 

3.3  YASMIN KAFAI

Committee member Yasmin Kafai is a professor at the University of 
Pennsylvania Graduate School of Education. Her research focuses on the 
design and study of tools for learning programming.

Her comments at the workshop focused on ways to articulate and 
teach computational thinking more effectively. They included a discipline-
oriented approach for identifying key facets of computational thinking, 
a developmental progression approach for teaching, a real-world prob-
lem-solving approach for identifying concepts and teaching, and a cycle 
approach (use-modify-create) for teaching and assessing learning. 

A discipline-oriented approach, Kafai said, means starting from indi-
vidual disciplines to identify important and useful aspects of computa-
tional thinking. This approach may allow the community to articulate 
more clearly what computational thinking is and what it is not. Kafai 
noted, “It is within the disciplines that aspects such as programming, 
visualization, data management, and manipulation can actually help us 
illuminate and understand processes.”
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According to Kafai, the computer science and education communities 
have not developed what presenter Jill Denner termed a “developmen-
tally appropriate definition of computational thinking.” Kafai acknowl-
edged that

[w]e all have examples of kids of many ages and adults who are being 
very courageous and interested in doing computational thinking, but we 
also know from prior experience in mathematics and science education 
that we really do need a more profound understanding of what kids’ 
engagement with computational thinking at different ages is, and then 
how we can kind of build pedagogies, examples, on it. I think we are far 
away from that point. These presentations here gave us some ideas about 
where to start looking and where the examples are. 

Kafai found the approach presented by Danny Edelson and Robert 
Panoff helpful. They focused on how computational thinking can help ask 
interesting questions and solve real-world problems, rather than simply 
develop algorithms. They used computational thinking to help students 
answer questions such as, What’s real? Where are the issues? Where are 
the anomalies and what do they mean? Kafai argued that these ques-
tions point to a “kind of social aspect of computational thinking which 
we don’t talk enough about but which would be really important in the 
social relevance of bringing computational thinking into the disciplines 
and judging what the value is.”

Kafai is a fan of the cycle approach to learning and teaching compu-
tational thinking; she argued that the workshop’s presentations seemed 
to come together in favor of this approach as well. “I think we have some 
convergence here on a kind of cycle approach,” Kafai said, “and I know 
other presenters before us also alluded to this kind of use-modify-create 
as a kind of pedagogy to introduce students into approaches to compu-
tational thinking.” 

Kafai added, “I don’t think it’s so bad that the kids get some pieces 
of code to start with, rather than . . . a blank screen and . . . [the expecta-
tion that they] develop all the programming on their own, especially if 
they don’t have any prior competencies in it.” She argued that learning to 
use the code and manipulate it is a good way to try out strategies before 
designing one’s own programs. In addition, the cycle approach works 
across the disciplines and can be used to facilitate computational learn-
ing based in data analysis, visualization, and game design approaches 
to teaching computational thinking. Kafai felt that the next step was to 
articulate some extensions and caveats to the cycle approach in order to 
build better assessment tools.



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

COMMITTEE MEMBER PERSPECTIVES	 47

3.4  MARCIA LINN

Marcia Linn’s comments focused on the value and trajectory of com-
putational thinking and on the challenges associated with incorporating 
computational thinking into the curriculum. Linn, of the University of 
California, Berkeley, believes that computational thinking is important 
for everyone for many reasons, including:

•	 Making personally relevant decisions as a citizen in a scientific and 
technologically advancing society,

•	 Succeeding in a growing number of disciplines and jobs,
•	 Increasing interest in the information technology professions, and
•	 Enhancing U.S. economic competitiveness in the international 

sphere.

Linn echoed a point made by presenter Taylor Martin—that compu-
tational thinking empowers learners. When learners successfully combine 
disciplinary knowledge and computational methods they develop their 
identity as STEM learners.  These opportunities for empowerment and 
expression can affect the way students think about themselves and their 
potential for continuing in STEM fields.

Linn argued that computational thinking is a powerful concept that 
by its very nature involves multiple disciplines. She recommended char-
acterizing the trajectory of computational thinking from elementary to 
college courses. In her view, computational thinking has a role in nearly 
every discipline and at every level of learning. 

Linn acknowledged that the community has not settled on one con-
sensus concept of computational thinking.  She felt that recent work—
including the two National Research Council workshops on the topic 
of computational thinking—has resulted in a growing set of compelling 
examples and some emerging criteria. 

The examples characterize the types of reasoning and disciplinary 
problems that could illustrate computational thinking at every grade level 
and for a wide range of courses. Several such examples follow:

•	 Human genome sequencing. To understand human genome sequenc-
ing, learners need to combine computational ideas with disciplinary 
knowledge about genetics. The computational ideas that students need 
to integrate include those of repeated applied algorithms; precisely for-
mulated, unambiguous procedures; search, pattern matching, and itera-
tive refinement; and randomization as an asset in repeated fragmentation. 
The disciplinary knowledge includes the notion of DNA as a long string 
of base pairs.
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•	 Modeling of economic or sociological systems. To understand modeling 
of economic or sociological systems, students need to combine compu-
tational ideas with disciplinary knowledge of economics and sociology. 
As an example in economics, consider the idea of aggregating multiple 
independently specified rule-based agents and sensitivity to initial condi-
tions. As an example in sociology, consider knowledge of community as 
a collection of independent decision makers.

Linn argued that the criteria for identifying computational thinking 
are emerging. They include combining computational ideas with disci-
plinary knowledge. Successful applications of computational thinking 
involve a process of design. Learners who do computational thinking 
engage in a sustained process of investigation that results in a novel solu-
tion to a problem.

Linn thinks that the value of computational thinking lies in its ubiq-
uity, contemporary role in scientific research, and potential to motivate 
learners. As the character and criteria for computational thinking are 
refined, it will grow in importance in the curriculum.

Linn argued that incorporating computational thinking into the 
curriculum, especially for precollege learners, faces many challenges. 
She pointed out that it is still not clear whether computational thinking 
should ultimately be incorporated into education as a general subject, 
a discipline-specific topic, or a multidisciplinary topic. She noted the 
conundrum that the goal of becoming literate in computational thinking 
may not be achieved by taking a course on computational thinking but 
rather by studying topics in various disciplines that require computa-
tional thinking. Indeed, it may be necessary to study computational think-
ing in several disciplines to fully understand its scope and nature. Only 
by exploring computational thinking in multiple disciplines can learners 
appreciate its common features and the challenges of using computational 
thinking in a new discipline.

Computational thinking is emerging in new specialties that integrate 
disciplinary knowledge and computational algorithms. Linn argued that 
computational thinking would be most effective when integrated into 
specific disciplines rather than as a stand-alone course. Linn remarked, “It 
seems more efficient to take a disciplinary course and create activities that 
use computational ideas to advance understanding, but the case could be 
made for other solutions.”

She noted the challenges associated with incorporating computa-
tional thinking into the already-packed school curriculum. Computa-
tional thinking activities require access to technology, development of 
new curriculum materials that align with standards, teacher professional 
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development, and building of a community of users who can try out and 
refine the activities.

Understanding where and how computational thinking fits into cur-
rent courses will require a concerted effort. Linn remarked, “We could call 
for emphasizing computational thinking everywhere and end up finding 
that it is nowhere because no one felt responsible for it. In addition, even 
if we did incorporate computational thinking into every course we might 
fail to build competence because the experiences were not cumulative. We 
need to think about ways to build coherent understanding of computa-
tional thinking as students encounter it across disciplines.” Linn saw the 
overarching goal of the workshop as being to catalyze thought about the 
steps needed to make computational thinking central to all of education.

Linn also commented on the nature of the curricular materials avail-
able for teaching computational thinking. Although materials exist, they 
are not widely available to educators and may be optimized for home 
use. The available materials generally result from small-scale grassroots 
efforts or are centered on technology environments. For example, many 
students are using computational learning tools outside the classroom 
(such as Scratch or Alice) but do not see any connection between these 
tools and what they may be doing in school. Teachers could use these 
tools to enable students to combine disciplinary knowledge and compu-
tational thinking. 

Many of the available materials are designed to encourage students 
to explore complex problems fairly autonomously. They need trial and 
refinement to meet the needs of a broader audience. It is not clear how 
to make these materials useful and available throughout the educational 
system. 

To make computational thinking a central part of the curriculum in 
all the relevant courses, Linn argued, requires making the case that it is 
essential to each discipline. To convince the K-12 community that compu-
tational thinking is central requires proactive work with teachers, school 
administrators, and policy makers. Linn recalled Christine Cunningham’s 
comments about the importance of beginning with teachers and admin-
istrators to persuade them of the value of incorporating computational 
thinking into the curriculum. She also related her own experience that 
getting school administrators on board “has made an enormous differ-
ence in creating a willingness to sustain the use of technology-enhanced 
materials and even to obtain resources dedicated to using those materials 
consistently.”

Linn drew an analogy to the challenges that exist with respect to 
adding projects to the STEM subjects. In her view, K-12 students should 
do at least one 2-week project every year. Such a project would be a natu-
ral venue for using computational thinking. She argued that advocating 
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for allocating time in the curriculum to projects—time that would be 
used to support the teaching of computational thinking and other STEM 
subjects—would be effort well spent. Teachers could select projects and 
appropriate technologies. They could use any technology including paper 
and pencil but would have an opportunity to use powerful computational 
tools. 

Linn noted that the project-based format is particularly well suited 
for computational thinking because it allows for the kind of sustained 
reasoning and iterative refinement that occurs when a student is doing a 
complex task. By contrast, most K-12 curricula do not require students in 
STEM courses to engage in sustained activities.  

She also argued that this type of effort will require the formation of a 
community of teachers who support each other and mentor newcomers. A 
one-time summer workshop will not be sufficient. Computational think-
ing education cannot succeed in the long term without several teachers 
at every school doing the same thing, “because if you don’t have a com-
munity, you don’t have anything that can sustain this kind of exciting, 
innovative work.”

As far as options to start this integration, there was quite a bit of dis-
cussion at the workshop as to whether the best initial approach would be 
to start with the informal extracurricular activities or the typical school 
curricula to incorporate computational thinking. Linn suggested targeting 
both approaches since each will reach a different learning audience. “We 
are always going to be reaching kind of a different population starting 
in after-school and summer programs than if we start in school. . . . We 
know that these after-school and summer programs reach a wide range 
and often a very deserving group of students, but there are many students 
that just never have that opportunity.” Instead, she argued that the goal 
should be to target a large audience to maximize the positive empower-
ment factors of computational thinking.

In summary, Linn saw great potential for computational thinking 
as a new focus for the curriculum. She was excited about the synergy 
between course projects and computational thinking. She sees computa-
tional thinking as adding motivation for course projects while enticing 
students into STEM disciplines and preparing them for contemporary 
careers.

3.5  LARRY SNYDER

Committee member Larry Snyder is a professor of computer science 
and engineering at the University of Washington. Snyder has researched 
the topic of fluency with information technology for the past decade.

Throughout the workshop discussion, Snyder expressed particular 
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interest in several key discussion topics: comparisons of programming 
pedagogies involving programming modification versus novel program 
creation, opportunities for teacher education and development, and tools 
and options for integrating computational thinking into the school cur-
riculum. While Snyder felt that assessment of learning is an important 
topic as well, he argued that in the absence of having a firm definition of 
computational thinking, “assessing how well we’re doing at it is probably 
a little bit premature.” He felt that it is clear that there is a lot to do in this 
area and continued research is important. 

Snyder was interested in the rate of transfer of concepts in computa-
tional thinking among students who participate in projects that encourage 
them to read and modify an existing program versus projects in which 
students create programs from scratch. To illustrate this issue, Snyder 
cited points made by Jill Denner and Paulo Blikstein. A result of proj-
ects in which a student modifies programs prior to creating them can 
sometimes be that the student “stalls” at the “modify” stage and never 
advances to the “create” stage. 

Snyder agreed that the use-modify-create model is an excellent way 
to formulate the computational learning challenge, but he also felt that it 
is important to understand and assess a student’s overall progress rather 
than focus on at which stage the student gets stuck. Denner agreed, reply-
ing that much more research is needed before she can be sure, but she 
believes that determining a student’s overall progress may be attributed 
to an aspect of “intrepid exploration, a willingness and a confidence to 
confront the complexity and not back away from it when they’re con-
fronted with something that’s difficult.” Denner added that nearly every 
student has some ideas that could be executed using computational think-
ing, “but students come in with different levels of comfort with engaging 
and with going through the process of trying something, failing, trying 
something, and failing.” 

Snyder recalled that Blikstein had a different perspective. Blikstein 
argued that it may be dangerous to assume that models that seem to 
go from simple to complex—such as modifying a program first, and 
then creating a new one from scratch—offer pedagogical benefits. Snyder 
acknowledged this point, noting that young learners are capable of creat-
ing programs, even before they can read programs from other people; in 
fact, students likely prefer to create their own original programs, which 
in turn may motivate them to learn more computational thinking skills 
and concepts. 

Snyder made several points highlighting some of the different 
approaches available for teacher education and development related to 
computational thinking. Presenter Michelle Williams mentioned several 
options she and her colleagues have explored, including summer and 
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multiweek programs, in-service training, and so on. Snyder agreed with 
Williams that teacher development is critical in getting teachers up to 
speed and prepared to teach computational thinking. Snyder was particu-
larly struck by the concept of teachers learning through working directly 
on computational thinking-related projects and activities, much like their 
prospective students would, rather than through rote lecture. 

As far as facilitating integration of computational thinking into the 
school curriculum, Snyder reiterated some of the practices put forth in 
Jeri Erickson and Walter Allan’s presentation. Practices such as teach-
ing teams in which several instructors in related subjects collaborate to 
instruct a group of students, introducing technology for the project a year 
in advance, and making the software available on every laptop through-
out the school system are a few examples Snyder believes could really 
increase dissemination of computational thinking. Snyder also appreci-
ated the use of both the technology-based computer game and the physi-
cal grid-mapped tarp to make the computational programming concepts 
as well as the ecology concepts behind the bunny foraging project more 
concrete.

3.6  JANET KOLODNER

Janet Kolodner is a professor of computing at Georgia Institute of 
Technology. Her research focuses on the cognitive sciences and learn-
ing sciences, and the roles of computing technologies in promoting and 
mediating learning. 

Overall, Kolodner found this second workshop to be much more 
grounded than the first in learning research and in-the-classroom feed-
back. Rather than talking in the abstract about what computational think-
ing might be, discussion focused on real examples of the use and promo-
tion of computational thinking, as well as cases where computational 
thinking may not have been furthered. Kolodner found that some of the 
discussions delved very deeply into many practical issues associated with 
developing computational thinking curricula. In particular, she found 
presentations by Robert Tinker, Mitch Resnick, and Robert Panoff particu-
larly impressive in this respect.

She pointed out that the first two panels had helped add maturity and 
depth to her understanding of what computational thinking is, and that 
some of the later discussions had helped her further refine and develop 
aspects of this conception of computational thinking. This was particu-
larly impressive given that Kolodner, through her work with the commit-
tee and similar computational thinking activities, already had a sophisti-
cated understanding of computational thinking and its attendant issues. 
Particularly valuable to her were contributions regarding what educators 
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have done to help kids learn to become computational thinkers, and the 
ways educators might integrate those things into the curriculum.

Kolodner’s comments focused on several themes:

•	 The need for a formal definition of computational thinking,
•	 Two dueling definitions of computational thinking and their rela-

tionship to each other,
•	 Pedagogy and learning progressions explored in the workshop, 
•	 Pedagogy and its role in assessment,
•	 Targeting specific goals for assessment,
•	 Distinguishing learning assessment from project evaluation, and
•	 Setting standards and baselines for assessment.

Definitions of Computational Thinking

Kolodner argued that the computational thinking community needs 
to be able to identify exactly what is meant by computational thinking 
to decide what learners should learn and to assess and evaluate what 
learners know, what they can do, and their attitudes and capabilities 
with respect to computational thinking. The community must be specific 
about the definition of computational thinking. The multiple definitions 
collected at the first workshop are a good start to the discussion but not 
enough on which to base assessment tools. She noted, “Interestingly, I am 
left with two not-quite-consistent views of what computational thinking 
is and what everyone should be capable of. Furthermore, I think this ten-
sion is something that warrants further discussion.”

Kolodner noted that the first view of computational thinking was 
described in the presentation by Tinker and later elaborated on by Danny 
Edelson. Tinker defined computational thinking as fundamentally about 
breaking problems into smaller and smaller problems that are solvable by 
rather simplistic computational devices. Edelson, in his discussion, talked 
about the fact that those who are AI (artificial intelligence) experts and 
are knowledgeable in computational modeling of cognition have learned 
to describe mental processes well enough so that they could be run on a 
computer. Further, this community of experts has a disposition toward 
describing various processes in that amount of detail in anticipation of 
using computers to assist in determining solutions. Edelson claimed that 
computational thinkers aim toward solutions that are constrained by 
the machine and aim toward breaking problems into parts or chunks 
that make sense computationally. Making sense computationally means 
that one can specify the sequencing or control within each chunk, and 
the chunks (or many of them) each have a particular function. Kolodner 
stated, “Some of us who come from computer science, and especially 
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cognitive-type AI, are really good at breaking down problems to a set 
of functional components—the pieces each play useful roles as part of a 
process, and they can be fit together in a variety of ways to create other 
processes that perform bigger functions. It’s where we feel comfortable, 
and we can never understand why someone else would break a problem 
down any other way (but people do—how odd).” Kolodner found this 
characterization effective and useful in describing what computational 
thinkers do.

Kolodner pointed out that this definition of computational thinking is 
far more constrained than simply thinking about computational thinking 
as problem solving. Rather, this definition regards computational thinking 
as “a certain kind of problem solving that computer scientists are pretty 
good at,” in particular, thinking in terms of processes to be carried out, 
imagining the functional pieces of those processes, and identifying which 
of those pieces have been used in solving previous problems and which 
might be used in solving later ones. 

Notice that this approach is not synonymous with programming. 
In fact, Kolodner pointed to the work of Richard Lipton of the Georgia 
Institute of Technology, in which he and several colleagues figured out a 
treatment for the AIDS virus in patients by mapping out the biological 
processes within a person’s body, the substances those processes use and 
create, the conditions under which they work that way, and how the pro-
cesses are sequenced, and then identifying ways in which the sequence 
of processes might be changed or disrupted. In this way, he used a com-
putational approach to address the problem, but without programming.

This view of computational thinking is consistent with systems think-
ing and with model-based reasoning, both of which play a huge role both 
in scientific reasoning and in engaging in computational sciences. Indeed, 
both Tinker and Panoff proposed integrating model building, simula-
tion, and model-based reasoning into math and science classes as a way 
to engage kids in computational thinking as they are getting to greater 
understanding and raising and solving problems in mathematical and 
scientific domains.

Kolodner added that she believes that computational thinking is a set 
of skills that transfers across disciplinary domains. She compared com-
putational thinking to the processes involved in inquiry, noting that just 
as inquiry is not one specific skill but rather a collection of relevant skills 
specialized for different disciplines, so too is computational thinking a col-
lection of skills that may be applied differently to different disciplines. As 
an example, Kolodner stated, “If you are a chemist, you are paying atten-
tion to different things than if you are a physicist or a biologist, and you 
answer questions by different means. You might use experimental meth-
ods or modeling methods or simulation methods or data-mining methods 
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as you investigate. But in all sciences, you are, in general, attempting to 
explain phenomena and collecting evidence to help you answer ques-
tions about those phenomena and develop well-formed explanations.” 
She believes computational thinking may or may not include quantitative 
elements, but it always includes, in some way, manipulation of variables, 
decisions about selecting “the right” representations, and decomposition 
of complex tasks into manageable subtasks, to name a few.

Although Kolodner is partial to the problem-solving view of compu-
tational thinking just described, she was also drawn to a second view of 
computational thinking put forth by Mitch Resnick. In his view, compu-
tational thinking is not simply for problem solving. Rather, he believes 
that for most people, computational thinking means expressing oneself 
by utilizing computation fluently. For Resnick, computation’s power is 
in allowing people (everybody, not just those who are good problem 
solvers) to express themselves through a variety of media. In this view, 
computational thinking means being able to create, build, and invent 
presentations and representations using computation. This requires fluency 
with computational media.

Relationship Between Two Views of Computational Thinking

Kolodner argued that a deep understanding of computational think-
ing may encompass a synthesis of these two views. She synthesized the 
Tinker/Edelson view and the Resnick view as follows:

Computational thinking is a kind of reasoning in which one breaks 
problems/goals/challenges into smaller pieces that are doable by a stu-
pid computational device. This, in general, means thinking in terms of 
functions that need to be carried out to achieve a goal or solve a problem 
(not functions in the mathematical sense, but rather in terms of how 
things work) and pulling apart those problems/goals/challenges into 
smaller pieces that are functionally separate from each other and where 
the functions that are pulled out tend to repeat over many different situ-
ations. Computational thinkers tend to break problems into functional 
pieces that have meaning beyond the particular situation in which they 
are being used. These functional pieces can then be called on repeatedly 
in solving the problem or combined in new ways to solve new problems 
and achieve new goals and challenges. 

Resnick’s view of computational thinking comes into play when one 
thinks about the role the computer might play in helping to break prob-
lems into pieces and compose the pieces in new ways. To the extent that 
the computer can help with this kind of thinking, we become capable 
of achieving bigger goals or solving more complex problems. But this 
requires two things: (1) that we develop tools to help people think com-
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putationally (e.g., one could think about Scratch in this way) and (2) that 
we be able to use those tools fluently. A computational thinker is fluent 
in this kind of thinking and in using some set of tools that help with this 
kind of thinking.

With respect to computational thinking for everyone, the implication 
is that all individuals should get as far as being able to use these types 
of tools well to help them solve problems, meet challenges, or express 
themselves. Some will become more proficient, being able to manipulate 
these tools and solutions to create, build, or invent better solutions or 
creations. At the highest level are those who will be able to use computa-
tional media and thinking in the most sophisticated ways—as scientists, 
computationalists, and even artists.

Yet, the relationship between these two views of computational think-
ing is not entirely clear, and there may be a certain tension between the 
two. Certainly, Kolodner argued, there is overlap, for example, for those 
whose expression is of sophisticated complex systems. Those learning 
to be computational biologists and computational physicists and so on 
might need to have capabilities in both domains of computational think-
ing: problem solving/modeling and expression. But beyond this point, 
the relationship  between the two characterizations of computational 
thinking is not clear. It is not clear that beginning with developing capa-
bilities within the realm of View 2 (expression) is necessarily the way to 
get students to develop capabilities within the realm of View 1 (problem 
solving/modeling). Similarly, it is also not clear whether those who are 
facile at the skills and practices of View 1 will automatically be facile at 
the skills and practices of View 2. Kolodner believes this blurred relation-
ship  is “a really interesting conundrum that needs more attention from 
the research community.”

Helping People Learn to Be Computational Thinkers

Presenter Derek Briggs of the University of Colorado, Boulder, put 
forth a question during one of the panel discussions that Kolodner found 
helpful in articulating how to promote computational thinking. Briggs 
questioned the goals sought with respect to learning computational think-
ing. He wondered whether we want to be able solely to build tools that 
will help people reason better computationally, or rather whether we 
believe that computational thinking is something we want everybody to 
learn. He pointed out that if the latter is the case, then we seem to be going 
against the grain, because we know from the learning sciences and from 
education best practice that it is hard to learn skills disembodied from the 
contexts in which they are used. 

Kolodner argued that the community has both goals—tool building 
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for better computational thinking and computational thinking as a core 
skill for everyone—and that Briggs’s warning about teaching computa-
tional thinking in context is a key reminder of best practice. She went on 
to say that the education community should most definitely be aiming 
toward helping everybody learn computational thinking and that, yes, 
the community does seek to promote computational thinking as a set of 
necessary general-purpose skills. Kolodner believes it is important not to 
fall prey to the mistaken notion that if one learns computational thinking 
skills in one context, one will automatically be able to use them in another 
context. Rather, it will be important to remember that one can learn to 
use computational thinking skills across contexts only if (1) the skills are 
practiced across contexts, (2) their use is identified and articulated in each 
context, (3) their use is compared and contrasted across situations, and (4) 
learners are pushed to anticipate other situations in which they might use 
the same skills (and how they would).

These four guidelines come from the transfer literature—the chapter 
on transfer in How People Learn3 makes them clear. Kolodner pointed 
out that following these guidelines is absolutely necessary in designing 
instruction—otherwise, we are only helping kids learn to program or 
learn to use some set of skills in some particular contexts. This is analo-
gous, she added, to what we now understand about learning to be a scien-
tific reasoner. Scientific reasoning, or inquiry, is not a simple skill that one 
learns in one domain and applies in a bunch of others. Rather, scientific 
reasoning is a set of complex cognitive skills that one must learn to carry 
out flexibly over a variety of domains, and the way to help kids learn that 
is to help them carry out scientific reasoning over a variety of situations, 
help them recognize what they are doing, and help them recognize how 
their reasoning is similar and different over a variety of situations. The 
workshop touched on these issues in the discussion, but the four guide-
lines were not entirely articulated.

This set of guidelines is really important for educators to remember 
with respect to computational thinking; if kids are introduced to com-
putational thinking only in the context of programming and never think 
about how to use computational thinking, or never have opportunities to 
use computational thinking in other situations, then they may not develop 
computational thinking. Mike Clancy’s cases are interesting with respect 
to this—they make the computational thinking of experts visible as a 
way to illustrate computational thinking applied to a domain. Kolodner 
wondered to what extent students who use those cases take their compu-

3  NRC, 2000, “Learning and Transfer,” in How People Learn: Brain, Mind, Experience, and 
School: Expanded Edition, Washington, D.C.: The National Academies Press. Available at 
http://www.nap.edu/catalog.php?record_id=9853. Last accessed May 20, 2011.
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tational thinking outside the computer science class, and what it would 
take to promote that type of cross-domain application.

Several people, across both views of what computational thinking is, 
talked about teaching computational thinking concepts and skills through 
a learning progression paradigm of use, modify, and create. Kolodner 
thought that many of the examples of computational thinking learning 
discussed in the workshop reflected adoption of this approach to teaching 
computational thinking, with varying levels of success.

One example was Tinker’s learning progression for learning compu-
tational thinking in a science class, learning that involved the following:

•	 �Numbers are associated with things and their interactions (e.g., 
temperature),

•	 Values change over time,
•	 Changes can be modeled,
•	 �Models involve lots of little steps defined by simple rules (e.g., 

molecular dance),
•	 Models can be tested to find a range of applicability,
•	 You can make models, and
•	 Many applications of computers share these features.

If using models is done repeatedly in science classes, and if kids 
gradually move from using to modifying to creating their own models, 
and if they discuss the features behind the models—why they are the way 
they are, why and how one might want to change them, and how they 
went about making changes and creating new models—then there is a 
good chance that kids will learn to think fluently about running, trust-
ing the results of, revising, and maybe, designing computational models. 
If, in addition, they discuss how what they are doing is similar to what 
computer programmers do and/or how it is similar to other problem 
solving and design, they will broaden their understanding and capabili-
ties with respect to computational thinking. Kolodner added, “The deal is 
that one develops the ability to broadly use cognitive skills to the extent 
that one has experiences using them in a variety of situations, considers 
how one was using them, and anticipates their use in other situations.” 
So, for example, one could start from science class and broaden out from 
there. Edelson’s analogy between computational thinking and geographic 
computational reasoning illustrated this point. If one helps kids reason 
geographically, helps them see that process as computational reasoning, 
and helps them anticipate other ways that reasoning might be useful, one 
can use that as a base and broaden knowledge and use of computational 
thinking from there.

Kolodner was very interested in perspectives on learning progres-
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sions associated with older children. Specifically she wanted to under-
stand at what point students were capable of creating their own compu-
tational models using computer programs rather than just using existing 
models and manipulating them. She noted that around middle school age, 
students seem able to grasp increasingly sophisticated computational and 
programming concepts. This observation seems consistent with a point 
presenter Tinker made that at around fourth grade seems to be when a 
number of factors such as student development, teaching resources, and 
opportunity converge and make computational modeling more likely. 
Tinker also added that creating a computational model from scratch on a 
computer can require a great deal of time learning programming to real-
ize that model. On the other hand, systems like NetLogo and AgentSheets 
allow students to manipulate models someone else built without neces-
sarily having to master a whole lot of detail themselves, and then allow 
looking inside those models and changing them before beginning from 
scratch to build one’s own models. 

Presenter Christina Schwarz added some warnings to this discus-
sion, pointing out again that one cannot just assume that students will 
learn computational thinking through model building. She pointed out 
that instructors have to be realistic about students and their motivations 
to build models. When projects have them focus on concepts that they 
already understand based on outside or prior knowledge, students may 
be more likely to explore and try more complex models. If concepts are 
brand new, however, students need to explore before they can do complex 
model building. And they certainly won’t be able to learn new compu-
tational thinking skills or concepts while they are struggling with some 
new science concept. 

Kolodner agreed and emphasized that those creating curricula should 
be sure to think longitudinally—the focus should be on creating more 
opportunities to model year after year, helping learners to gradually build 
up their ability to model and their computational thinking capabilities. 
Their progress on both should be tracked over time. She also highlighted 
one more important caveat about the use and promotion of computational 
thinking in the classroom: simply programming, or even simply teach-
ing students to program, is not necessarily promoting computational 
thinking. 

Kolodner expressed concern over a thread of discussion running 
through some of the presentations that seemed to presume that as a part 
of the process of learning to program, students would learn computa-
tional thinking. For Kolodner, a big question is how an instructor can be 
sure that students engaging in programming activities are actually learn-
ing computational thinking. Similarly, do students themselves realize they 
are learning thinking skills that can be applied outside the constraints 
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of the particular activity they are engaging in? Or are the students just 
becoming better programmers or model builders or game players? 

To get a clear picture of what is happening in a computational activity 
in terms of assessment and evaluation, one has to apply an entire toolbox 
of assessment and evaluation tools, according to Kolodner. One tool or 
method is not enough. Kolodner believes that a student’s reflecting on 
a computational activity, being able to teach or help someone else learn 
the concepts, or being able to effectively articulate the relevant computa-
tional process at issue can be seen as likely indications that the student is 
learning computational thinking. As students are able to use increasingly 
elegant, efficient, and sophisticated approaches to tackle computational 
thinking tasks, this ability can also demonstrate learning and improve-
ment in computational thinking, Kolodner believes.

Another important point is that one cannot presume that just because 
one is programming, one is learning to be a computational thinker. Kolod-
ner pointed out the importance of remembering that separating out the 
abstract processes from the specifics of what one is doing does not come 
easily to everyone. Referring back to points from How People Learn,4 she 
stated that to learn computational thinking from programming experi-
ences, learners need to engage in thinking about what they are doing 
and under what other circumstances they might use the same type of 
thinking. Also, she was concerned that perhaps this assumption (that 
learning to be a computational thinker would arise simply from learning 
to program) reflected confusion over what computational thinking is. 
Although programming may be one tool that is used to teach or highlight 
computational concepts, it is not synonymous with computational think-
ing, and Kolodner again warned that a good definition of computational 
thinking is needed—both so that curricula will be designed to promote 
computational thinking and so that achieving capability in computational 
thinking can be measured well. 

Pedagogy as a Criterion for Assessment: An Elegant Relationship

Kolodner believes that assessment and pedagogy can be rather ele-
gantly related to each other. She pointed to arguments from Clancy and 
Blikstein, who both talked about pedagogy as a lead-in to assessment. 
Clancy talked about how the case studies in his lab-centric approach, as 
well as the derivative pedagogy, provided lots of criteria for assessing 
how well learners are actually doing computational thinking. In Clancy’s 

4  NRC, 2000, How People Learn: Brain, Mind, Experience, and School: Expanded Edition, Wash-
ington, D.C.: The National Academies Press. Available at http://www.nap.edu/catalog.
php?record_id=9853. Last accessed May 20, 2011.
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approach, learners are learning to program (and could be learning com-
putational thinking) through the use of case studies that show how oth-
ers have solved similar programming problems. He pointed out that the 
decisions about what content to put into cases, and then how to evaluate 
and assess learners’ computational thinking, go hand in hand with each 
other. Blikstein talked about animated representations students develop 
in his activity and how when combined with the underlying pedagogy of 
the activity, analysis of the drawings allows certain kinds of assessments 
and ways of interpreting what the kids are saying and doing.

Goals of Assessment

In addition to knowing what one wants to assess, one must consider 
the purpose of the assessment, because the reason for any assessment 
plays a critical role in determining the data and process necessary to 
perform it. Kolodner identified three reasons for assessing computational 
thinking: (1) to judge the curriculum and related materials and pedagogy, 
(2) to judge the progress of individuals, e.g., for giving grades, and (3) to 
manage instructor training and support. Kolodner noted that the kinds of 
data relevant to each reason would not necessarily be identical.

Assessment versus Evaluation

Kolodner explained that assessment is not the same as evaluation, 
although the terms are often used interchangeably. According to her, 
assessment is about measuring what people have learned, how they feel 
about something, or their capabilities. Formative assessments deal with 
discovering what has been learned along the way to inform what comes 
next. Presenters Jim Slotta and Mike Clancy both noted the importance of 
capturing some of the reasoning learners are doing that otherwise would 
be invisible in a formative assessment in order to explore when and how 
one might change instruction along the way to improve learning. Sum-
mative assessment occurs at the end of a module or semester or project 
to determine how much knowledge was gained overall. Evaluation, on 
the other hand, speaks more to how well a curriculum or a software 
tool is working—its efficacy, its costs, its usability, and so on. Kolodner 
agreed with presenter Cathy Lachapelle of the Museum of Science, Bos-
ton, who also discussed evaluation, specifically with respect to the need 
for usability in a computational thinking project in order to incorporate 
computational thinking effectively into a curriculum and make it widely 
available.

In response to discussion from Lachapelle, Kolodner said that the 
computational thinking community should consider at some point creat-
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ing its own assessment framework. The National Assessment of Educa-
tional Progress currently looks at subjects like science, math, technology 
education, pre-engineering, and so on, but does not assess computational 
thinking. 

Standards and Tactics for Assessment and Evaluation

Kolodner echoed the sentiments of several presenters (Briggs, Clancy, 
and Schwarz) that assessment and evaluation are more than just collecting 
data points. They are about doing comparisons and analyzing outcomes. 
Sometimes those comparisons are as simple as what a researcher hypoth-
esized versus what actually resulted. Presenter Derek Briggs argued that 
there must be some standard or baseline to which researchers must com-
pare results. Briggs focused on learning progressions and constructs as 
one example of a standard or baseline for comparison. Kolodner called 
the process by which a researcher considers what standards and baselines 
to use and embeds those standards in the computational thinking proj-
ect, the “tactics” of assessment used. In some cases, the researcher does 
not select his or her own baselines or learning progression but instead 
adopts them from an external source. Kolodner pointed to presenter 
Christina Schwarz’s experience dealing with her local school district’s 
biology learning progression guidelines for middle school students as an 
example of an external baseline.

Repetition and Reflection as an Assessment Tactic

One tactic Kolodner endorsed was repetition across disciplines com-
bined with reflection. She argued that scientific reasoning and compu-
tational thinking should be done in a number of different subjects and 
repeated over and over in order to help learners understand both the 
similarities and the differences in the ways in which scientific reasoning 
and computational thinking are done as well as develop general skills in 
computational thinking. To cross disciplines effectively, Kolodner argued, 
there should be some sort of reflection on what it is that has been done 
as well as some anticipation of other circumstances in which skills and 
lessons learned would be useful. 

Kolodner also felt that reflection on pedagogical content knowledge 
with respect to computational thinking is important for instructors of 
computational thinking. In response to Michelle Williams’s presentation, 
Kolodner asked for more information about how the reflection questions 
were developed that were posed to teachers after they had completed a 
teacher development computational thinking learning project. In essence, 
if the purpose of having the teachers complete the same project that their 
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students would do later was to provide scaffolding in a systematic way, 
Kolodner wanted to understand the underlying system better.

Embedded Assessments and Tracking/Logging Data

Embedded assessments, especially those that capture online the 
thinking of learners, allow assessment of student understanding that a 
researcher may not have access to otherwise. Kolodner noted that Briggs 
talked about collecting performance data and Slotta mentioned the value 
of real-time reflections on threads of collaborative discussions among the 
students. They argued, and Kolodner agreed, that these embedded real-
time assessments allow “getting in there and really dealing with the issues 
that the learners are having at the moment that they are having them. 
Maybe at the moment they are having them, maybe later, but the talking 
uncovers things that you might not see otherwise.”

Kolodner believes that tracking of activities seems particularly impor-
tant to analyzing computational thinking. Whether Blikstein’s log files, or 
Schwarz’s interviewing to help track thinking, or Clancy’s noting details 
of collaborative discussions, such tracking enables particularly important 
and informative project assessment and evaluation.

Kolodner finds that it is hard to tell who to go to concerning com-
munity building in the education community and the various disciplines. 
She stated that “people seek environments that align to their ways of 
thinking and working. We all do it, and this self-sorting process tends to 
create silos.” Kolodner argued that such silos will not help computational 
thinking have a wide impact.

3.7  BRIAN BLAKE

Brian Blake is a professor of computer science at the University of 
Notre Dame and is associate dean for engineering. His research areas 
include software engineering and, more recently, methods to make 
advanced computer science techniques digestible for those who are not 
in the same specialty. The latter effort is intended to attract underrepre-
sented minorities into computing.

In his comments to the workshop, Blake expressed the evolution of 
his thoughts on computational thinking through dialog and interaction 
with various scholars over the course of the two NRC computational 
thinking workshops. In the first workshop, he explained, the committee 
sought to characterize computational thinking by first attempting to look 
for the existence of computational thinking in other fields, in other ways 
of thinking. From there the committee could then classify and describe it 
as computational thinking in a way that would enable researchers and 



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

64	 PEDAGOGICAL ASPECTS OF COMPUTATIONAL THINKING

educators to re-embed it into training students or retooling teachers or 
professionals.

Blake went on to explain that his experience over the past year, based 
on the first workshop and his own personal observations of his son’s 
learning progression from kindergarten to first grade, had caused his 
thinking to evolve. Now, the notion of developmental milestones is very 
important to him. He believes that the understanding of computational 
thinking should be thought of in terms of decomposing computational 
thinking “elements” into developmental milestones. 

Blake noted that during Peter Henderson’s presentation on the efforts 
underway at Shodor, Henderson’s example featuring Thomas the Train 
in solving a routing challenge demonstrates that there seems to be an 
opportunity to start to understand computational thinking at the lowest 
levels, and then as we move from K-12 into postsecondary education, we 
can explore increasing complexity within the milestones. 

Blake summarized several main points he had gathered from the sec-
ond workshop’s presentations. There may be an opportunity very early in 
a child’s learning progression to identify significant computational think-
ing talent. This might be done by looking at specific instances where com-
putational thinking might fold into a learning activity, and then assessing 
a student’s competency with respect to these computational elements. To 
illustrate, Blake pointed back to Henderson’s Thomas the Train example 
and suggested that a simple activity with embedded computational think-
ing challenges might be a means of identifying talent. Concerning the 
idea of training, Blake argued that by taking opportunities to identify and 
assess computational thinking talent in individual students, and to start 
to enumerate indicators of such talent, a researcher or an educator might 
be able to recognize when a student either is demonstrating a significant 
talent in computational thinking or is at least at the appropriate learning 
progression level for that age range.

Blake argued that the next step would be to use this process of embed-
ding, assessing, and identifying at the macro level over a longer period 
of time to identify learning progression baselines. This technique utilizes 
assessment and evaluation to determine where in learning development 
a particular baseline is situated.

From the perspective of learning progression at the macro level, the 
types of concepts to be enumerated so as to identify potentially talented 
computational thinkers at young ages are not limited solely to concepts 
related obviously to computer science thinking, math thinking, or even 
scientific thinking. Instead, these concepts are likely to span all of these 
types of thinking and analysis. As the emerging computation community 
moves forward, scholars should perhaps target these sorts of concepts to 
specify them more clearly and possibly re-embed them for identification 
of talent and for determination of learning progression.
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4

Summaries of Individual Presentations

4.1  COMPUTATIONAL THINKING AND 
SCIENTIFIC VISUALIZATION

4.1.1  Questions Addressed

•	 What are the relevant lessons learned and best practices for improv-
ing computational thinking in K-12 education?

•	 What are examples of computational thinking and how, if at all, 
does computational thinking vary by discipline at the K-12 level? 

•	 What exposures and experiences contribute to developing compu-
tational thinking in the disciplines?

•	 How do computers and programming fit into computational 
thinking?

•	 What are plausible paths and activities for teaching the most 
important computational thinking concepts?

Presenters: 
	 Robert Tinker, Concord Consortium 
	 Mitch Resnick, Massachusetts Institute of Technology
	 John Jungck, Beloit College, BioQUEST 
	 Idit Caperton, World Wide Workshop

Committee respondent: Uri Wilensky 
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4.1.2  Robert Tinker, Concord Consortium

The Concord Consortium is a non-profit research and technology 
development group that focuses on applying technology to improve 
learning at different grades. Robert Tinker, the founder of the Concord 
Consortium, argued that computational efforts in K-12 should be inte-
grated around a science focus rather than a focus on either mathematics 
or engineering.

Elaborating on this argument, he suggested that computational think-
ing offers an alternative new way of finding out about the world, which 
is important for citizenship, for future work, and for professionals of 
all types. Nevertheless, he believes that neither the computer science 
community nor the education community has yet clearly articulated the 
essence of computational thinking. As usually presented, computational 
thinking involves abstractions upon abstractions, which are difficult to 
make concrete.

At the core of computational thinking, Tinker argued, is the ability 
to break big problems into smaller problems until one can automate the 
solutions of those smaller problems for rapid response. (It is for this rea-
son that Tinker believes that engineering is not an appropriate integrating 
focus for attempts to teach computational thinking—engineering taught 
at the K-12 level is not particularly amenable to decomposition.) This 
core, he argued, indicates a possible route for introducing computational 
thinking into K-12 education.

Tinker’s view is that science is the right focus because modern science 
often uses computational models that are based on scientific principles 
and whose use depends on visualizations. Understanding these models 
requires computational thinking—scientific models and visualizations 
allow students to visualize the computations that are going on in near real 
time. Tinker noted that students learn better by seeing models and inter-
acting with them, and that by exploring the model in a spirit of inquiry, 
they learn about the science in the model in much the same way that 
scientists learn about nature by using the scientific method. He argued 
that students can learn complicated, deep concepts this way rather than 
through the more “off-putting” and often confusing approach of formal-
istic equations. 

Tinker proposed an approach across the K-12 curriculum that uses 
simple models of scientific concepts such as temperature, light, and force 
to teach computational thinking. A progression of concepts could start 
in early elementary grades with basic ideas such as “there are numbers 
associated with things you observe.” (See Figure 2.1.) In later grades, stu-
dents might manipulate and refine models to reflect more sophisticated 
understanding of the concepts represented in the models. Finally, in high 
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school, a student might be able to select, modify, and apply both hardware 
and software models as a key part of an extended investigation. 

Tinker suggested that the following learning progression could fit 
into the K-12 curriculum, improve science teaching and learning, and 
introduce important aspects of computational thinking:

 
1.	� There are numeric values associated with every object and their 

interactions. 
2.	 These values change over time. 
3.	 These changes can be modeled. 
4.	� Models involve lots of simple steps defined by simple rules (e.g., 

the molecular dance).
5.	 Models can be tested to find their range of applicability. 
6.	 You can make models. 
7.	 Many other applications of computers share the same features. 

When asked whether students perform better when learning through 
computational modeling and visualization as opposed to a more tra-
ditional approach, he replied that such a distinction is not particularly 
important. Rather than worry whether one method is better than the 
other, Tinker pointed out that it is a good outcome if a teacher has an 
additional tool in his or her arsenal to teach a complicated concept.

Tinker noted that because students begin as concrete thinkers, it 
remains a challenge to identify the age or grade level at which children 
can handle abstraction. As an example, he said that although he has 
worked with second graders by hooking up a probe to measure tempera-
ture, it is only at fourth grade that students demonstrate reliable results 
of learning and comprehension with such methods.

According to Tinker, students involved in a very tightly packed K-12 
curriculum do not have the time to master programming in order to 
manipulate models. Rather, he recommends a programming environ-
ment such as NetLogo or AgentSheets partially populated with general 
tools, but still needing interconnection and “tuning,” that were designed 
to focus users on the concepts represented rather than on the details of 
programming. Another option is to use an existing piece of software in 
which the student can manipulate important parameters. 

4.1.3  Mitch Resnick, Massachusetts Institute of Technology

Mitch Resnick of the MIT Media Lab said that computational think-
ers must be able to use computational media to create, build, and invent 
solutions to problems. He framed this approach in terms of students being 
able to express themselves and their ideas in computational terms, and 
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emphasized that indeed this should be part of the motivation to learn 
computational thinking. “When young people learn about language, we 
don’t just teach them linguistics or grammar; we let them express them-
selves. We want a similar thing with computational thinking.” 

Moreover, he argued, most people work better on things they care 
about and that are meaningful to them, and so embedding the study 
of abstraction in concrete activity helps to make it meaningful and 
understandable.

Resnick pointed out that for students to express themselves meaning-
fully with computational media, they need to learn new concepts as well 
as develop new capacities. He argued that computer science classes often 
overemphasize computational thinking concepts (such as recursion) at 
the expense of helping students develop computational thinking capaci-
ties for design and social cooperation. Computational concepts include 
concepts such as conditionals, processes, synchronization, and recursion. 
Design capacities deal with skills like prototyping, abstracting, modu-
larizing, and debugging. Social-cooperative capacities include sharing, 
collaborating, remixing, and crowd-sourcing. These social-cooperative 
capacities are becoming increasingly important as new computing and 
networking technologies open up new possibilities for widespread coop-
eration.	

Resnick’s computational environment of choice for supporting com-
putational expression is Scratch. The MIT Media Lab developed Scratch 
and a companion online community to help engage people in creative 
learning experiences and to support the development of computational 
thinking. Scratch is a graphical programming language, giving the user 
the ability to build programs by snapping together graphical blocks that 
control the actions of different dynamic actors on a screen. (Such an 
approach to program construction enables users to avoid issues of syn-
tax and other details that often distract users from the critical processes 
of designing, creating, and inventing. Resnick believes this construction 
process serves an important grounding function for learning abstract 
computational concepts, making concepts more concrete and understand-
able.) Scratch also facilitates social cooperation by making it very easy for 
a user to share his or her design with others for comment and feedback. 
(See Figure 2.2.)

Resnick provided several examples emphasizing the role of expres-
sion through construction and social cooperation from one particular 
member of the Scratch online community who goes by the username 
MyRedNeptune. MyRedNeptune was a young student from Moscow and 
joined the Scratch online community shortly after it went live in 2007. 
“One of the first projects that she created,” Resnick said, “was a type of 
interactive greeting card for the holidays.” Each time a person clicked 
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on one of the reindeer, it would begin playing “We Wish You a Merry 
Christmas” on a musical instrument in concert with the other animated 
reindeer. Creating the card required modularization and synchronization, 
as well as a number of core computational concepts. 

Next, MyRedNeptune began offering her consulting services to 
develop animated characters upon request. Another community member 
requested that she develop a cheetah for a project. Resnick continued, 
“She went to the National Geographic website and she found a video of 
a cheetah. She used that to help guide the graphic of an animation that 
she developed, and then someone else used her graphic and integrated 
it into her project.”

When yet another community member requested that she show how 
she developed her animations, she began to develop tutorials in Scratch 
on how to program animated characters. One of her first tutorials was on 
how to animate a bird to make its wings flap back and forth. Later she was 
asked to participate in an international collaboration with five or six other 
kids in three different countries. Working together, they developed a type 
of adventure video game, with each child working on different parts of 
the activity. Resnick noted: “I think you can see from these examples how 
MyRedNeptune developed as a computational thinker, learning to think 
creatively, reason systematically, and work collaboratively.”

Scratch is used both inside and outside formal school curricula. Ini-
tially used in homes, after-school centers, community centers, and muse-
ums, it is now moving into the schools and is being used today to teach 
basic concepts in university-level introductory computer science classes 
in a number of universities.

Resnick shared that “one thing we’ve seen is that different kids have 
different trajectories. Some will spend a lot of time continuing to work on 
the same types of projects, over and over. You might think that they are 
stuck, but there’s a lot of things happening in their minds, and suddenly 
they’ll start working on new types of projects and ideas.” 

Resnick and his colleagues are working on many new initiatives to 
support the development of computational thinking through Scratch, 
including an online community (called ScratchEd) specifically for teachers 
who are helping students learn with Scratch.

4.1.4  John Jungck, Beloit College, BioQUEST

John Jungck and his collaborators founded the BioQUEST Curricu-
lum Consortium 24 years ago to bring computation and mathematics 
into the undergraduate biology curriculum. Jungck noted that although 
there are many reasons for using computation in biology education, the 
rationale he presented at the workshop focused on the power of visual-
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ization in a biological context. He noted the evolution of paradigms for 
scientific investigation from empirical (experiment, observation) to theo-
retical (models, theoretical generalizations) to computational (simulation) 
to data exploration and e-science (collection of data on a massive scale: 
exploration facilitated by theory, mathematics, statistics, and computer 
science). In this context, biology education needs to provide students 
with ways of understanding biological data—environmental data and 
genomic data, for example—that is multivariate, multidimensional, and 
multicausal and that exists at multiple scales in enormous volume (tera-
bytes of data per day).

The philosophy of BioQUEST rests on three pillars:

•	 Students take an active role in posing problems to examine, much 
as a scientist has to learn to pose good problems. Good problems must be 
appealing, have significance, and be feasible to address.

•	 Students solve problems iteratively. They must learn to appreciate 
the nature of scientific hypotheses as answers as well as to develop heu-
ristics for achieving closure to scientific problems.

•	 Students must persuade their peers that a solution is useful and 
or valid, a process that mirrors the role of publication and extensive peer 
review in biological research.

 
The primary challenge for learning in accordance with this philoso-

phy is that in focusing on the student as problem-poser, teachers lose 
much of the control they traditionally have over the learning process. Stu-
dents engaging in self-directed collaborative processes may make some 
teachers uncomfortable. Furthermore, students in this environment may 
have more technical skill than their teachers, and so peer review from 
other classmates may be more important than teacher feedback as far as 
advancing learning.

Jungck briefly described a number of BioQUEST projects. For exam-
ple, one project sought to develop student facility with the idea of biologi-
cal modeling with equations. For this purpose, the Biological ESTEEM 
project (ESTEEM stands for Excel Simulations and Tools for Exploratory 
Experiential Mathematics) seeks to provide students with a mathemati-
cal vocabulary for describing common modeling concepts (e.g., linear, 
exponential, and logistic growth1). 

Another BioQUEST project (BEDROCK) focuses on bioinformatics. 
The BEDROCK project requires students to use a supercomputer tool 

1  The Biological ESTEEM Collection, website, BioQUEST Curriculum Consortium, http://
bioquest.org/esteem/index.php. Last accessed February 7, 2011.



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

SUMMARIES OF INDIVIDUAL PRESENTATIONS	 71

called Biology Workbench,2 which allows biologists to search many popu-
lar protein and nucleic acid sequence databases. Database searching is 
integrated with access to a wide variety of analysis and modeling tools. 
Students can align multiple sequences of a particular gene from different 
organisms onto one three-dimensional structure and see the evolutionary 
conservation involved; they can thus relate the comparative biology of 
sequences to structure, function, and phylogeny.

Yet another project is BIRDD (Beagle Investigations Return with Dar-
winian Data), whose goal is to provide a variety of resources related 
to evolutionary research. Labs are rare in courses dealing with evolu-
tion, largely because evolutionary phenomena involve temporal and 
geographic scales that make it difficult for instructors to develop labs 
comparable to those in biochemistry, physiology, or behavior. BIRDD 
addresses this problem by providing raw data (e.g., bird songs, sequence 
data, rainfall, breeding sites, and so on) and pedagogical ideas to help 
instructors structure appropriate pedagogical experiences for their stu-
dents. BIRDD helps students generate questions and look at, for instance, 
whether character displacement happens when the species co-occur or 
when they inhabit different islands.

To illustrate the special relationship between biology on one hand and 
mathematics and computation on the other, Jungck noted 10 equations 
that have driven substantial amounts of biological research and for which 
numerous educational materials have been developed:3 

  1.	 Fisher’s fundamental theorem of natural selection,  
  2.	 Cormack-Hounsfield computer assisted tomography,
  3.	 Genetic mapping (units = morgans; the Haldane function),
  4.	� Fitch-Margoliash little maximum parsimony algorithm (Penny 

and Hendy—Molecular Phylogenetic Trees—Bioinformatics),
  5.	 Lotka-Volterra interspecific competition logistic equations,
  6.	 Hodgkin-Huxley equations for neural axon membrane potential,
  7.	� Michaelis-Menten equation for enzyme kinetics (Jacob and Monod),
  8.	� Allometry (e.g., MacArthur-Wilson species area law and conservation),
  9.	 Hypothesis testing (e.g., Luria-Delbrück fluctuation test), and
10. 	 Crick-Griffith-Orgel comma-free coding theory.

2  BEDROCK (Bioinformatics Education Dissemination: Reaching Out, Connecting, and 
Knitting-together), website, BioQUEST Curriculum Consortium, http://bioquest.org/
bedrock/about.php. Last accessed February 7, 2011.

3  John Jungck, 1997, “Ten Equations That Changed Biology: Mathematics in Problem-
Solving Biology Curricula,” Bioscience 23(1):11-36.
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He also noted that the typical biology textbook contains only a hand-
ful of equations, and even those are linear equations, and expressed his 
surprise that biological visualizations, important as they are to the way 
biologists think about the world, are not accompanied by the tools needed 
to interpret different kinds of multivariate, multidimensional biological 
data.

Finally, Jungck discussed the Visible Human Explorer (VHE). Accord-
ing to the VHE website,4 the VHE is an experimental user interface for 
browsing the National Library of Medicine’s (NLM’s) Visible Human data 
set, which is based on two digitized cadavers in the National Institutes 
of Health Visible Human data set. The interface allows users to browse 
a miniature Visible Human volume, locate images of interest, and auto-
matically retrieve desired full-resolution images from the NLM archive. 

Jungck concluded by noting that computers and computation have 
transformed biology. He noted a quote from Michael Levitt (a structural 
biologist at Stanford) that “computers have changed biology forever, 
even if most biologists don’t yet realize it.” Educationally, he stressed 
the work of di Sessa, Parnafes, and others who emphasize the impor-
tance of engaging students in constructing, revising, inventing, inspect-
ing, critiquing, and using rich visualizations for promoting conceptual 
understanding.

4.1.5  Idit Caperton, World Wide Workshop, Globaloria

Idit Caperton described Globaloria as a platform, a transformative 
social media learning network, with a comprehensive hybrid course 
(online/in class) for playing and making games. It includes a customiz-
able curriculum, community-developed resources, tools, tutorials, and 
expert support. Students and educators learn how to create their own 
web games, produce wikis, publish rich-media blogs, and openly share 
and exchange ideas, game code, questions, and progress using the lat-
est learning methods and digital communication technology. Globaloria 
is a project-based learning environment for stimulating computational 
creativity as well as inventiveness in youth and educators as a necessary 
skill for the 21st century. Computational projects are built around a range 
of topics, such as health, climate, alternative energy, civics, mathematics, 
biology, social studies, and literature. 

The World Wide Workshop’s innovative R&D and pedagogical 
approaches to platforms and tools for cultivating computational think-

4  Human Visible Explorer, website, Human Computer Interaction Lab, University of 
Maryland, http://www.cs.umd.edu/hcil/visible-human/vhe.shtml. Last accessed Febru-
ary 7, 2011.
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ing and computational inventiveness have roots in Caperton’s MIT and 
Harvard research, and in educational theories about the value of project-
based, multidisciplinary, innovative and creative learning (of any subject) 
through software design and programming.5 

Caperton also described Globaloria as a customizable textbook com-
prising three main units. An introductory or “getting started” unit pro-
vides students with the opportunity to establish their own project spaces 
on the wiki network and to review existing games’ operation and their 
codes. A following unit is “game design,” in which students design an 
original game about a complex topic (in science, math, health, civics) 
and a social issue that matters to them. Students come up with an idea, 
assemble teams, do research, build and videotape their paper prototypes, 
and construct a concept and a demonstration that they present, both 
physically and online via web conferencing. Using Flash text and drawing 
and animation techniques, they program an interactive demonstration of 
their game concepts. A third unit is “game development,” in which stu-
dents develop their game concepts and demonstrations into a complete, 
interactive game. Each unit contains a structured set of learning topics, as 
well as projects and assignments structured to help students create critical 
parts for their own original game. 

Globaloria seeks to impart to students six contemporary learning 
abilities: the ability to imagine, design, prototype, and program an edu-
cational game, wiki, or sim; the ability to use project management skills 
in developing programmable wiki systems in a Web 2.0 environment; the 
ability to produce animated media, programming, publishing, and dis-
tributing interactive purposeful digital media in social networks; the abil-
ity to learn in a social constructionist manner and to participate actively 
in the public exchanges of ideas and artifacts; the ability to undertake 
information-based learning, search, and exploration as they relate to the 
abilities above; and the ability to surf websites and use web applications 
thoughtfully as they relate to the earlier abilities enumerated. Caperton 
argued that these abilities go beyond the typical media literacy skills, 
since they emphasize a bundle of complex and sophisticated construc-
tionist digital literacies and involve longer-term engagement (students 
are required to use Globaloria daily, over two semesters, for a minimum 
of 100-150 hours6). 

The Globaloria approach emphasizes constructionist collaboration 

5  The canonical examples of such research are Idit Caperton, 1991, Children Designers, 
and Idit Caperton and Seymour Papert, 1991, Constructionism, both published by Ablex, 
Norwood, New Jersey

6  Caperton recommended repeating the use of Globaloria year after year for greater effects 
on computational thinking in learners.
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within a transparent community. Participants in the community—teach-
ers, students, staff, and game teams—maintain public blogs as design 
journals, share resources, and publish completed games on the commu-
nity wiki. They can also submit created games for competitions or for 
publishing on the school’s Globaloria network.

Caperton suggested that it is possible to learn any subject and to 
master complex topics or social issues by creating functional, representa-
tional, educational multimodal computer games involving that subject’s 
content. She provided “10 design principles for implementation ‘The 
Globaloria Way.’” For example, developing educational games requires 
students to spend significant time, engaging daily on personally chosen 
projects involving open-ended and creative design tasks. A transparent 
and collaborative studio environment facilitates the sharing of work and 
provides many opportunities for social expression and discussion about 
game projects. Students thus learn through four modes simultaneously: 
(1) through design and teaching, (2) through peer-to-peer interactions, 
(3) through co-learning with teachers (and also from watching the teach-
ers themselves learn), and (4) from online research and consultation with 
other experts (just-in-time learning) via pre-scheduled web conferencing 
and a help desk. (See Figure 2.3.)

The basic technology underlying the Globaloria platform is open-
source MediaWiki with customized MediaWiki extensions, PHP, MySQL, 
Tumblr, Blogger and multiple Google tools. Students learn to program 
their games much like professionals in the real world using Adobe Flash 
Actionscript. The World Wide Workshop Foundation’s team (creators 
of Globaloria) chose Flash for students’ programming for a number of 
reasons, including:

 
•	 They themselves are expert developers in Flash;
•	 Flash provides a wide variety of tools, such as interfaces and video 

tutorials, to support users and thus can support a range of skill levels 
from novice to professional;

•	 Flash’s capability is present on many websites and in simulations 
and media devices;

•	 Flash is an industry professional standard in game development 
and multimedia programming, and so proficiency in Flash is likely to help 
provide students with internships and job opportunities in the future. 

Finally, Caperton described research she and colleagues conducted 
on the impact of implementing models of Globaloria for fostering com-
putational thinking and inventiveness among low-income rural students 
and low-income minority urban schoolchildren: (1) Model 1 in 45 schools 
throughout the public school system in 20 counties in the state of West 
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Virginia, where 1,300 students in rural middle schools, high schools, 
community colleges, and alternative education institutions participated 
with 55 educators in 2010 for credit and a grade; and (2) Model 2 within a 
charter middle school system in East Austin, Texas, where every student 
in that school took Globaloria once a day for 90 minutes for the entire 
school year. She provided an overview of selected research results7 and 
shared video case studies.8 Caperton argued that these were powerful 
demonstrations of plausible paths and activities for teaching compu-
tational thinking concepts to low-income rural and urban students of 
underserved communities.

4.2  COMPUTATIONAL THINKING AND TECHNOLOGY

4.2.1  Questions Addressed

•	 What are the relevant lessons learned and best practices for improv-
ing computational thinking in K-12 education?

•	 What are examples of computational thinking and how, if at all, 
does computational thinking vary by discipline at the K-12 level? 

•	 What exposures and experiences contribute to developing compu-
tational thinking in the disciplines?

•	 How do computers and programming fit into computational 
thinking?

•	 What are plausible paths and activities for teaching the most 
important computational thinking concepts?

Presenters: 
	 Robert Panoff, Shodor Education Foundation 
	 Stephen Uzzo, New York Hall of Science 
	 Jill Denner, Education, Training, Research Associates 
 
Committee respondent: Yasmin Kafai

4.2.2  Robert Panoff, Shodor Education Foundation

Robert M. Panoff, founder and executive director of the Shodor 
Education Foundation, is a proponent of teaching computational think-
ing through computational science. At the same time, he stresses the 

7  For more information see www.WorldWideWorkshop.org/reports. Last accessed Febru-
ary 7, 2011. 

8  For more information see www.worldwideworkshop.org/programs/globaloria/vftf. 
Last accessed February 7, 2011. 
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importance of certain metacognitive skills—in particular, being able to 
know that something learned (e.g., through computation) is right. Panoff 
described quantitative reasoning and multiscale modeling as components 
of computational thinking 

Quantitative reasoning is not necessarily computer-related, but it 
is essential for anyone to make sense out of using a computer. An 
impediment to quantitative reasoning noted by Panoff is that many 
individuals have inconsistent and faulty intuition about quantity. For 
example, he pointed out that many people believe that two-fifths (2/5) 
is a small number, whereas 40 percent feels like a large number to them. 
He said that one metropolitan police department assigned more officers 
to patrols on Friday and Saturday night because a careful analysis of 
the data had shown that just under 30 percent of the car break-ins were 
on either a Friday or a Saturday night. But since 2/7 is 29 percent, the 
frequency of car break-ins was actually consistent across weekdays and 
weekends. (Panoff further noted that engaging in computational think-
ing is a partial remedy to misconceptions about quantity.)

Panoff described an exploration based on quantitative reasoning that 
addressed computational thinking and algorithmic thinking. Consider 
the number given by 355/113, and then explore the algebraic identity 
given by 355/113 – 101/113 – 101/113 – 101/113 – 52/113. In principle, 
this quantity should equal zero. But it does not when evaluated on a 
calculator. Panoff noted that most students realize that “something’s not 
right” when they are confronted with this “identity,” and he maintained 
that such a realization is the beginning of a serious exploration of how 
numbers are represented in a computer.

A second example involved calculators. A person who types the 
expression “3 + 2 × 6” into Google will obtain the answer 15, whereas 
the same expression typed into some calculators (such as the Accessories 
calculator of Windows) will yield the answer 30. Understanding why 
such a difference exists is challenging to some students. Another illustra-
tion is calculating the sum of A/B + A/C + A/D + A/E on a calculator. 
A student can perform each of these operations individually, or she can 
factor out A to obtain A × (1/B + 1/C + 1/D + 1/E). Again, these two 
sums are identical algebraically, but the algorithm (i.e., the specific steps 
to be taken in a particular sequence) is different and simpler in the second 
case than in the first.

Panoff’s third example requires understanding of orders of magni-
tude. He illustrated the point by asking what a student needs to know 
in order to answer the question “How much bigger is Earth than Pluto?” 
An obvious way to approach this problem is to perform Internet searches 
for the mass of Earth and the mass of Pluto. But an Internet search for the 
mass of Earth generates 20 or 30 different values, which have a spread of 
several percent. How does one know which value to use? 
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Here context matters—why is one asking the question about relative 
sizes? If the question relates to how big an object has to be in order to be a 
planet, then in the absence of a formal definition of planet, one only needs 
to know that the ratio MEarth/MPluto is on the order of a few hundred—and 
a difference of “several percent” is simply irrelevant to knowing which 
value of MEarth to use.

In Panoff’s fourth example, he pointed out that many people (in this 
case, medical residents) do not distinguish between “most of the time” 
and “more often than anything else.” For example, a physician may say to 
the patient that “most of the time, if kidney cancer comes back, it goes to 
the lungs first.” In fact, kidney cancer goes to the lungs 28 percent of the 
time, which is more often than anyplace else, but 72 percent of the time 
(i.e., most of the time), it goes somewhere else.

As for multiscale modeling, Panoff argued that technology enables 
one to re-present data and relationships (noting that one meaning of rep-
resentation is to re-present). He illustrated by considering the Lennard-
Jones potential function:

 
V(r) = k × ((S/r)1/12 – (S/r)1/6).

When r = S, the potential V is equal to zero, and so r = S defines 
the point at which the function crosses the horizontal axis. However, 
changing the value of the parameter S has two effects on the shape of 
the curve—the location of the crossing point and also the width of the 
potential well. The second effect is apparent most easily by graphing the 
function interactively, varying the value of S.

As for pedagogy, Panoff’s programs entail a learning progression of 
students running models at first, moving to modifying models, and then 
in a culminating step writing their own models. For example, a student 
might run a model and then manipulate the model’s parameters in order 
to explore what happens and to make conjectures about what would hap-
pen when a parameter is changed. Then she might modify it by moving 
a slider bar, or two or three slider bars. And then she might change the 
number of slider bars. Finally, she will write a model that calls for the use 
of slider bars to change parameters.

Pedagogically useful computational models are accurately imple-
mented and provide appropriate data visualization tools. They are con-
trolled by the student user and are honestly described (i.e., the descrip-
tion includes information about the flaws and limitations of the model), 
although other students and faculty and the scientific community at large 
collaborate with unit authors to develop the models. Last, they are coded 
with the goal that they can be extended by another party (students, in 
particular). The content provided in the models is based on common texts 
and national standards. 
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4.2.3  Stephen Uzzo, New York Hall of Science, Museum Studies

Stephen Uzzo from the New York Hall of Science (NYSCI)9 talked at 
the end of the workshop about the transformational effect that data-rich 
science has in computational thinking and about some ways to better 
prepare future scientists. He noted that data overload is a central theme 
of 21st century science. Data are accumulated in enormous quantities for 
biomedical, environmental, and social science applications, enabled by 
the rapid growth in computing power and sensing technologies.10 High-
lighting this data overload, Uzzo pointed to various statistics such as that 
some science disciplines produce more than 40,000 papers a month, and 
computer users worldwide generate enough digital data every 15 minutes 
to fill the Library of Congress.11 

In the face of such overload, Uzzo suggested, the traditional method 
of science—modeling natural phenomena and then validating those mod-
els against data gathered from nature—is inadequate. This traditional 
method assumes an environment in which data are relatively scarce, 
whereas much of science today is characterized by data in volume. A new 
approach, “e-science,” is needed in this environment.12 E-science focuses 
on managing, modeling, and making discoveries in massive amounts of 
captured data; seeking patterns; and identifying dynamics, influences, 
and complex and emergent behavior in whole systems.

Uzzo further argued that the computational thinking needed to 
engage in e-science includes a number of often-neglected concepts:

•	 Complexity. Practitioners need to know when the e-science para-
digm for doing scientific research is (and is not) more appropriate than 
other paradigms of research (theory, experiment). 

•	 Data visualization. Because of the large volumes of data involved in 
e-science research, visualization (and human interpretation of the result-
ing images) may be a more effective method for detecting and identi-

9  Hall of Science activities entail developing exhibitions and educational programs for 
STEM learning, and evaluating them for pedagogical efficacy in conveying the relevant 
concepts to the public and to K-12 students.

10  Input technologies such as efficient, small, and cheap sensors; automated logging sys-
tems; high-resolution remote sensing from satellites; robotics systems for DNA sequencing; 
protein mass spectrometry; and functional magnetic resonance imaging (fMRI) are just a 
few examples.

11  Manish Parashar, 2009, “Transformation of Science Through Cyberinfrastructure: Key-
note Address,” presentation at Open Grid Forum, Banff, Alberta, Canada, October 14, 2009. 
Available at http://www. ogf.org/OGF27/materials/1816/parashar-summit-09.pdf. Last 
accessed February 7, 2011.

12  Tony Hey, Stewart Tansley, and Kristin Tolle, eds., 2009, The Fourth Paradigm: Data Inten-
sive Scientific Discovery. Redmond, Wash.: Microsoft Research.
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fying patterns than are traditional methods of reductive data analysis. 
Practitioners may need to develop new visual metaphors that are better 
for revealing patterns in complex data and techniques for displaying and 
comparing large amounts of data.

•	 Network science. In e-science, theoretical generalizations may be 
based on network science, the study of properties and behaviors of com-
plex, dynamic systems of interaction. One often sees similar network 
functions and structures emerge across a variety of different problem 
domains. 

•	 Data interoperability, data sharing, and other collaboration skills. Prac-
titioners of e-science must understand many kinds of shared data types 
and the technical issues in data sharing and data interoperability that 
inevitably come up in collaborating with other practitioners and across 
divergent fields of study.

•	 Using semantics for creating more effective data structures. E-science 
places a premium on the ability to find general patterns in phenomena 
and then to identify similar instantiations in examining other phenomena. 
For such purposes, the use of Boolean logic for combining and parsing 
large amounts of data is insufficient. Searches based on Boolean logic are 
also ineffective with large amounts of data because both false positives 
and false negatives are problematic. Although search engines may work 
well for fact-finding, they do not serve well to identify patterns, trends, 
or outliers. Perhaps more importantly, the context in which a piece of 
knowledge was created or can be used may be missing, making intelligent 
data selection, prioritization, and quality judgments extremely difficult.

	 Semantic approaches are needed to deal with data at large scale. 
(Biomedicine is a canonical example of a domain in which this is true.) A 
semantic web uses triples instead of search terms. A triple consists of two 
ideas (the first two elements of the triple) that are linked through a term 
describing how the ideas are related (the third element). 

E-science requires a cyberinfrastructure capable of processing data in 
prodigious quantity and of making large data sets available to researchers 
reliably and promptly. It must facilitate interoperability between applica-
tions used by researchers, and it must provide easy-to-use tools for pro-
cessing, manipulating, and combining multiple data types. In discussion, 
Al Aho noted that “the software world of today is largely a Tower of Babel 
with lots of incompatible infrastructures and a lot of expense regarding 
who pays, who collects the data, who maintains the data, who maintains 
and evolves the software.”

To illustrate the tools necessary, Uzzo discussed the idea of a “mac-
roscope” and an existing tool called the FreeSpace Manager. The macro-
scope is an expandable and integrated set of applications that scientists 
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can use to share scientific data sets and algorithms and to assemble them 
into workflows.13 Uzzo and NYSCI, in cooperation with the School of 
Library and Information Science at Indiana University, are developing 
systems that allow museum visitors to create, format, present, and mine 
data the way scientists do. The macroscope would help to identify pat-
terns, trends, and outliers in multiple large-scale data sets, whether static 
or streaming.14 Such tools can continuously evolve as scientists add and 
upgrade existing plug-ins and remove obsolete ones—all with little or no 
help from computer scientists. 

To support collaborative data sharing involving multiple data types 
and streaming, the University of Illinois at Chicago is developing the Scal-
able Adaptive Graphics Environment (SAGE), a central element of which 
is the FreeSpace Manager.15 SAGE is a physical room whose walls are 
made from seamless ultra-high-resolution displays fed by data streamed 
over ultra-high-speed networks from distantly located visualization and 
storage servers. SAGE allows local and distributed groups of researchers 
to work on large distributed heterogeneous data sets. (To illustrate, users 
could be simultaneously viewing high-resolution aerial or satellite imag-
ery, as well as volumetric information on earthquakes and groundwa-
ter.) The FreeSpace Manager provides an easily understood and intuitive 
interface for moving and resizing graphics on the display, giving users 
the illusion that they are working on one continuous computer screen, 
even though each of their systems is physically separate. The FreeSpace 
Manager is similar to a traditional desktop manager in a windowing sys-
tem, except that it can scale from a single tablet PC screen to a desktop 
spanning more than 100 million pixel displays.

Uzzo noted that he sees increasing demand for using these kinds of 
sophisticated tools in the Hall of Science, not only for accessing data sets 
virtually within the museum walls, but also for bringing such tools into 
remote K-12 science classrooms through NYSCI’s Virtual Visit teleconfer-
encing program. In the past, NYSCI outreach efforts were based solely 
on synchronous interactions between a museum facilitator and classroom 
students. However, because of the complexity of the science NYSCI is 

13  Joël De Rosnay, 1975, The Macroscope, New York: Harper & Row Publishers. 
14  Katy Börner, 2011, “Plug-and-Play Macroscopes,” Communications of the ACM 54(3):60-

69. Available at http://ivl.slis.indiana.edu/km/pub/2010-borner-macroscopes-cacm.pdf. 
Last accessed February 7, 2011.

15  Andrew Johnson, Jason Leigh, Luc Renambot, Arun Rao, Rajvikram Singh, Byungil 
Jeong, Naveen Krishnaprasad, Venkatram Vishwanath, Vaidya Chandrasekhar, Nicholas 
Schwarz, Allan Spale, Charles Zhang, and Gideon Goldman, 2004, “LambdaVision and 
SAGE—Harnessing 100 Megapixels,” presentation at the CSCW Workshop on Human 
Factors in Advanced Collaborative Environments, Chicago, November 6, 2004. Available 
at http://www.evl.uic.edu/aej/papers/CSCW-SAGE.pdf. Last accessed February 7, 2011.
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teaching today, many data inputs are needed, and the remotely located 
students need to be able to share and interact with those data as well.

In general, Uzzo argued for teaching a new generation of science 
students these kinds of e-science data processing and interaction skills, 
thereby creating the demand side for the infrastructure that e-science will 
need to succeed. He further suggested that informal learning institutions 
may be in the best position to advance the cause of e-science because these 
institutions have an opportunity to move computational thinking beyond 
the traditional bounds of today’s computer science by helping to close 
the gap between science as a research activity and learning about science. 
These institutions are also in a good position to conduct learning research 
around this topic and then to integrate such research into professional 
development and curriculum development for K-12 formal education.

4.2.4  Jill Denner, Education, Training, Research Associates

For Jill Denner, a developmental psychologist with Education, Train-
ing, Research (ETR) Associates, the programming of computer games 
provides an appropriate context for the development of computational 
thinking in middle school students.

Denner and her colleague Linda Werner, a computer scientist from 
the University of California, Santa Cruz, argue that the programming 
of computer games connects to computational thinking in several ways. 
One important connection is in the modeling of abstractions—in Denner’s 
words, “Youth are engaging in modeling abstraction while programming 
a game when they create a model of their make-believe world, which 
includes creating variables, new methods, and thinking at multiple levels 
of abstraction, such as how the player will interact with the game and 
what the goal of the game is.” A second important connection between 
programming of computer games and computational thinking is to algo-
rithmic thinking. To make their games playable in the way they envision 
them, they must understand when and how to program using sequential, 
parallel, or conditional execution, and how to create a logical process 
through which a player can interact with the game. 

In one pilot study involving 30 students using Storytelling Alice to 
develop 23 different games, Denner reported that students used specific 
programming constructs showing evidence of computational thinking 
(i.e., algorithmic thinking, abstraction and modeling) such as event han-
dling, parallelism, additional methods, parameters, alternation, iteration, 
and conditional execution:

Many of the students created their own methods and used parameters 
which we see as examples of modeling and abstraction. In their final 
games there was limited use of alternation and limited use of iteration. 
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In part this is due to how we taught them when we bundled the if/else 
construct with another complex programming construct that made it 
more complicated for them to learn it. We feel they didn’t incorporate 
loops due to motivation; many of the students didn’t see the point of 
creating loops when they could just repeat code segments. They didn’t 
see the point of creating more efficiency.

Denner and Werner’s approach is based on students engaging with 
computer games along a use-modify-create continuum. First, they play 
other students’ games and work through three tutorials that teach pro-
gramming with Alice. The goal of the “use” phase is for students to learn 
about the Alice interface and the kinds of games that they might make. 
Second, students learn to modify an existing game through a series of 
graduated self-paced challenges. The goal of the “modify” phase is to 
experiment with different strategies and their results, and to build an 
understanding of the mechanisms that they will use to program a game. 
Last, students create an original game de novo.

Denner reported on several lessons learned from the project:

•	 Individual differences matter a great deal. Denner pointed out that stu-
dents have different starting levels, willingness to fail, and motivations. 
Some students prefer to learn by playing around, whereas others prefer 
to follow step-by-step instructions to carry out a task. Some students are 
afraid to fail and thus are unwilling to tackle problems that entail the risk 
of failure (e.g., using a concept incorrectly). Other students are intrepid 
explorers who are curious, creative, and undaunted if and when they fail 
at doing something. Those unwilling to explore a range of strategies are 
unlikely to get beyond modification of an existing program and will thus 
never create a truly original game. Denner found it necessary to balance 
student engagement on a problem with motivating them to learn more 
complex or difficult concepts needed for their programs. Specifically, she 
suggests that to promote computational thinking during computer game 
design, teachers must:

	 —Be strategic with examples: students use what they see.
	 —Provide graduated instructional materials that can accommodate 

a range of programming experience and styles.
	 —Balance structure with exploration. It is important to encourage 

authentic interest, but also to provide enough structure to encourage 
games that include computational thinking concepts.

•	 Students program differently in pairs than by themselves. Compared to 
students working individually, students in pairs spent more time doing 
programming and housekeeping tasks (e.g., saving and testing their 
code), whereas the students working by themselves spent more time 
doing things like screen layout, changing the appearance of the game, and 
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adding objects. For most students, pair programming is highly motivating 
and improves their ability to communicate concepts. When students have 
to work directly with a partner next to them on one computer, they have 
to explain their complex ideas simply so their partner understands. The 
quality of pair interaction determines the extent to which the students 
engage in computational thinking and persist in the face of challenges.

•	 The measurement of computational thinking requires multiple sources of 
information. Denner and Werner are analyzing several sources, including 
computer logging data that show what students are doing when program-
ming a game. They also give students performance assessments to mea-
sure algorithmic thinking and abstraction, and code student games for 
frequency of aspects of computational thinking, as well as computational 
thinking patterns.

Most of this research has focused on groups that are underrepresented 
in computing—girls and Latinos. Denner reported that they faced a num-
ber of challenges in their middle school efforts to promote computational 
thinking among students in both high- and low-resourced schools. Chal-
lenges included mundane issues such as difficulties with hardware and 
software and with Internet access. Other challenges were how to create 
effective instructional materials to help teachers with little or no training 
in computational thinking support it among their students. Finally, they 
faced the challenge of motivating students to engage in sustained com-
plex thinking in an after-school setting. 

4.2.5  Lou Gross, National Institute for 
Mathematical and Biological Synthesis 

Lou Gross directs the National Institute for Mathematical and Bio-
logical Synthesis (NIMBioS), an organization supported by the National 
Science Foundation and by the Departments of Homeland Security and 
Agriculture.16 The primary goals of NIMBioS are to foster the maturation 
of cross-disciplinary approaches in mathematical biology and the devel-
opment of interdisciplinary researchers who address fundamental and 
applied biological questions. NIMBioS has an education and outreach 
program that offers a variety of activities for K-12 students and teachers, 
university and college students and faculty, professional industry audi-
ences, and the general public. These activities focus on education at the 
interface of mathematics and biology.

16  More information about and further description of the National Institute for Mathemati-
cal and Biological Synthesis (NIMBioS) can be found at “NIMBioS,” website, http://www.
nimbios.org. Last accessed February 7, 2011.
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Gross argued that key to computational thinking is tying a compu-
tational worldview to a student’s everyday experience. In his words, 
“Student comprehension of computation and appreciation for its impor-
tance in everyday experience would be enhanced at every level of the 
educational experience if we encourage connections between computa-
tion and the models (internal to their experience, as well as those used 
to understand scientific processes) students use, and the data they collect 
from their own observations of the world around them.”

To support this perspective, he offered several examples. 
His first example involved an everyday problem—how to pick a 

checkout line at a grocery store. What variables might affect one’s deci-
sion? Workshop participants suggested line length, the presence or 
absence of a bagger or of someone writing a check, the number of items 
in a person’s cart, and whether the line is an express line. Gross pointed 
out that high school students often ask about the presence or absence 
of someone cute in the checkout line, thus illustrating the point that the 
criteria for decision making depend on the nature of the model involved 
and its purpose.

His second example involved a simple game about which students 
are asked to make a prediction. The game involves groups of three to 
five students with a cup containing one blue and one yellow bead, and 
a separate supply of blue and yellow beads. Students are asked to pull a 
bead from the cup at random and then to place it back into the cup along 
with another bead of the same color, and then to repeat this procedure 
until there are 20 beads in the cup. Students are asked to predict what will 
happen in their cup. (An important advantage of this example is that it is 
easy for students to collect data in a single class.)

A typical prediction is that the cup will become mostly blue or mostly 
yellow depending on the color of the bead first chosen. What happens in 
fact is that for any given cup, the percentage of blue beads converges to 
a fixed fraction, but the fraction is different for different cups. With an 
enormous number of cups, the result is that nearly every fraction from 
zero to one is represented, and in the limit of an infinite number of cups, 
the distribution from zero to one is uniform. As for the typical prediction, 
the actual result is that it is true that a blue bead being drawn first does 
result in a greater likelihood that the ultimate fraction of blue beads is 
high, but this is not true all of the time.

The cup scheme described is known as a Polya’s urn, and the resulting 
sequence of bead configurations is described by a Martingale process—
the system has built-in dependencies and a feedback structure that is a 
very common property of biological systems at many levels. Gross uses 
this example to extract three primary conclusions:
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•	 Randomness can lead to order. Although the underlying system 
is random (because the color of the beads drawn cannot be predicted 
exactly), each cup approaches having a fixed fraction of each bead, but 
the fraction is different in different cups. 

•	 Randomness can lead to complexity. By combining outcomes from 
different types of beads, highly complex outcomes are possible. That is, 
with a large number of beads and many beads drawn, one can develop 
any number of stable outcomes. 

•	 Because random processes can produce outcomes of such complexity, 
once natural or artificial selection is added, the result is a powerful mechanism 
to explain the complexity of the world around us. This is the basis of much of 
the explanatory power of modern biology.

A third example provided by Gross involved descriptive statistics 
using personal data. The question posed to students is what happens to 
one’s height overnight. Students make predictions about their change in 
height and consider factors that might affect height, such as their height 
when they go to bed, their gender, the amount of sleep they had last night, 
the amount of alcohol they consumed last night, and so on. They collect 
these data over four nights and then explore the data using basic descrip-
tive statistics, bar charts, scatter plots, and regression analysis.

The resulting data set is easily understood, is multivariate, has poten-
tial multiple causal factors, and illustrates problems with sampling and 
outlier effects. For example, a height measurement might be recorded as 
800 mm. Since everyone realizes that no one in the group is only 800 mm 
in height, the example illustrates the point that bad data are sometimes 
collected and must be discarded. Graphing the data in different ways to 
show possible relationships between different combinations of two vari-
ables provides insight into multivariate relationships, thus illustrating 
that simple descriptors (e.g., measures of central tendency and dispersion) 
may not be adequate to describe what’s going on. 

The example can also motivate a discussion of the importance of insti-
tutional review boards in approving experiments dealing with human 
subjects. 

The final example was intended to introduce students to mathemati-
cal notions of vectors, matrices, Markov chains, equilibrium, and stability. 
Gross’s example began with an aerial image of Washington, D.C., pulled 
from Google Earth. He asks students, “How would you describe this 
image?”

The image shows buildings, roads, trees, and other typical topo-
graphic features. But students eventually describe the image by saying 
how much of the image is this color or that color, how much is in build-
ings, how much is in roads, and so on. They basically then figure out that 
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that’s what a vector is, that they’re describing the image as a vector in 
which the components consist of the fraction of the image that is of each 
type. One interpretation of this vector is that it represents a probability 
distribution of the landscape for a discrete number of components. (Gross 
pointed out that the idea of using a vector to represent a multidimensional 
entity is independent of any discussion of probability.) Students also real-
ize (with some coaching) that spatial aspects of the image are not included 
in the vector description. For example, the vector does not change if 
some of the buildings are moved around in the image. However, a vector 
description of an image taken in 1988 would differ from one of an image 
of the “same” scene in 1949. That is, a time-varying vector describing a 
scene is one way to characterize change in land use over time. Students 
are then able to derive the basics of matrix multiplication by finding the 
fraction of each landscape type that transitions to another type in each 
time period, the transition matrix of the Markov chain, and use this to 
determine the landscape vector at future times. After a long time, cor-
responding to many matrix multiplications, the landscape vector is near 
equilibrium, given by the eigenvector for the dominant eigenvalue (one) 
of the Markov chain.

With this background in hand, Gross uses with his students pre-
packaged software to demonstrate computational methods of looking at 
change across a landscape, e.g., coupling between an image, a dynami-
cally changing vector, in this case a bar graph, and then an overall descrip-
tor. An example of prepackaged software for this application is found in 
EcoBeaker, a set of computational laboratories useful for analyzing eco-
logical data, and students also use code they develop in Matlab to analyze 
different types of landscapes.

4.3  COMPUTATIONAL THINKING IN 
ENGINEERING AND COMPUTER SCIENCE

4.3.1  Questions Addressed

•	 What are the relevant lessons learned and best practices for improv-
ing computational thinking in K-12 education?

•	 What are examples of computational thinking and how, if at all, 
does computational thinking vary by discipline at the K-12 level? 

•	 What exposures and experiences contribute to developing compu-
tational thinking in the disciplines?

•	 How do computers and programming fit into computational 
thinking?

•	 What are plausible paths and activities for teaching the most 
important computational thinking concepts?
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Presenters:
	 Christine Cunningham, Museum of Science, Engineering is Elementary 

 			   Project 
	 Taylor Martin, University of Texas at Austin 
	 Ursula Wolz, College of New Jersey
	 Peter Henderson, Butler University 
 
Committee respondent: Marcia Linn

4.3.2  Christine Cunningham, Museum of Science, 
Engineering is Elementary Project

Christine Cunningham from the Museum of Science in Boston spoke 
about its Engineering is Elementary (EiE) curriculum. The EiE project is 
developing an elementary school curriculum to help students learn about 
engineering. It integrates engineering with topics in elementary school 
science. EiE also conducts professional development of educators. The 
project has four goals:

•	 To increase children’s technological literacy. This is the primary driving 
idea underlying the project.

•	 To increase elementary educators’ ability to teach engineering and tech-
nology. The Museum of Science realized early that the first goal required 
teachers who understood something about engineering and technology, 
and that very few elementary school teachers have ever had any exposure 
to formal engineering.

•	 To increase the number of schools in the United States that include 
engineering at the elementary level. To introduce technology education into 
schools, it is necessary to convince schools and districts that there is actu-
ally room for it in the curriculum as they currently teach it.

•	 To conduct research and assessment to advance the first three goals and 
contribute knowledge about engineering teaching and learning at the elementary 
level. Having as well as presenting research and assessment data is neces-
sary to persuade schools—and to the extent that such data can relate to 
other topics being taught, so much the better.

Cunningham went on to discuss the project’s lessons learned and the 
resulting best practices. The first principle was the importance of listening 
to teachers and involving them in every aspect of the development pro-
cess. For example, because teachers are responsible for covering content 
that is largely prescribed by external influences, any new content (e.g., 
new disciplines or concepts) must integrate with or reinforce content or 
topics already being taught. Cunningham and her colleagues identified 20 
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topics that are commonly covered in elementary science programs, paired 
each with an engineering field, and illustrated the pairing with a par-
ticular technological device or process (Table 4.1). Cunningham stressed 
that understanding engineering habits of mind and mental processes is 
an important aspect of their work. They address this goal by developing 
specific curriculum units that focus on processes. 

A second principle is to build on what teachers know or feel comfort-
able doing. It is well known that many elementary school teachers are 

TABLE 4.1 Correspondences Between Elementary Science and 
Engineering

Topic from Elementary 
Science Program Engineering Specialty

Corresponding 
Technological Device or 
Process

Water Environmental Water filters

Insects and plants Agricultural Pollinators

Wind and weather Mechanical Windmills

Simple machines Industrial Chip factory design 

Earth materials Materials Walls

Balance and forces Civil Bridges

Sound Acoustical Sound representation

Organisms Bioengineering Model membranes

Electricity Electrical Alarm circuits

Solids and liquids Chemical Playdough process

Landforms Geotechnical Bridge sitting

Plants Package Plant package

Magnetism Transportation Maglev vehicle

Energy Sustainable Solar cooker

Solar system Aerospace Parachute

Rocks and minerals Materials Replicate an artifact

Floating and sinking Oceans Submersible

Ecosystems Environmental Oil spill remediation

Human body Biomedical Knee brace

Light Optical Lighting system
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uncomfortable with science, and Cunningham found that engineering 
(and presumably computational thinking) is even more terrifying. To 
address this issue, Cunningham and colleagues begin their presentations 
with exercises in literacy—an illustrated storybook for children. The story 
has significant engineering content but is presented as a reading exercise, 
so that at a minimum students will receive a very general introduction to 
the topic. This storybook also provides context for the engineering activi-
ties that the kids will be doing in class. Elementary teachers are generally 
quite comfortable teaching literacy, and so this is a gentle introduction to 
the new discipline of engineering.

Cunningham also noted the importance of articulating how new con-
tent and skills are responsive to existing educational standards, such 
as those from the International Technology and Engineering Educators 
Association (ITEEA) Standards for Technological Literacy, the National 
Science Education Standards from the National Academy of Sciences, and 
the math standards from the National Council of Teachers of Mathemat-
ics. Such standards could include, for example, core concepts of technol-
ogy such as systems, processes, feedback, controls, and optimization; the 
design process as a purposeful method of planning practical solutions to 
problems; inclusion in the design process of such factors as the desired 
elements and features of a product or system or the limits that are placed 
on the design; and the need for troubleshooting.

From time to time, learning about engineering can be motivated in 
terms of meeting teacher goals that are not necessarily based in educa-
tional standards. For example, many elementary school teachers want to 
find ways to help their students work together in teams. Persuading stu-
dents to work together, to play nicely, and to communicate what they’re 
doing is something that many teachers want to accomplish at the begin-
ning of each year, and engineering education can often be an important 
part of such persuasion.

A related point is the importance of student evaluation. Both teach-
ers and students pay much more attention to material when student 
understanding of such material will be evaluated. The evaluation process 
need not be a one-to-one correlation (i.e., we teach X and then students 
are evaluated on their knowledge of X), but if teaching X helps students 
to understand Y better, and Y is assessed, teachers will be more likely to 
continue teaching X.

Another lesson learned is the desirability of starting small. Teachers 
tend to be more willing to invest a couple of class periods to experiment 
with a new concept than an entire school semester or year. The success 
of one individual teacher with a particular concept or topic can catalyze 
others, as his or her students tell their friends about an interesting new 
experience in class. Other teachers hear of students’ positive reaction and 
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often want to try the concept or topic themselves. These efforts build 
grassroots support within the school for change.

Professional development and solid curricular materials are also 
important. Because elementary teachers are inexperienced with the sub-
ject matter of engineering, teaching materials have to be explicit and clear. 
For example, because learning objectives drive the specific experiences or 
exposures embedded in different curricular units, objectives need to be 
very explicit and specific—children will know X and be able to do Y—
rather than high level and abstract. Learning objectives should also be few 
in number and relatively simple in scope so that a high degree of student 
mastery is possible. And the materials must provide ways of specifically 
assessing the scope and extent of student mastery and comprehension.

As for the pedagogical approach taken to the subject material, 
Cunningham and colleagues have found that hands-on experiences 
are particularly important for young learners. They have fielded many 
requests to replace physically manipulative experiences in handling 
objects with a click-and-drag interface on the computer that students can 
use to connect objects on the screen. But knowledge about the physical 
world that teachers take for granted cannot be assumed in students. For 
example, students don’t necessarily know that a fuzzy pompom will pick 
up pollen better than a smooth marble. In fact, that fact is engineering 
knowledge, and it’s “common sense” only if one has real-world experi-
ence with pompoms and marbles.

Also, context matters a great deal to students, especially to girls and 
underrepresented minorities, who often lack a cultural frame for why 
they should care about learning about engineering and what it might 
be used for. The project takes great care to ensure that its challenges are 
inviting to students who are often underrepresented in STEM (science, 
technology, engineering, and mathematics); one core way it does this is by 
illustrating how engineers (and engineering) might help people, societies, 
or animals. The storybooks are an essential element of context-setting, but 
it is important to contextualize the entire learning experience and not just 
the beginning.

Cunningham closed by pointing out that some of the lessons above 
for introducing engineering into elementary school also applied to middle 
schools and high schools. Specifically, she underscored the importance 
of integrating the new material—in this case, engineering—with other 
things that these schools are already teaching. After that integration is 
achieved, the new material may become more primary—but emphasizing 
its importance as a primary focus from the start is a strategy that is not 
likely to succeed in getting it introduced in the first place.
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4.3.3  Taylor Martin, University of Texas at Austin

Taylor Martin of the University of Texas at Austin discussed several 
themes that she regarded as important for the teaching of computational 
thinking:

•	 Personal empowerment. In Martin’s view, the teaching of computa-
tional thinking to students should impart to them a personal sense that 
they can in fact undertake intellectual tasks that they initially feel they 
cannot perform successfully. Underlying this sense is the ability to break 
a complex task into constituent parts, each of which makes some progress 
toward the goal. She illustrated by pointing to Web searches that yield 
information on how to do or fix something and suggesting that a Web 
search may well be the most sensible “first step” in solving a complex 
problem. Empowerment also implies that the computational thinker has 
confidence in being able to “talk” with the computer and getting it to do 
what he or she wants it to do.

•	 Motivation and authenticity. Martin noted the importance of person-
ally relevant tasks for motivating people to undertake the hard work of 
learning new ways of thinking and acquiring habits of mind. However, 
she also pointed to the idea that using computers can be fun and motivat-
ing in and of itself for many individuals. Many individuals will explore 
the ins and outs of a computational device just for the fun of discovering 
what it can do, and pedagogy should take advantage of this phenomenon. 
She further observed that exploration of such devices is greatly enhanced 
when they are ubiquitously present—when the devices are not present, 
she argued, students are not thinking computationally.

•	 Habits of mind. Martin argued that when someone becomes facile 
with computational thinking, the notion of computer-as-device disap-
pears, and what remains are the worldview and habits of mind associ-
ated with computational thinking. She noted that an experienced com-
putational thinker cannot resist thinking of ways to save effort when 
repeated actions are required to accomplish a task—they are driven to 
develop computationally informed approaches to solve these problems. 
For example, these individuals understand that in large stores, even if 
there are four cashiers, having one line makes more sense than having 
four lines.

Regarding the infrastructure needed for teaching computational 
thinking, Martin said that present trends point to the disappearance of 
the computer “as computer” in the future—the computer will become 
increasingly invisible. If so, teachers of computational thinking will have 
to find pedagogical approaches that do not necessarily depend on the 
computer per se.
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Nevertheless, today computers are a valuable instructional tool when 
teachers are comfortable with them, when activities are student-centered, 
and when enough equipment is available. From her perspective, schools 
do have many computers—but these computers are not well matched to 
the pedagogical tasks at hand. Martin is an advocate of an infrastructure 
based on  open-source software, and she believes that it makes sense to 
install such computers in classrooms and see what students and teachers 
do with them. She also offered an important qualifier—if the resulting 
computational problem-solving environment does not have the tools that 
students would choose to use, e.g., Facebook, Gmail, and so on, and the 
unavailability of familiar tools is likely to inhibit student learning.

With such an infrastructure, Martin’s goal is to make the underlying 
technology as transparent as possible to students, and thus “computa-
tional thinking” can be sneaked into student activities without intimidat-
ing them so that the computer is “a tool like a pencil, no big deal at all, 
an extension of your hands.” 

4.3.4  Ursula Wolz, College of New Jersey

Ursula Wolz described the use of journalism education and the lan-
guage arts as vehicles for exploring computational thinking in a pro-
gram at the Fisher Middle School in Ewing, New Jersey.17 Paraphrasing 
Gerald Sussman’s statements at the first NRC Workshop on Computa-
tional Thinking,18 she began her presentation by arguing that compu-
tational thinking requires first and foremost a language through which 
to express that thinking. Languages can be natural or formal. Language 
arts instruction focuses on the former, whereas mathematics instruction 
focuses on the latter. The emphasis on tying programming to mathemat-
ics instruction—adapting pedagogical strategies, curricular organization, 
and assessment methods from math—may lead math-averse students to 
believe that they can’t think computationally. 

Wolz argued that demonstrating the relationship between computa-
tional thinking and language arts can facilitate integration of computa-
tional thinking into the mainstream curriculum. Essential to this enter-
prise is acknowledgment that computing must become as ubiquitous and 
integrated as the life sciences, starting with a computational analog to the 
butterfly chrysalis in preschool. But computing must be infused into all 

17  For more information see the Interactive Journalism Institute, website, College of New 
Jersey, www.tcnj.edu/~ijims/ or http://www.bpcportal.org/. Last accessed February 7, 
2011.

18  NRC, 2010, Report of a Workshop on the Scope and Nature of Computational Thinking, Wash-
ington, D.C.: The National Academies Press. Available at http://www.nap.edu/catalog.
php?record_id=12840. Last accessed February 7, 2011.
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curricular areas so that it is not compartmentalized into a “special” activ-
ity such as art or gym. Its ubiquity should be through creative expression 
rather than curricular “chunking” of disassociated content. She noted the 
problem that adding computing to an overburdened curriculum requires 
taking something out (often the arts). 

Teacher-initiated curriculum development confirms Wolz’s conten-
tion that learning programming and computational thinking must be 
contextualized. Scholars of computer science may study and examine for-
mal languages in the abstract, leading to the traditional focus in program-
ming courses on the constructs of a language (e.g., variables, expressions, 
loops, functions). The analog in modern language instruction would be 
to require elementary students to diagram sentences and master English 
grammar before being allowed to read literature or write stories of their 
own. Integrating computational thinking into the language arts curricu-
lum affords students a natural arena in which to practice reading and 
writing in a formal language (e.g., Scratch) in a meaningful and motivat-
ing context. 

Wolz argued that language arts programs are inherently flexible, thus 
inviting innovation. Journalism provides an ideal venue for civic engage-
ment and what Seymour Papert called “serious fun.”19 Language arts 
is secure in K-12 curricula, and so hitching the computational thinking 
wagon to language arts helps to ensure that there will be a place for it 
in an increasingly packed curriculum. Further, 21st century literacy will 
require facility with as yet unimagined modes of expression that involve 
computational thinking.

The extracurricular program her project developed reinforces lan-
guage arts skills and computational thinking by providing a collabora-
tive model for a 21st century newsroom. Teacher-editors and student 
reporters are assigned a “beat” (e.g., politics, sports, business), research 
and develop a story, and then create text, graphics, video, and procedural 
animations in Scratch to post newsworthy stories on the Internet.

Journalism provides an operational context—that of principled story-
telling and information dissemination in which students, as constructors 
of aggregated content (rather than just consumers), must inquire, cre-
ate, build, invent, polish, and publish. All of these same notions arise in 
computational thinking as well. Wolz’s students iterate on defining the 
problem, researching it, drafting a solution, and testing it (in the language 
of journalism, they research, interview, draft, copy edit, and fact check). 
In the end, they publish.

19  Seymour Papert, “Hard Fun,” available at http://www.papert.org/articles/HardFun.
html. Last accessed February 7, 2011.
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For Wolz, the correspondence between journalism and computational 
thinking is deeper than mere process. Both are concerned with informa-
tion access, aggregation, and synthesis (e.g., fact gathering, analysis). 
In both domains, there are huge concerns about reliability, privacy, and 
accuracy. Algorithm design is the computational thinking analog for the 
need for logical consistency in journalism. (Increasingly news articles 
have a quantitative aspect to them and are expected to contain logically 
consistent arguments based on reliable data.) Knowledge representation 
and the appropriate granularity are important as well. Last, she noted the 
importance of abstraction from cases in both domains.

The middle school teachers with whom Wolz collaborates took the ini-
tiative to bring the Interactive Journalism Institute into their classrooms. 
They view programming in Scratch as a mode of expression through 
which students practice language arts skills. The teachers integrate com-
putational thinking concepts via Scratch projects and kinesthetic exposure 
to algorithms (à la CS Unplugged20) into curricula ranging from formal 
report writing to poetry. In technology and math classes, Scratch story-
telling projects are used as rewards for completing assignments. Because 
of the gentle process through which Scratch programming and computa-
tional thinking are infused, the math-averse are not dissuaded, and those 
who want to improve their writing skills are encouraged. Crucial to this 
approach is minimizing informal coaching and emphasizing student-ini-
tiated project selection over didactic instruction in computational think-
ing. Enthusiasm for this approach is measured in the cultural diffusion 
throughout the school. Although only 6 teachers and approximately 50 
students participated in the extracurricular program, 12 teachers included 
computational thinking in classes that reach approximately half of the 
school population of 900.21 

Wolz believes her program demonstrates that reading teachers also 
have the capacity to teach elements of computer science effectively with 
the right support and tools. Three open questions remain: (1) How can 
computational thinking skills be assessed within this context? (2) How can 
the impact of computational thinking on language arts skills be assessed? 
and (3) How can this pedagogy be applied to other primary disciplines 
such as social studies, science, and math? 

20  CS Unplugged, website, http://csunplugged.com/. Last accessed February 7, 2011.
21  Ursula Wolz, Kim Pearson, Monisha Pulimood, Meredith Stone, and Mary Switzer, 2011, 

“Computational Thinking and Expository Writing in the Middle School: A Novel Approach 
to Broadening Participation in Computing,” ACM Transactions on Computing Education, 
forthcoming.
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4.3.5  Peter Henderson, Butler University 

Workshop participants extended the discussion started at the first 
workshop concerning the nature of computational thinking and compu-
tational thinkers. In one perspective, Peter Henderson, formerly chair of 
the Department of Computer Science and Software Engineering at Butler 
University, framed his comments about computational thinking against 
the background of negative perceptions about computing and computer 
science. He pointed out the poor quality of software, noting that on a day-
to-day level, we have all experienced the frustrations and difficulties of 
dealing with software artifacts that sometimes work and sometimes don’t, 
unexplained and unexpected system crashes, and so on.

He also noted that much of the news regarding careers in the infor-
mation technology field is negative. Many parents remember the dot-com 
boom and bust, and even today, the news is filled with stories about 
greater outsourcing and offshoring of information technology employ-
ment. Rapid changes in technology make it difficult for people working 
with information technology to keep up their skills. Majoring in informa-
tion technology is confusing, with all of the options in information sys-
tems, management information systems, computer science, informatics, 
computer engineering, software engineering, and so on.

Finally, Henderson argued that computer science is misunderstood 
by nearly everyone. He pointed to the NRC report on the first workshop 
on computational thinking and the lack of consensus on what it is, and 
suggested that it is no different asking any computer scientist—ask 10 
different computer scientists what computer science is and you’ll get 
multiple different answers. So, he asked, “How can we advance the cause 
of a discipline that we don’t understand?”

As a unifying theme, Henderson described computational thinking 
as generalized problem solving with constraints. He argued that almost 
every problem-solving activity involves computation of some kind. Cit-
ing a Fred Brooks article, “The Computer Scientist as Toolsmith II,”22 
Henderson said that for him, the toolsmith metaphor is a convenient 
umbrella under which the elements of computer science can be combined 
and then presented to the public in a manageable way. Computational 
thinking serves much the same purpose.

Henderson noted that humans learn through the use of concrete 
examples and through pattern recognition. Specifically, he argued that 
human understanding begins with concrete examples. Humans then 
identify patterns common to those examples (i.e., they generalize), they 

22  Frederick Brooks, 1996, “The Computer Scientist as Toolsmith II,” Communications of 
the ACM 39(3):61-68.
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specify those patterns clearly, they verify that those patterns are indeed 
valid, and then they proceed to name the patterns. 

Henderson presented two examples. He described a problem pre-
sented on a TV series for preschool students entitled Thomas the Tank 
Engine. In one situation, Thomas is pulling two cars, one red and one 
green. They are on a track with a siding (connected on both sides), and 
the problem is to reverse the order of the two cars. Solving this problem 
requires the students to develop a computational algorithm.

His second example began with a set of number series: 0, 1; 0, 1, 1; 0, 
1, 1, 2; 0, 1, 1, 2, 3; and 0, 1, 1, 2, 3, 5. The pattern is that the next number 
in the sequence is the sum of the previous two numbers; that is, Ni = Ni-1 
+ Ni–2 with N0 = 0 and N1 = 1. And then we name the sequence—Fibonacci 
numbers.

Henderson went on to describe computational thinking as general-
ized problem solving with constraints. That is, almost every problem-
solving activity involves computation of some kind. He further noted that 
discrete mathematics and logic are rich sources of examples and material 
for computational thinking, and thus that discrete mathematics and logic 
are the foundational mathematics for computational thinking, useful for 
reasoning about computational processes.

Thus, Henderson would start with computational thinking activities 
in pre-K (e.g., reversing the two cars), although for the first several years, 
the term “computational thinking” would not be introduced explicitly. 
Only later would the notion of computational thinking be explored as 
such; this philosophy is consistent with Bertrand Meyer’s “successive 
opening of black boxes” view of learning object-oriented programming.23 
For this preparation, traditional mathematics, discrete mathematics, and 
logical reasoning must be taught at all levels, and so, for example, an 
advanced placement course in discrete mathematics would replace the 
current AP course in computer science. A freshman discrete mathemat-
ics sequence would be introduced, similar to that currently present for 
calculus. This view is consistent with the traditional engineering educa-
tional model, which emphasizes the science and math foundations of the 
discipline early (e.g., physics, chemistry, calculus). 

23  Bertrand Meyer, 1993, “Towards an Object-Oriented Curriculum,” Journal of Object-
Oriented Programming 6(2):76-81.
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4.4  TEACHING AND LEARNING COMPUTATIONAL THINKING

4.4.1  Questions Addressed

•	 What is the role of computational thinking in formal and informal 
educational contexts of K-12 education? 

•	 What are some innovative environments for teaching computa-
tional thinking?

•	 Is there a progression of computational thinking concepts in K-12 
education? What are criteria by which to order such a progression? What 
is the appropriate progression?

•	 What are plausible paths to teaching the most important computa-
tional thinking concepts?

•	 How do cognitive learning theory and education theory guide the 
design of instruction intended to foster computational thinking?

Presenters:
	 Deanna Kuhn, Columbia University 
	 Matthew Stone, Rutgers University 
	 Jim Slotta, University of Toronto 
	 Joyce Malyn-Smith, Education Development Center, Inc. 
 
Committee respondent: Al Aho

4.4.2  Deanna Kuhn, Columbia University

Deanna Kuhn, a developmental psychologist at Columbia University, 
sees young learners as evolving through a number of different intellec-
tual stages regarding scientific thinking, and she discussed how these 
individuals use data and evidence and how such use is relevant to their 
facility with scientific thinking.

The first level of development involves accepting the possibility of 
false belief, a level at which children come to understand that knowledge 
is constructed by human minds and therefore could be false. Often, chil-
dren are able to realize the potential for false belief by distinguishing data 
and evidence from theories and claims. This requires a child to conceive 
of data as possibly not representing the complete reality—if the child sees 
data as representing a complete reality, there is nothing to distinguish the 
data from the claim and thus no task of intellectual coordination.

To illustrate this point, Kuhn described several data-gathering and 
reasoning exercises for kindergarteners. According to Kuhn, kindergar-
teners can do simple data representation and analysis. For example, when 
a class of kindergartners is asked the question, What is your favorite TV 
show?, students are able to understand the process of collecting the data 
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and developing a bar chart based on the answers. They can also make 
simple inferences such as “more students like show X than show Y.” They 
are also very good at recognizing simple covariation in causal models, 
that is, “Did A cause O?” in simple cases. 

On the other hand, they have difficulty with covariation in a multi-
variate context (e.g., Which A caused O?) or a negative antecedent and 
outcome (e.g., Not A and O). For example, when children were given 
information about a simple pattern of eating green food or red food and 
then were asked if there was a relationship between the food eaten and 
healthy teeth, students could see and recognize the pattern when there 
was one (find covariation) but could not recognize when there was no 
pattern (non-covariation). Instead they claimed that there was a pattern. 
Kuhn added that young children also have trouble making the connection 
between concepts like non-covariation and non-causality. Kuhn says the 
students were doing isolated data interpretation of isolated instances and 
not looking for big patterns. 

Kuhn also pointed out that although young children can do funda-
mental experimental design,24 they often close their inquiry prematurely. 
For example, if young learners are asked, “If we want to find out if the 
mouse that’s eating my cheese is big or small, which trap should we 
use?” and then are offered the options of a small-door trap or a big-door 
trap, the students can often understand that the small trap is going to be 
informative whereas the large door is not. But, if they are asked, “If we 
use a big door on the mouse trap, can we say whether the mouse is big 
or small?,” they tend to say, “Yes, that means the mouse must be big.”

Premature closure also sometimes occurs when children are presented 
with confirming evidence. Children often stop the inquiry at this point, 
not realizing that the inquiry remains unfinished and that confirming evi-
dence is not sufficient to rule out competing hypotheses.25 Mitch Resnick 
has made a similar argument that not just kids but also adults are one-
cause thinkers—that even adults identify one cause (of potentially many) 
and assume a partial inquiry is completely explicative. 

Young children can eliminate variables based on simple data patterns. 
For example, Kuhn noted the work of Alison Gopnik, which suggests that 
children as young as 3 or 4, when presented with an experimental setting 
in which monkeys sneeze depending on the presence or absence of differ-
ent types of flowers, can see the covariation between the blue flowers and 

24  Beate Sodian, Deborah Zaitchik, and Susan Carey, 1991, “Young Children’s Differentia-
tion of Hypothetical Beliefs from Evidence,” Child Development 62(4):753-766.

25  Anne L. Fay and David Klahr, 1996, “Knowing About Guessing and Guessing About 
Knowing: Preschoolers’ Understanding of Indeterminacy,” Child Development 67:689-716. See 
works of Klahr and Fay, among others, on problems in premature closure or dealing with 
indeterminacy in young children.
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the sneezing.26 They can also recognize that the red flower or the yellow 
flower made no difference. In other words, they can eliminate variables.

Despite the fact that even young children can successfully employ 
some of the intellectual skills of scientific thinking, they can have a hard 
time articulating how they know something. In particular, they do not 
understand the epistemological difference between claim and evidence.27 
Although a claim and data may tell a consistent story, they are not the 
same thing. For example, while looking at a photo of a boy standing on 
an award podium with a sign labeled with the number “1” and holding a 
trophy, a child is asked, “How do you know that this boy won the race?” 
A child will often answer not with evidence of how he knows (e.g., “He 
is holding a trophy” or “The podium has a number 1 on it”) but with a 
theory of why the outcome makes sense (e.g., “His sneakers were fast”).

Even children up to 12 years old tend to focus on evidence and data 
fragments that support their story, while ignoring or minimizing those 
that do not. For example, in explaining what causes an avalanche, a stu-
dent may report that in case A, it was the slope angle that caused an ava-
lanche. Yet the same student will claim that in case B, the slope angle did 
not make a difference because the slope angle was small and something 
else caused the avalanche—that is, these older students are having trouble 
with distinguishing between a variable and a variable’s magnitude. The 
educational challenge at this level is to help the child see the data as evi-
dence rather than an example of a favored claim. Kuhn argued that when 
a child exercises control, a sort of meta-awareness over this sorting and 
attribution process, true scientific thinking can begin.

Finally, Kuhn argued that students’ facility with experimental design 
or controlled comparison develops with engagement and practice, even 
in the absence of direct instruction (although the environment itself must 
afford opportunities for practice). That is, such skills are naturally use-
ful in an appropriately rich environment, and students begin to recog-
nize and apply these distinctions naturally even without a lot of explicit 
instruction. 

4.4.3  Matthew Stone, Rutgers University

Matthew Stone is a computational linguist at the Rutgers University’s 
Department of Computer Science and Center for Cognitive Science. Stone 
works at the undergraduate level developing light programming courses 

26  Alison Gopnik and Laura Schulz, 2004, “Mechanisms of Theory Formation in Young 
Children,” Trends in Cognitive Sciences 8(8):1364-1366.

27  Deanna Kuhn and Susan Pearsall, 2000, “Developmental Origins of Scientific Thinking,” 
Journal of Cognition and Development 1:113-129.
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geared to non-computer science majors, particularly in the humanities 
and social sciences, and to those who tried to avoid math in high school. 
His efforts explore alternatives to programming-focused curricula to teach 
these students computational thinking concepts. 

Stone emphasized the importance of three key ideas in teaching com-
putational thinking: 

•	 The universality of computing devices. Universality explains why it 
can ultimately be easier to design a machine that does many things (or 
everything) rather than one that just does one particular thing. Universal-
ity also underlies important concepts in computer science such as Turing’s 
theorem, as well as why and how programming languages are useful. In 
a class oriented toward non-computer science majors, it is impractical 
and overwhelming to discuss building digital logic, but Jacquard looms 
to control the weaving of patterns are well within their reach. 

•	 Algorithmic approaches to problem solving. The notion of an algorithm 
as a deterministic way of problem solving is of course important, but an 
algorithmic approach to problem solving calls for fitting different algo-
rithms together in an overall solution in a way that is worth the effort 
of doing so. This approach to problem solving explains why people will 
pay for programs and pay for programmers to write them. It provides 
historical context for the origins and evolution in society of computing, 
sorting, and tabulating. It inspires the right kind of people to think about 
algorithms for everyday problems, such as choosing which checkout line 
to go to in the grocery store. Stone reported that non-computer science 
students found it relatively easy to understand Radix sorts and binary 
searches. Such examples can be used as a basis for motivating a solution 
to a problem such as searching through a billion randomized slips to find 
60 specific items.

•	 The importance of representations as correspondences between symbols 
and the physical world. With symbols, one can build mechanistic opera-
tions to track truth in the physical world, so that mechanical operations 
have broader meaning. This point explains why computers can be used 
for entertainment, music, and video; why biological systems are thought 
of as carrying information; and why computers appeal to cognitive sci-
entists as a model of the mind. It is likely too difficult to delve in depth 
into representation at the level of understanding the meaningfulness of 
symbols in John Searle’s Chinese room,28 but there are many examples of 
digital representation in everyday life that connect with issues of general-

28  John Searle, 1980, “Minds, Brains and Programs,” Behavioral and Brain Sciences 
3(3):417-457.
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ity and algorithms in an information economy. Virtually everyone knows 
Facebook and Google, and they all know about online banking.

Stone argued that these three ideas are at the core of computational 
thinking, and they are useful for people who are not programmers but 
rather engage in work that does not require a mathematical or design 
background. By exploring these ideas in an elementary non-technical 
context, Stone felt that he was laying the foundation for allowing an initial 
understanding to grow into a fuller one.

4.4.4  Jim Slotta, University of Toronto,  
Ontario Institute for Studies in Education

Jim Slotta’s presentation addressed technology environments for K-12 
classrooms and how these environments could support different peda-
gogical models.

Slotta first discussed the Web-based Inquiry Science Environment 
(WISE), which is intended to provide support (i.e., scaffolding) for inquiry 
activities in science classrooms. Students in these classrooms work col-
laboratively on projects that range in duration from 2 days to 4 weeks. 
A typical WISE project might engage students in designing solutions to 
problems (e.g., design a desert house that stays warm at night and cool 
during the day), debating contemporary science controversies (e.g., the 
causes of declining amphibian populations), or critiquing scientific claims 
found on websites (e.g., arguments for life on Mars).29 

Tools and interactive materials provided in the WISE environment 
support collaborative activities. These tools include “inquiry maps” that 
provide the student with options for what to do next (e.g., to display a 
Web page that can be used in support of student designs or debates; to 
view a WISE notes window or a whiteboard, an online discussion, or 
journals; or to run an applet for data visualization, a simulation, or a 
causal map). The WISE environment also includes cognitive guidance to 
promote reflection and critique. WISE provides embedded assessments 
of student conceptual understanding of the inquiry processes they use, 
and it support teachers in adopting pedagogical practices that facilitate 
inquiry approaches to science education.

Slotta described WISE as a largely successful educational innovation 
for inquiry that was adopted by tens of thousands of students and teach-
ers. In addition, it enabled research on pedagogical models and patterns, 

29  Jim Slotta, 2004,The Web-based Inquiry Science Environment (WISE): Scaffolding Knowledge 
Integration in the Science Classroom, University of California, Berkeley, available at http://
tccl.rit.albany.edu/knilt/images/3/36/Slotta_WISE.pdf. Last accessed February 7, 2011.
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pioneered authorware and portal technologies, created an “open” cur-
riculum library, and fostered disciplinary partnerships with NASA, the 
American Physical Society, and the Concord Consortium. Nevertheless, 
it had a number of significant limitations:

 
•	 Content was not portable across platforms. Although the curriculum 

library was open in the sense of being accessible to anyone, anyone who 
wanted to use elements of it was required to access the content in WISE. 
Thus, users found it very difficult to make changes to any curricular 
element. 

•	 Individual students were unable to interact with their peers in real time 
in WISE, which ran within the browser but was unable to interact with 
other applications that were running on the machine. 

•	 Implementing contingent behavior in a curricular element was made 
unnecessarily difficult by the technology. It is often desirable for an educa-
tional application to support execution paths that differ depending on 
what a student does, but WISE made it hard to design applications to do 
so.

To address some of these limitations, Slotta and his team engaged 
with the computer science department to develop a new open-source 
architecture called SAIL (Scalable Architecture for Interactive Learning) 
for content display and manipulation that separated the various layers of 
the learning environment (and in particular separated the content and the 
user interface) wherever possible. 

Using this architecture, WISE was reimplemented. Renamed WISE 3, 
the reimplementation provided all of the functionality of the original 
environment but also supported easy interactions with other software, 
such as the Concord Consortium’s Molecular Workbench. On the other 
hand, it was implemented in Java, which the developers found too limit-
ing from a performance standpoint. The next version, WISE 4, runs on 
the Web. It retains most SAIL elements, such as portals for managing user 
groups and the XML structures, as well as some of the metadata, and adds 
a new presentation layer. 

SAIL has been used in a number of other science education efforts 
as well. For example, SAIL is an integral element of the Science Created 
by You (SCY) project of the European Union.30 SCY is a large project that 
provides a flexible, open-ended learning environment for adolescents. 
Within this environment—called SCY Lab—students engage in personally 
meaningful learning activities that can be completed through constructive 

30  This discussion of Science Created by You (SCY) includes material found at the SCY 
website, “Science Created by You,” http://www.scy-net.eu/. Last accessed February 7, 2011.
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and productive learning. Examples of learning activities include browsing 
for information, generating a hypothesis, and distributing tasks.

Central to the SCY environment is an emerging learning object (ELO), 
which is essentially any student-created content that contributes to the 
learning process. Such content would include notes, reports, simulations, 
graphs, concept maps, research questions, data, and so on. ELOs are 
intended to represent the knowledge of a student as he or she learns.

Learning activities are themselves clustered in learning activity spaces 
(LASs). For example, a LAS titled “Experiment” clusters activities such 
as “design an experimental procedure,” “run experiment,” and “interpret 
data.” A LAS also indicates the relationships between learning activities 
and ELOs.

SCY provides a variety of modeling and simulation tools that support 
collaborative learning activities. Tools help students producing ELOs and 
thus determine the type and format of the ELOs, although the student 
adds the content on his or her own. 

Slotta also noted that although the notion of establishing a knowledge 
community is not new, it has been difficult to implement. The basic idea 
of a knowledge community is that of students working collectively to 
aggregate and edit materials in ways that they drive their own learning. 
It is more open-ended than a traditional classroom, and the community 
emphasizes patterns of discourse and distributed rather than centralized 
expertise. But in a curricular environment such as secondary school sci-
ence (chemistry, physics, for example) that requires coverage of a particu-
lar body of subject matter, orchestrating the proceedings in a knowledge 
community and connecting them to specific learning objectives presents 
extraordinary challenges.

This complex orchestration of people, materials, resources, groups, 
conditions, and so on requires a sophisticated technology framework to 
support it. Slotta developed such a framework, called SAIL SmartSpace 
(S3).31 This framework can be regarded as a “smart classroom” infra-
structure that facilitates cooperative learning in a milieu of physical and 
semantic spaces. 

From a technical standpoint, S3 supports aggregating, filtering, and 
representing information on various devices and displays (e.g., handheld 
devices, laptop computers); locational dependencies (i.e., allowing differ-
ent things to happen depending on the physical location of a student); 
interactive learning objects; and an intelligent agent framework. The S3 

31  More discussion of S3 can be found in Jim Slotta, undated, A Technology Framework 
for Smart Classrooms: Enabling Complex Pedagogical Scripts, Ontario Institute for Studies in 
Education, University of Toronto, available at www.stellarnet.eu/index.php/download_
file/-/view/558. Last accessed February 7, 2011.



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

104	 PEDAGOGICAL ASPECTS OF COMPUTATIONAL THINKING

environment is highly customizable and supports the coordination of 
people, activities, and materials with real-time sensitivity to inputs from 
students.

As an example of the learning space that S3 can support, Slotta 
described an S3 environment tailored to a mathematics unit intended to 
help students understand the relationship between different aspects of 
mathematics—content categories such as functions, relations, graphing, 
algebra, and trigonometry. In this implementation, Slotta and his col-
leagues developed a touch wall at the front of the room where students 
could interact with these materials. Students worked in groups at their 
local machines and then the aggregate of their local work appeared both 
on their local machines and on the touch wall where students could walk 
up and take turns touching and exploring the space. This environment 
gave students the ability to manipulate content from different categories 
and to see relationships between them.

During discussion after his presentation, Slotta noted that one of the 
advantages of these technology-rich learning environments is that they 
reduce the intellectual need to consider the technology directly. That is, 
these environments focus student attention on inquiry, reflection, and col-
laboration around subject-matter content, rather than on how to interact 
with the technologies per se—the technology thus becomes more trans-
parent and more invisible to the student.

4.4.5  Joyce Malyn-Smith, Education Development 
Center, Inc., ITEST Learning Resource Center 

Joyce Malyn-Smith from the Education Development Center, Inc., 
began by noting the importance of designing and managing both school-
based and informal learning environments. For learning to occur, she 
maintained, it is necessary to invite youth into our learning environments 
and to create a learning exchange. 

She suggested that educating K-12 students is different from edu-
cating college students. The former have minimal career direction and 
few internally determined learning goals and objectives. Furthermore, 
college/university education may be about teaching, but in K-12 environ-
ments, successful education is about learning—and in particular, about 
understanding the learning needs of each and every child in a classroom.

Facilitating learning among today’s digital natives is challenging. 
Malyn-Smith argued that these individuals use their ubiquitous informa-
tion technologies to learn anything they want to know at any time and 
anywhere and to any depth and sophistication that their interests and 
needs take them. Furthermore, their technologies are individualized and 
mobile, and so they live continuously inside their own portable learn-
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ing environments. Teachers can exploit the pedagogical opportunities 
thereby offered by creating a learning exchange during which students 
and teachers share what they know with each other, especially in non-
school contexts.

Citing a white paper titled “Computational Thinking for Youth,”32 
Malyn-Smith said that today’s youth often have a substantial familiarity 
with technology tools and deep understanding of technology concepts 
that can be foundational to developing their ability to think and solve 
problems. In addition, one of the main conclusions of that paper is that 
learners of computational thinking need opportunities for thoughtful, 
reflective engagement with the phenomena represented. 

For example, although nearly every middle school student learns 
from the textbook that trees help mitigate pollution, students in an after-
school program can have a chance to go further, using modeling tools to 
map the trees in their school yard and record relevant data on species, 
health, growing conditions, and the like. With this abstraction of their 
school yard created in the form of maps and data tables, they can use 
automated models to calculate the benefits of the trees in terms of pol-
lution removal and runoff mitigation. They can also model alternative 
growth scenarios as they either “plant” new trees, let the existing trees 
continue to grow, or remove the trees for expanded parking. Re-running 
the model leverages the power of automation to quickly adjust the under-
lying parameters and enable seeing what the impacts are. But this itera-
tive process just doesn’t fit in a school curriculum packed with hundreds 
of discrete topics that are connected loosely at best. Time allocations that 
allow for depth and complexity are part of the culture change needed for 
computational thinking to take root. 

Other advantages of non-school environments include curricular flex-
ibility, staff capacity, and access to infrastructure and to programs, espe-
cially in rural areas. 

Interrelated challenges have constrained many previous educational 
innovations, and computational thinking is no different, in Malyn-Smith’s 
view. Addressing any one of these by itself will mitigate limitations, but a 
successful implementation will require addressing them all. 

According to Malyn-Smith, one important consequence of this rich 
milieu is that today’s youth are evolving their own definition for compu-
tational thinking through experience. These individuals may not know 
what to call it, or associate all of the technical terms—but they do know 
that they are engaged in a way of thinking that is different from that of 

32  ITEST Small Group on Computational Thinking, 2010, “Computational Thinking for 
Youth,” Newton, Mass.: Education Development Center, available at http://itestlrc.edc.
org/resources/computational-thinking-youth-white-paper. Last accessed February 7, 2011.
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people who are not intensive users of technology, and they are applying 
this way of thinking to the world around them.

Two key research questions arise from this sort of student engage-
ment with computational thinking. First, to what degree and in what 
ways does the technology expertise of youth contribute to their computa-
tional thinking? A related second question is, How and to what degree can 
the use of technological tools and systems and processes facilitate transfer 
of learning in STEM careers and sciences?

To understand better what skills and knowledge youth bring to the 
classroom experience, Malyn-Smith encourages teachers to think broadly 
about the knowledge base that students are developing in all of their 
activities, not just those provided in program settings. Although teachers 
need to know a student’s standing relative to the curriculum being taught 
each year in schools, teachers also should engage in conversations with 
students about their interests and what they are learning in other settings, 
such as in museums, through television and radio, by playing games, and 
through what they’re doing with their friends. 

Teachers thus play a crucial role in helping students validate what 
they learn both in and out of school and connect their learning to the 
standards and benchmarks that define achievement in today’s society. 
Teachers also play a critical role in providing context so that students see 
the importance of what they learn and how to connect what they know 
and can do to the skills and knowledge that are valued in society. 

As for content, Malyn-Smith argued the need for clarity regarding 
what computational thinking is about. In the absence of such clarity, 
“it will be impossible to get any consistency in schools because people 
won’t understand what the topic is about, or people will interpret its 
definition as seen through only their individual lens.” She added that 
effective nationwide teaching of computational thinking requires a stra-
tegic approach based on clear definitions and illustrations rather than a 
scattershot set of examples.

Malyn-Smith recognized the difficulties in achieving clarity when 
multiple parties have different views of the essential content. To address 
these difficulties, she thought that the computational thinking commu-
nity would benefit from a consensus process to explicate what she called 
a learning occupation. A learning occupation does not correspond to a 
specific occupational title or description, but it represents instead the 
combination of the shared work tasks, knowledge, skills, and attributes 
required to perform a range of job functions across a group of related real-
life occupations. In practice, it symbolizes a goal for education and train-
ing designed for workers who would be able to perform a broad variety 
of work tasks suitable to a large cluster of occupations. 

To develop this learning occupation around computational thinking, 
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she called for a process that would hold job-analysis workshops, validate 
the information, develop performance criteria and assessment guidelines, 
develop notional skills standards, and then validate them in an integrated 
skill standards model. Such a standards model would include content, 
assessment criteria, and measures of what people need to know and do 
to qualify for beginning-level employment. The model also contains an 
illustrative scenario of a routine work situation and a likely anticipated 
problem or breakdown. 

Malyn-Smith contended that for computational thinking to get trac-
tion in the K-12 education community, it needs to be connected to frame-
works and standards that are already implemented nationwide. An analy-
sis of the Information Technology Career Cluster Initiative’s model, for 
example, provides a way to organize a hierarchy of skills and knowledge 
that can be repurposed to support the integration of computational think-
ing in the K-12 arena. At the most basic level, this information technology 
skills framework calls for literacy and the ability to use common technol-
ogy applications. Further up the hierarchy is fluency with information 
technology, which involves core knowledge and skill sets of technology-
enabled workers employed in any industry sector. At the highest level 
of this model are the skill sets necessary for IT producer or developer 
careers—those that involve the design, development, support, and man-
agement of hardware, software, multimedia, systems integration, and 
services. 

Malyn-Smith proposed that this hierarchy could be adapted for an 
appropriate learning progression in computational thinking. She sug-
gested that grades K-4 might be devoted to computational thinking lit-
eracy, career awareness, and computational skills for learning. Grades 5-8 
would also focus on computational thinking literacy but would fold in 
career exploration and learning about computational thinking skills for 
various STEM careers. Grades 9-10 would address computational think-
ing for all careers—students could explore and experiment with compu-
tational thinking in a variety of different contexts. Grades 11-12 would 
focus on providing pathways to college and careers, especially those for 
which competence in computational thinking (and computer science and 
engineering) will confer significant advantages. Postsecondary education 
and training would separate into two tracks—specialized computational 
thinking skills and competencies that are useful for STEM professions, 
and the use of basic computational thinking applications and tools for 
professions in all career tracks and in all industries.

Finally, Malyn-Smith noted that the Department of Education has 
developed a number of career clusters organized around a similar frame-
work. Each cluster model includes a core skill set called “IT applications” 
to which computational thinking concepts and ideas can be attached. 



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

108	 PEDAGOGICAL ASPECTS OF COMPUTATIONAL THINKING

Understanding this organizing framework helps teachers visualize the 
skills progression that leads learners from technology literacy to technol-
ogy careers. Once computational thinking is better defined and examples 
are developed to illustrate what it looks like in practice, a similar model 
might be developed to help educators and other stakeholders visualize the 
K-adult skills progression of computational thinking from computational 
thinking literacy to STEM careers. Because our national community of 
educators already recognizes this framework, they will be more inclined 
to accept and integrate computational thinking into their programs and 
curricula. The tools and resources developed to facilitate other programs 
using similar models can then be adapted to support the integration of 
computational thinking nationwide. 

4.4.6  Jan Cuny, National Science Foundation, CS 10K Project

Jan Cuny of the NSF’s Broadening Participation in Computing Initia-
tive discussed the CS 10K project, whose goals are to develop a new high 
school curriculum in computing and then to insert this revised curriculum 
so that it is taught in 10,000 schools by 10,000 well-prepared teachers by 
2015. 

The project focuses primarily on high schools because high schools 
have very little computer science education today. Cuny noted that with-
out the high school piece, anything done at middle school will be lost 
and anything done at the college level will be insufficient. She further 
pointed out that of the few high schools that do offer “computer science” 
education, most do so by focusing on the vocational track and skills like 
keyboarding rather than deep computer science abstractions and so on. 
Last, she argued that the number of students who initially pursue com-
puter science majors in college usually reflects the number of students 
who later graduate with a degree in the discipline. To increase the pool of 
computer scientists, it is necessary to provide high school students with 
opportunities for computer science education so that they enter college 
already interested in the discipline.

For the CS 10K project, the AP course for computer science is central. 
AP courses are in high demand in the nation’s high schools, even if these 
schools often resist adding new courses. Further, the AP program is the 
primary point of national leverage—rather than going school district by 
school district to win approval for a computer science curriculum, one 
can simply invoke the AP computer science standard. Cuny also hopes 
that the new AP computer science courses will be an impetus for college 
curriculum reform, much as revisions to the calculus AP test helped drive 
changes in university teaching of calculus.

The CS 10K project seeks to develop courses that are engaging, acces-
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sible, inspiring, rigorous, and focused on the fundamentals of computing 
and computational thinking. As for content, a set of computational think-
ing practices are integrated with material built around the computing 
themes of big ideas, critical concepts, and enduring understanding. 

Cuny also pointed to the need for feeder courses to AP programs in 
high school. She proposed that introductory courses in computing could 
be built on what schools already teach about computer science. Cuny 
described one example of such a course in the L.A. Unified School Dis-
trict (LAUSD)—the Exploring Computer Science (ECS) course, taught by 
Jane Margolis since 2008, and currently taught to about 900 students in 20 
schools across Los Angeles.33 In California, this course receives a general 
elective (“G”) credit, which makes it eligible for college-prep credit.

Cuny reported that this course has generated significant interest from 
educators around the country and that there have been a number of 
requests for teacher training for this course. LAUSD has also created a 
mentoring and coaching program for computer science teachers because 
they are almost always completely isolated and benefit from having some 
outside reinforcement as well.

Cuny highlighted a number of university, non-profit, and industry 
partnerships, including a LAUSD-UCLA-Google partnership, a Georgia 
Tech-Wayne partnership exploring certification, and the NSF-UTEACH 
effort combining education majors with STEM majors. In business 
schools, Georgia Tech is also looking at certifying experienced informa-
tion technology workers and pairing them up with a teacher in the busi-
ness school. The University of Delaware-Chester School District project 
paired Chester District schools up with a service learning group at the 
University of Delaware that sends graduate students into classrooms to 
help teachers and kids use laptops in the classroom. Prior to this program, 
the district’s laptop-for-every-child effort had resulted in hundreds of 
laptops stacked in school closets because the teachers did not have the 
training to use them. Finally, Cuny mentioned the National Lab Day 
project, which works to connect scientists, including computer scientists, 
with classroom teachers. 

In addition to the curriculum development component, Cuny noted 
other challenges as well, such as getting the new curriculum into the 
schools, teacher preparation and ongoing professional development, and 
so on. She particularly called attention to the current patchwork of state 
standards, credit issues, and certification requirements—in her words, 
“they are a mess.” Cuny and her colleagues are working with the Asso-
ciation for Computing Machinery (ACM) Education Policy Committee, 

33  Exploring Computer Science (ECS), website, http://www.exploringcs.org/. Last ac-
cessed February 7, 2011.
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the ACM Education Policy Council, and the Computer Science Teachers 
Association to address some of these standards and certification issues. 

Cuny summarized the challenges of introducing rigorous computer 
science education in high school as follows: 

•	 We need computing classes at the local school level. 
•	 We need standard certification and credit decisions at the state 

level. 
•	 We need universities to step up and say that they will give credit 

for these courses.
•	 We need universities to step up and add computer science to their 

preferred list of courses for high school applicants. 

Last, Cuny said she did not believe that computing and computer 
science do not fit well into current STEM education initiatives. She noted 
that as difficult as it is to train teachers who are already teaching com-
puter science to teach even more computing to an increasingly rigorous 
standard, training science teachers who have little or no incentive to do 
so is even harder. In the long run, there is value in integrating computing 
into STEM education, but for now the CS 10K project serves as a kind of 
discipline-specific “race to the top.”

4.5  EDUCATING THE EDUCATORS

4.5.1  Questions Addressed

•	 What are the goals for teachers and educators to bring computa-
tional thinking into classrooms effectively? What milestones do we hope 
to reach in computational thinking education?

•	 How should training efforts, support, and engagement be adapted 
to the varying experience levels of teachers such as pre-service, inducted, 
and in-service levels?

•	 What approaches for computational thinking education are most 
effective for educators teaching at the primary versus middle school ver-
sus secondary level? What methods might best serve the generalist teach-
ing approach (multisubject/multidiscipline)? What method might best 
serve subject specialists? 

•	 How does computational thinking education connect with other 
subjects? Should computational thinking be integrated into other subjects 
taught in the classroom?

•	 What tools are available to support teachers as they teach compu-
tational thinking? What needs to be developed?
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Participants:
	 Michelle Williams, Michigan State University
	 Walter Allan, Foundation for Blood Research, EcoScienceWorks Project
	 Jeri Erickson, Foundation for Blood Research, EcoScienceWorks Project
	 Danny Edelson, National Geographic Society 

Committee respondent: Larry Snyder

4.5.2  Michelle Williams, Michigan State University 

Michelle Williams of Michigan State University discussed her experi-
ences in facilitating teacher professional development in support of com-
putational thinking-based science education. 

Project and Curriculum

Williams and her colleagues originally set out to explore understand-
ing by students in grades 5-7 of genetic inheritance of traits through 
an NSF career grant for a project titled “Tracing Children’s Develop-
ing Understanding of Heredity over Time.” The project curriculum was 
developed under the Web-based Inquiry Science Environment (WISE) 
instructional framework and aligned with the state and national science 
standards set forth in a number of works,34 and it has been adopted by 
the school district in which the project has been operated.35 

Williams argued that learning about genetic inheritance in middle 
school is a particularly interesting prospect because, although there is 
ample research at the secondary level indicating that students have many 
non-normative ideas about the topic, research is needed on middle and 
upper elementary school students’ understanding of genetics concepts.36 

34  “STEM Education Statements and Letters,” website, American Association for the Ad-
vancement of Science, available at http://www.aaas.org/spp/cstc/docs/09_06_02education.
pdf, last accessed May 23, 2011; Minnesota Department of Education, “2007 Minnesota 
Mathematics Standards and Benchmarks for Grades K-12,” website, Minnesota Depart-
ment of Education, available at http://education.state.mn.us/MDE/Academic_Excellence/
Academic_Standards/Mathematics/ index.html, last accessed May 23, 2011; NRC, 1996, 
National Science Education Standards, Washington, D.C.: National Academy Press. Available 
at http://www.nap.edu/catalog.php?record_id=4962. Last accessed February 7, 2011.

35  Because of a recent change in the state curriculum standards that requires students to 
learn ecology in the sixth grade, Williams and her colleagues had to adjust their planned 
curriculum to teach ecology in addition to genetic inheritance.

36  Elizabeth Engel Clough and Colin Wood-Robinson, 1985, “Children’s Understanding 
of Inheritance,” Journal of Biological Education 19(4):304-310; Colin Wood-Robinson, Jenny 
Lewis, and John Leach, 2000, “Young People’s Understanding of the Nature of Genetic 
Information in the Cells of an Organism,” Journal of Biological Education 35(1):29-36; Dennis 
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For example, many students have difficulty understanding the contribu-
tions of both parents to the genetic makeup of their offspring.37 Students 
also have trouble understanding the concept of cells, for example, the 
structure and functions of cell organelles related to heredity.38 Finally, 
students often conceptualize gene and trait as being equal, while being 
unable to distinguish between genotype and phenotype.39 

In the fifth- through seventh-grade sequence, students are expected 
to learn to understand concepts related to cell structure, cell function, 
mitosis, and biological reproduction (both sexual and asexual), and the 
notion that heredity is the transmission of genetic information from one 
generation to the next. For example, fifth-grade students are tasked with 
investigating why organisms have similar and different features. Seventh-
grade students carry out more sophisticated investigations, such as study-
ing Mendel’s law of segregation and using scientific evidence to make 
claims about the genotype and phenotype of an unidentified parent. At 
each level, the project provides scaffolding to help students learn how to 
use evidence to write better scientific explanations. 

In Williams’ project, students use animations and visualizations to 
understand abstract concepts. For example, they use simulations of mito-
sis to understand phases of cell division, Punnett squares to determine 
the genotypes and phenotypes of different generations of plants, and the 
Audrey’s Garden animation to make distinctions between inherited and 
acquired traits. 

The project curriculum calls for substantial collaboration between stu-
dents and teachers. Some of this collaboration comes in the form of train-
ing videos of other teachers who have been involved in WISE in general 
in other places, showing how they work in their role or how they use the 
computer as a partner, and so on. Collaboration also occurs during small 
working group sessions during teacher training. In the classroom, stu-

Borboh Kargbo, Edward D. Hobbs, and Gaalen L. Erikson, 1980, “Children’s Belief and 
Inherited Characteristics,” Journal of Biological Education 14:137-146; and Grady Venville, 
Susan J. Gribble, and Jennifer Donovan, 2005, “An Exploration of Young Children’s Under-
standings of Genetics Concepts from Ontological and Epistemological Perspectives,” Science 
Education 89:614-633.

37  Colin Wood-Robinson, 1994, “Young People’s Ideas About Inheritance and Evolution,” 
Studies in Science Education 24:29-47.

38  Enrique Banet and Enrique Ayuso, 2000, “Teaching Genetics at Secondary School: A 
Strategy for Teaching About the Location of Inheritance Information,” Science Education 
84(3):313-351; Jenny Lewis and Colin Wood-Robinson, 2000, “Genes, Chromosomes, Cell 
Division and Inheritance—Do Students See Any Relationship?” International Journal of 
Science Education 22(2):177-195.

39  Jenny Lewis and U. Kattmann, 2004, “Traits, Genes, Particles and Information: Re-
visiting Students’ Understandings of Genetics,” International Journal of Science Education 
26:195-206.
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dents work in pairs and the instructors consult with the students on their 
work, encouraging them to reflect on their learning by asking questions. 

Teacher Professional Development 

Williams and her team have invested considerable effort in teacher 
development. Research supports the proposition that teacher experience 
and content knowledge are important factors influencing student learning 
outcomes.40 Furthermore, state and federal educational standards have 
increased teacher accountability through increased standardized testing 
and assessment. 

To provide sustained professional development for in-service teach-
ers, the project includes half-day sessions for professional development, 
for which participating teachers receive release time; summer workshop 
sessions; and after-school professional development meetings. Through 
these development sessions, teachers can collaborate across grade levels 
to think about curriculum coherence. They are also able to access science 
materials and learning technology such as the Wisconsin Fast Plants41 
and the Audrey’s Garden programs. Using the WISE Genetic Inheritance 
Curriculum, teachers in professional development can also think about 
how to integrate various computational models (e.g., simulations) into 
their teaching of genetics. They learn how to analyze students’ online 
work through embedded assessments and across-grade assessment items. 
Finally, teachers involved in this project interface with an instructional 
model in the curriculum that scaffolds students in using evidence to sup-
port claims.

Williams noted that some of her teachers were to some extent intimi-
dated by the technology used to teach various concepts. She argued that 

40  See, for example, Hilda Borko, 2004, “Professional Development and Teacher Learn-
ing: Mapping the Terrain,” Educational Researcher 33(8):3-15; Jodie Galosy, Jamie Mikeska, 
Jeffrey Rozelle, and Suzanne Wilson, 2008, “Characterizing New Science Teacher Support: 
A Prerequisite for Linking Professional Development to Teacher Knowledge and Practice,” 
paper presented at the American Educational Research Association Annual Meeting, New 
York, March 2008; Suzanne Wilson and Jennifer Berne, 1999, “Teacher Learning and the 
Acquisition of Professional Knowledge: An Examination of Research on Contemporary 
Professional Development,” Review of Research in Education 24(1):173-209; NRC, 1996, Na-
tional Science Education Standards, Washington, D.C.: National Academy Press, available at 
http://www.nap.edu/catalog.php?record_id=4962, last accessed February 7, 2011; NRC, 
2006, Taking Science to School: Learning and Teaching Science in Grades K-8, Washington, D.C.: 
National Academy Press, available at http://books.nap.edu/catalog.php?record_id=11625, 
last accessed February 7, 2011.

41  “Wisconsin Fast Plants,” website, University of Madison-Wisconsin, http://www.
fastplants.org/. Last accessed May 23, 2011.
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some level of discomfort was to be expected but that to mitigate this con-
cern, she and her colleagues undertook several activities:

•	 They engaged in discussions with teachers from various grade 
levels across the district about the technology used. 

•	 They spent significant amounts of time allowing teachers to use 
and interface with the technology as if they were students. Teachers 
reflected on and engaged with particular technologies, such as anima-
tions or some other types of visualizations, so that they would become 
accustomed to what their students would be doing. In this context, such 
reflection helps teachers to think about ways to make the subject clearer 
to students.

•	 They enlisted the assistance of teachers who were comfortable with 
technology to coach the technology-apprehensive teachers.

Williams also suggested that anxiety in one area can be conflated with 
anxiety in another. In one example, Williams explained that she worked 
with a former English teacher who had recently moved to science educa-
tion. The teacher’s discomfort with the technology associated with the 
project seemed to stem more from “the fact that she doesn’t feel as con-
fident with the science in general, and . . . technology kind of increases 
her anxiety.” 

Williams discussed the challenges of sustaining professional devel-
opment activities, which often end when development grants and other 
outside funding end. This fate did not befall Williams’ project, because 
the school district itself saw enough value in her program to adopt the 
project curriculum. She also pointed out that she built teacher sup-
port through open communication of outcomes with teachers. And she 
acknowledged the value of community support, for example, from par-
ents who say they feel that their children are really learning and are 
excited about studying.

Williams drew several key conclusions from this project: 

•	 It is critical to build relationships with key stakeholders that include 
principals, administrators, and parents, as well as the community at large.

•	 Teachers need adequate time to reflect on their teaching.
•	 Teachers-student collaborations can reduce anxiety for teachers 

and students. 
•	 Teachers can enhance their own content knowledge and pedagogi-

cal knowledge by engaging in conversations about the curriculum and 
focusing on what their students do as well as what their students learn.
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4.5.3  Walter Allan and Jeri Erickson, Foundation 
for Blood Research, EcoScienceWorks Project

The EcoScienceWorks project was supported by the National Science 
Foundation ITEST (Information Technology Experiences for Students 
and Teachers) program to develop a computer-based curriculum and 
inquiry-based tools to teach ecology and environmental science topics 
in curricular units that also introduce basic computer modeling. Under 
the terms of the request for proposals for ITEST projects, the goal was 
to integrate programming into an existing curriculum but not to add 
additional content.

The teachers who participated in the EcoScienceWorks development 
effort were familiar with the use of activity-based lessons, and they were 
quite enthusiastic about the opportunity to work with educators from 
Maine Audubon and collaborate and develop field exercises. But they 
were also interested in using their laptops to better support their student 
learning. As one of them said, they no longer felt they needed to be “the 
sage on the stage,” and they were ready to have a more student-centered 
classroom. Teachers were tasked with writing a unit and lesson plans that 
would be built around the computer simulations and also with designing 
a field exercise that would go along with each of the simulations that were 
part of the software.

The development effort approached the use of programming sublimi-
nally, rather than as the primary focus of the effort. Downplaying the use 
of programming responded to the developers’ concern that some teach-
ers might rebel because the Maine learning standards did not include 
programming, and thus it would be difficult to justify spending scarce 
classroom time teaching programming.

Instead, the effort emphasized the development of ecology simula-
tions. Five different simulations, all of them based on Maine habitat and 
featuring ecology content that the teachers were already teaching in their 
classroom, were developed. After field-testing these simulations (and the 
corresponding unit and lesson plans), teachers reported that this simula-
tion-based approach enabled them to teach ecology in their middle school 
science classrooms more effectively. With this experience behind them, the 
teachers were more receptive to teaching programming.

Allan and Erickson illustrated their work by focusing on a simulation 
called Runaway Runoff. In this simulation, students conduct experiments 
on phosphorus pollution using a simulated lake ecosystem. By collecting 
and graphing data, they discover the connections between phosphorus 
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level, algae growth rate, decomposition rate, and oxygen depletion, ulti-
mately illuminating the ecological concept of eutrophication.42

The Runaway Runoff simulation depicts a lake ecosystem, with fish, 
zooplankton, and algae that are visible to students and bacteria that are 
invisible to students. In the first experiment, the simulation challenges the 
students to develop a food web by examining the contents of the digestive 
tracts of the trout and zooplankton.

In the second experiment, students examine decomposing algae in the 
lake ecosystem. Specifically, they change the level of phosphorus coming 
into the ecosystem and see how changes in phosphorus level affect the 
algae population in the lake and the concentration of dissolved oxygen. 
The students also learn that there are unseen organisms in this lake—the 
bacteria that act as decomposers. 

In the final experiment, students are asked to predict the impact of 
increasing levels of phosphorus on the different populations of fish and 
zooplankton. Initially, students might predict that increasing levels of 
phosphorus result in increasing levels of algae, which in turn can support 
increased levels of zooplankton and thus, it would seem, an increase in 
the trout population. And so they might be surprised when they see that 
increasing the phosphorus levels leads to declining levels of trout. How-
ever, by running the simulations and observing the levels of dissolved 
oxygen, they can see that as algae increase, the bacteria use up some of 
the oxygen as they decompose dead algae, thus reducing the viability of 
the environment for the trout. 

The Runaway Runoff simulation enables a cognitive cycle to occur. 
Students make a prediction; use the simulation for testing, tinkering, and 
playing; observe what happens; refine their mental model of how the 
system works; and then make further predictions. On the basis of essays 
written or posters created by students that describe how runoff affects 
lake ecology, Allan and Erickson believe that students learn to make fairly 
sophisticated mental models of the lake ecosystem.

Allan and Erickson also described the “Program a Bunny” environ-
ment. In this environment, the bunny is an agent that the student pro-
grams to find and eat carrots in a field. The environment is also probabi-
listic, so that carrots are not always located in the same places in the field, 
and thus a successfully programmed bunny must account for a degree of 
randomness in its environment. Students can test different programming 
strategies in a number of increasingly complex scenarios.

Program a Bunny is supplied with some initial programming and 

42  A sample student worksheet from the project can be seen at “Runaway Runoff Exercise 
1: Who’s Who,” Worksheet, available at http://simbio.com/files/EBME_WSExamples/
RunawayRunoff_WkSh1_example.pdf. Last accessed February 7, 2011.
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will run “out of the box.” But the initial programming is, by design, 
inadequate for bunny success. Thus, students must learn to modify the 
program. Modification of the program initiates a cognitive cycle similar to 
that of the Runaway Runoff simulation—the student observes what hap-
pens to the bunny’s success in finding carrots, develops a mental model 
of how the program works, and then thinks of another modification that 
is intended to further improve the bunny’s performance. 

Allan and Erickson also reported that students found it helpful to 
use a concrete representation of the bunny field—a tarp laid on the floor 
and marked off with a grid. Students would go back and forth between 
the tarp and the Program a Bunny simulation, and thus develop a better 
understanding of the rules needed for programming the bunny.

In the views of Allan and Erickson, the common theme between these 
two examples—ecology and programming—is that students can see that 
there are computational rules and logic underlying both environments. 
They believe that learning ecology through the use of agent-based simu-
lations combined with an agent-based programming challenge provided 
their middle school students with a rich learning environment for com-
putational thinking.

4.5.4  Danny Edelson, National Geographic Society

Danny Edelson oversees the National Geographic Society’s broad-
based efforts to improve geographic education in the United States 
and around the world.43 He characterized the efforts as building “geo-
literacy,” the ability to reason effectively about far-reaching decisions—
the decisions that affect other people and places that members of 21st 
century society routinely face. Geo-literacy requires an understanding of 
how Earth’s interconnected human, ecological, and geophysical systems 
function, and the ability to apply that understanding to decision making 
in personal, professional, and civic settings.

Edelson focused on geo-literacy in his presentation, arguing that 
the skills required for geo-literacy have substantial overlap with those 
needed in computational thinking. This overlap is rooted partly in the fact 
that both geography and computer science are disciplines that promote, 
indeed require, systems thinking.

Specifically, Edelson argued that geo-literacy is essentially a systems 
view of the world—an understanding of the world as a set of intercon-
nected human and social systems and physical environmental systems 
(requiring an understanding of both of these elements as systems and 

43  “National Geographic Society Education,” website, National Geographic Society, 
http://education.nationalgeographic.com. Last accessed February 7, 2011.
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how they interact with each other) and then the ability to apply this 
understanding in context for the consequential tasks that citizens and 
workers need to be able to perform in the world.

Edelson stated that he found it is very hard “to disentangle this kind 
of systems view of the world and geographic reasoning from computa-
tional thinking.” He went on to add, “I generated several different ques-
tions that I thought were all fascinating for which I have no answers at 
all. But I would like to use geo-literacy as a case that would be similar 
to lots of other science, natural science, social science, or other STEM 
disciplines.”

Edelson posed a number of questions at the geo-literacy/computa-
tional thinking interface:

•	 What is the relationship between this concept of geo-literacy and 
computational thinking? 

•	 To what extent is this systems view of the world a form of compu-
tational thinking in the way it actually plays out in the practice of geog-
raphy or science or environmental science? 

•	 How are these two things supportive of each other? 
•	 How does computational thinking contribute to development of 

geo-literacy, and how does an understanding of Earth’s systems contrib-
ute to development of computational thinking?

•	 How, if at all, might being an underdeveloped computational 
thinker impede learning of geo-literacy, and vice versa? 

•	 How, if at all, might sophisticated computational thinking actu-
ally somehow interfere with developing an understanding in a scientific 
discipline like geography?

Edelson spoke of some of the issues that arise in understanding geo-
graphic data. For example, geographic data look continuous on Earth’s 
surface viewed from afar, but in fact are pixilated when viewed close up. 
The actual physical situation on the surface is represented by continuous 
data, but the instruments of the geographer can represent the data only 
as pixels with rigid and discontinuous borders between them. Edelson 
reported a conceptual change in students when they go from viewing a 
map as a continuous representation to understanding a map as being a 
representation of discrete pixels or cells, with all the positive and nega-
tive implications of that for what they actually want to do with the data. 
(Pixilation means that it is impossible to determine from the data any 
reading that requires a smaller bin size, such as the ambient temperature 
on one’s birthday.)

Another issue arises with maps that use different colors to represent 
different temperatures. Although it makes physical sense to subtract two 
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temperatures (e.g., January’s temperature from July’s temperature), it does 
not make much sense to subtract yellow from red. That is, representations 
on the map cannot be manipulated in the same way as the underlying 
physical parameters. Edelson found that students could understand this 
paradox by considering the idea that maps are actually regular arrays of 
numerical data being represented pictorially. This conceptual step enabled 
students to understand what it might mean to “subtract January’s tem-
perature from July’s temperature” and when they might want to perform 
that operation.

In performing analytic work, Edelson noted the computational over-
tones of working with sets, doing queries, and understanding Boolean 
logic and Boolean operations. For example, a student might be asked to 
find counties in the United States whose African American population 
exceeds the Caucasian population. Such operations are critical to being 
able to analyze much geographic data effectively. 

Sometimes, such operations go beyond manipulating logical rela-
tionships but involve set or spatial combinations. For example, a student 
might want to say, “I’ve got two regions that are outlines on a map; find 
me the intersection of those two regions,” or, “I have a list of cities that 
meet one criterion and a list of cities that meet another criterion; show me 
the intersection of those two lists.” Managing these operations intellectu-
ally calls for thinking about them as combinations in one sense and as 
spatial entities in another sense. That is, this kind of geo-literacy requires 
students to understand spatial relationships as analogous to a set.

Edelson noted that many problems of interest to the GIS (geographic 
information system) community involve constraint satisfaction, some-
times with multiple constraints. For example, Edelson and colleagues 
developed a high school environmental science course in which one of the 
challenges was to find an appropriate location for a coal-burning power 
plant in a region of Wisconsin. Students understood that one requirement 
for a large power plant is the nearby availability of a sufficiently large 
body of water to provide cooling for it. So they can use the query capa-
bility to identify the large lakes in that region. A second consideration is 
adequate proximity to some mode of transportation that will allow coal 
to be transported to the power plant. So they need the ability to find the 
regions that are close to railroads (also known as buffers). And then they 
need to combine the two requirements—the power plant must be close 
to a large body of water and to a railroad. In general, solving problems 
that involve satisfying multiple constraints requires algorithmic thinking.

Edelson closed his presentation by arguing that Earth models are 
best understood in terms of dynamic and spatial models. He illustrated 
the point by discussing a NetLogo model for infiltration and runoff pro-
cesses in a region in the presence of precipitation. Dynamic simulations 
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demonstrate where the water runs off, and a student can determine the 
amount of water running off a given point in space at various periods 
of time. Modifying the runoff processes is necessary to demonstrate the 
effects of different land use conditions (e.g., a developed community has 
a surface that is much less permeable, and thus more water runs off, and 
students see dramatically higher and more rapid runoff showing up in 
that scenario).

In discussion, Mike Clancy suggested that the causal relationships 
depicted in these models are similar to the causal relationships entailed 
in understanding what a computer program actually does in execution, so 
that, for example, a student needs to understand what causes a program 
bug or a program to perform in a certain way.

Robert Panoff noted the importance of understanding limitations in 
the underlying data. In response, Edelson said that in his view, the issue 
of discrete versus continuous data is a placeholder for the whole issue 
of data quality, where it comes from, what you can and should be doing 
with it, and how you question it. He went on to say that anomalous data 
often catches people’s attention and gives them an opportunity to see 
what’s going on. He illustrated the point with an example taken from 
1992-1993 when he was working with data provided by the National 
Center for Supercomputing Applications. This data set indicated a very 
strange warm spot in Europe, and all of the students noticed and asked 
about it. It turned out to be an anomaly in the models that generated the 
data or in the device. Many people argued for cleaning up that data so 
that the anomaly would not show up, but Edelson said that the anomaly 
was pedagogically valuable because it provided an important teachable 
moment.

Uri Wilensky asked about the importance of students collecting data 
themselves and then using that data to try to fit models to that data, 
rather than using data provided by others. Edelson concurred about the 
importance of collecting data, but said that he was not sure that data col-
lection itself was computational in nature. He also said he was prepared 
to rethink that assertion.

4.6  MEASURING OUTCOMES (FOR EVALUATION) 
AND COLLECTING FEEDBACK (FOR ASSESSMENT)

4.6.1  Questions Addressed

•	 How can learning of computational thinking be assessed?
•	 What tools are needed to assess learning of computational think-

ing knowledge and capabilities? Which are available? What needs to be 
developed?
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•	 What roles should embedded assessments play? What other assess-
ments are needed?

•	 How can capabilities and skills of individuals be assessed when 
students are working collaboratively?

•	 How should the education community measure the success of its 
efforts? How can we compare the strengths and weaknesses of different 
efforts?

•	 What can be learned from efforts currently underway, and from 
efforts in our country and in other countries?

Participants:
	 Paulo Blikstein, Stanford University 
	 Christina Schwarz, Michigan State University 
	 Mike Clancy, University of California, Berkeley 
	 Derek Briggs, University of Colorado, Boulder
	 Cathy Lachapelle, Museum of Science, Engineering is Elementary Project 

Committee respondent: Janet Kolodner

4.6.2  Paulo Blikstein, Stanford University

Paulo Blikstein is an assistant professor of education and (by cour-
tesy) computer science at Stanford University. His presentation discussed 
implementations of computational thinking and computer-based model-
building activities within the context of a real undergraduate materials 
science/engineering classroom. He also shared some of his ideas for 
assessment of student learning under these circumstances. 

Blikstein discussed “restructurations,” a term that refers to the multi-
ple ways of representing and encoding specific knowledge, each of which 
has different cognitive properties.44 As a result, one representation might 
be more easily learned than another. The canonical example of a restruc-
turation is that multiplying two numbers that are represented as Roman 
numerals is much more difficult than multiplying the same two numbers 
represented as Arabic numerals, even though each operation contains 
identical content.45 The general lesson, Blikstein noted, is that “how we 
encode knowledge has a deep impact on how difficult it is to do things.”

Blikstein demonstrated how to apply restructuration to understand-

44  Paulo Blikstein and Uri Wilensky, 2010, “MaterialSim: A Constructionist Agent-based 
Modeling Approach to Engineering Education.” In M.J. Jacobson and P. Reimann (eds.), 
Designs for Learning Environments of the Future: International Perspectives from the Learning 
Sciences. New York: Springer.

45  This example was created by Uri Wilensky and Seymour Papert in recent work.
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ing ideal gases in physics. In particular, he noted that the laws of ideal 
gases traditionally entail equations such as the Maxwell Boltzmann dis-
tribution and the relationship between pressure and volume. Blikstein 
offered an alternative restructuration based on computational thinking 
that represents a gas as a collection of molecules moving in a gas cham-
ber governed by a simple rule: a molecule will move forward until or 
unless it bumps into another molecule or wall, at which point it will 
bounce back. This simple rule applied in this agent-based model results 
in aggregate behavior of the collection of gas molecules that is identical 
to that described by the formal gas law equations. Blikstein asserted that 
the computational representation of the gas laws is simpler and easier to 
learn than are the equations. 

He also described how to reformulate a number of complex con-
cepts from undergraduate-level materials science. Blikstein noted that 
students in traditional introductory materials science courses encounter 
new equations at a very rapid rate (one new equation every 150 seconds, 
not counting intermediate steps in a derivation). It is often that many dif-
ferent equations and models are needed to develop an understanding of 
a particular concept. These equations must be combined and manipulated 
to arrive at the final result. 

Blikstein argued that an agent-based approach helps students to 
explore these complex and intertwined concepts more easily, and further 
that the rules and mechanisms governing the behavior of individual 
atoms can be used to understand a number of different crystal phenom-
ena in materials science, such as growth, solidification, diffusion, and so 
on. An example of a relevant mechanism might be for molecules to “look 
around and see if they are surrounded by different neighbors or equal 
neighbors” and then cluster or disperse “based on their neighborhood.” 
Similarly, solidification follows a comparable process except that an “atom 
in the liquid is kind of going around and looking for solid neighbors 
where it can attach itself.” 

Blikstein also described some of the challenges in assessing and giv-
ing objective feedback on open-ended projects with varying levels of com-
plexity and explanatory power. These challenges included the following: 

•	 How do we go about looking at various artifacts and understand-
ing what students are doing? 

•	 How do we assess the relative levels of complexity of the artifacts? 
•	 How do we use assessment to provide feedback to students to 

improve their models as well as their understanding of concepts? 

Blikstein described several tools to facilitate assessment—rubrics and 
maps, coding patterns over time, and representational shifts. 
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•	 Rubrics and maps. Based on the actual code that students generate, 
maps can be created that track the programming steps and decisions stu-
dents were making. These maps capture many dimensions of students’ 
decision making, such as how they define the system, how they define the 
rules of the system, how they define what the agents are doing, and so on. 
From these large maps, it is possible to categorize the rules embedded in 
the system and assess the sophistication of the rules. Evaluators can check 
each map to see if a student used various affordances of the programming 
language. For example, is this student using collisions? Is this student 
using neighborhood checking? Agents moving? Agents seeking agent 
clusters, walls, or energy? Blikstein argued that the greater the number 
of affordances appearing in a map, the more sophisticated the underlying 
model is likely to be, although this measure is not absolute and in many 
respects depends on the phenomenon being modeled. 

•	 Coding patterns over time. Such patterns document how a student’s 
code changes over time (e.g., what is added or deleted, what is found each 
time compilation is attempted). For example, one can count the number 
of characters in a program submitted for compilation. Some students—
typically novice students—exhibit a pattern in which the code is more or 
less constant for several compilations but then jumps significantly in size. 
For other students (typically more expert students), there are fewer large 
increases in code size—code size increases more or less linearly over time. 
Blikstein asserted that such knowledge can be exploited to help tailor the 
most effective way to give feedback to different kinds of students. 

•	 Representational shifts. Changes in how a student represents or 
depicts physical phenomena can indicate differences in the level of sophis-
tication of his or her understanding. For example, Blikstein compared two 
groups of students, one that had been exposed to computational model-
ing and one that had not. Each group was asked to sketch the process 
involved in a scientific phenomenon different from the one they were 
modeling, such as the impact of a change in temperature. The students 
with computational modeling experience drew and described a mecha-
nism showing the behavior of the atoms as the temperature changed. 
Students who were not exposed to the activity instead drew a graphical 
curve showing the aggregate behavior of the atoms as the temperature 
changed. 

4.6.3  Christina Schwarz, Michigan State University

Christina Schwarz, an associate professor in the College of Educa-
tion at Michigan State University, described her work with elementary 
and middle school students using scientific modeling and practices. 
The MoDeLS (Modeling Designs for Learning Science) project works 
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to involve students in science through the use, revision, and creation of 
models. Although not explicitly focused on computational models, some 
of her work, Schwarz believes, may apply to the ongoing dialog about 
computational thinking.

In the context of her work, a model is an abstract, simplified repre-
sentation of some phenomenon which could include but is not limited to 
computational representations. Models also include physical models and 
diagrammatic models. Modeling involves constructing a representation 
that embodies aspects of theory or evidence; evaluating that representa-
tion or testing it against empirical evidence and scientific theory; using it 
to illustrate, predict, and explain; and revising the representation.

Schwarz and her colleagues believe that the underlying concepts 
of modeling are powerful for sense-making and for communication in 
science. She further noted an overlap between modeling practice and 
computational thinking, particularly the ideas of abstracting and decom-
posing systems, testing the model against actual data, and so on. 

Schwarz argued that models can make important aspects of science 
accessible by helping students to understand invisible processes, mecha-
nisms, and components in phenomena. Models promote both subject-
matter and epistemological understanding, and they develop systems 
thinking skills. Most importantly, models can generate predictions and 
explanations for scientific phenomena. 

Schwarz walked through a generic MoDeLS curriculum sequence that 
would be given to students. The first step is for the researchers to provide 
some sort of anchoring phenomenon in a scientific context. For example, 
a fifth grade unit starts with a question like, Would you drink liquid that 
collected in a solar still?, and continues, “You can’t test it, you don’t want 
to drink it, because you might get sick, so you have to design an initial 
model that you can use to begin thinking through what is going on.”

The unit then provides some discussion about the nature and purpose 
of models. Such dialog is essential to abstracting knowledge for transfer 
to other kinds of systems and contexts, and to motivate and support the 
kinds of skills and habits of mind essential to computational thinking. 

The third element of the unit is an investigation of the subject phe-
nomenon through data gathering and students’ testing of their models. 
Students evaluate their models and discuss the criteria for evaluation. 
Evaluation is thus another strategy for teasing out modeling practice and 
scientific thinking. 

Last, the unit introduces scientific ideas that students can use to 
revise their models again. Here, students often use visual, diagrammatic 
models and computer simulations in different ways. Students may look 
at simulations and then use some of those ideas from the simulations in 
their diagrammatic models. Model design, revision, and analysis occur in 
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the context of a small scientific learning community (i.e., their classmates). 
The students debate data and concepts, as well as evaluate and peer-
review each other’s work. Finally, students develop a consensus model 
at the end of the unit and explore applying the model developed to other 
contexts that they care about.

Schwarz noted that different science disciplines use different aspects 
of modeling to explore scientific phenomena. For example, flow diagrams 
and process diagrams might be most appropriate for modeling relation-
ships between components of a biological system. Most of the MoDeLS 
effort focuses on various aspects of physical science, but the group is 
looking at exploring modeling in other areas. 

Schwarz uses a four-level learning progression to guide the interpre-
tation of student activities. This progression is continually revised and 
improved based on their assessment outcomes. 

•	 Level I focuses on students’ reflections on their existing practices 
of modeling around the idea that children often begin modeling practice 
by drawing literal illustrations but have yet to really grasp the purpose 
of or use for models. 

•	 Level II characterizes student use of models and shows that stu-
dents are constructing and using models to illustrate and explain to an 
audience how phenomena occur. Although students at Level II are still 
somewhat literal, they are moving closer to the use of abstraction. 

•	 Level III is even more sophisticated, as students move farther along 
the literal-to-abstract scale closer to the abstract end of the spectrum. 

•	 Level IV students are constructing and using models spontane-
ously in a range of domains to help their thinking and problem solving. 
For example, students might be prompted to consider, before they test 
their model, how the world would behave. Schwarz argued that this 
fourth level is most similar to the types of modeling a computer scientist 
would do. 

Schwarz also commented on assessment. Specifically, she noted 
that her assessments seek evidence in student work of engagement in 
modeling:

•	 Around different content knowledge for which students did not 
receive explicit instruction—to determine what aspects of modeling prac-
tices might be used across contexts.

•	 By applying their models to familiar and less familiar contexts. 
Schwarz described an example in which a student noted that she was 
actually applying the condensation and evaporation model to simple 
experiences at home like boiling water.
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•	 Mapping between representations and the real world, as illustrated 
by students’ application of their models in a specific context.

•	 Evaluating and revising their models for items like relevancy or 
saliency, evidentiary support, communicative power, and so on.

Schwarz and her colleagues use a variety of tools to obtain such evi-
dence. Although there is some use of written pre-test and post-test items 
involving scientific modeling, they also use reflective interviews with 
students and in-person or videotaped observations of in-class student 
interactions. These qualitative instruments are designed to probe content 
that was both explicitly and not explicitly taught to examine transfer to 
other disciplines and the time evolution of student modeling practices 
and thinking.

Nevertheless, she was aware that their assessment efforts had a num-
ber of limitations. For example, many young students often see modeling 
and scientific thinking as a school-only activity that is unrelated to daily 
life rather than thinking of models as tools useful for their own purposes. 
Although they understand in principle the notion of evaluating each 
others’ models according to relevant objective criteria, in practice they 
sometimes fail to do so in the classroom environment, instead deferring 
to the classmate they like better or the classmate who is the loudest. 

Students also sometimes focus on the external audience when com-
municating through a model; that is, they may formulate their comments 
and responses based on what they think their teachers want to hear and 
what they think are “correct” answers, rather than what they themselves 
think.

Last, Schwarz noted that pedagogical constraints often result from the 
curricular and learning approaches determined by the various schools. 
As an example, Schwarz explained that in one school, the state-wide 
curriculum mandated that before fifth grade, science teachers are not to 
discuss phenomena at the cellular or atomic level because they are invis-
ible. In response, Schwarz and her colleagues developed a special unit on 
evaporation and condensation that was actually an attempt to bridge the 
project’s elementary learning goals to a particular state guideline prohibit-
ing discussion of atoms.

4.6.4  Mike Clancy, University of California, Berkeley

Mike Clancy, from the Department of Computer Science at the Uni-
versity of California, Berkeley, addressed the topic of assessment for intro-
ductory programming classes. His top-level goals for students could be 
characterized as knowing when given aspects of computational thinking 
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are applicable, when they are not applicable, and how these aspects are 
applied when they are applicable.

Clancy described two complementary approaches that are useful in 
assessment and evaluation. The first approach is based on case studies. 
A case study is an expert solution to a problem that is accompanied by 
a narrative of how that solution came to be. The expert, who may be a 
faculty member or a teaching assistant, provides a solution that addresses 
questions like why one approach to solving the problem was chosen over 
another and how problems originating in the first implementation of a 
solution were fixed (debugged).

Case studies are intended to make the expert’s thinking visible to 
expose his or her design and development decisions. They demonstrate 
how abstract concepts are manifest in specific situations. They encourage 
reflection and self-monitoring, and they support collaborative learning 
and emphasize links among various problem solutions.

A typical problem might be to find the number of days spanned by 
two dates in the same year. (This problem arises in the third week of 
Berkeley’s introductory programming course for non-majors, at which 
point they have been exposed to conditional programming structures 
such as “ifs” and how to deal with data but have not yet encountered 
recursion.)

One approach splits the solution into three situations—those in which 
the dates occur in the same month, those in which the dates occur in con-
secutive months, and those in which the dates are further apart. The first 
two situations are relatively easy to address, but the third is harder. Spe-
cifically, the solution for the third case depends on whether the months 
involved (including the intervening months, if any) have 28, 29, 30, or 31 
days. Sometimes it is possible to kludge a solution when the dates are 
about 2 months apart, but if they are any further apart, a more systematic 
approach is needed.

At this point, the expert is faced with the question of crafting a solu-
tion to the third case that builds on the work already invested in crafting 
a solution to the first two cases. If one realizes that the day-span com-
putation is essentially a subtraction of one date from another, a sensible 
approach is to change the representation of the dates involved into things 
that are easier to subtract—specifically, the date in month-day format is 
transformed into the number of days past January 1 for the year.

Using this idea, that is, finding a uniform representation for dates, 
students are then asked to address a number of related problems, such 
as computing the difference between two heights, finding the number 
of Saturdays spanned by two dates, and finding the number of days 
between dates in different centuries. In practice, their task is to under-
stand the original solution (for the problem of computing the number of 
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days between two dates in the same year) well enough so that they can 
modify the approach accordingly. 

This case study also includes a debugging exercise; debugging is 
of course another key aspect of computational thinking. Imagine that 
the day-span program has been accidentally modified (e.g., one word is 
changed). Given the change in the output of the program as a starting 
point, students are asked to figure out what was changed and how to fix 
the problem.

The second approach used for assessment and evaluation involves 
lab-centric instruction, which emphasizes hands-on lab hours supervised 
by a teaching assistant rather than lecture and discussion. This instruction 
entails a variety of traditional programming tasks, such as writing, modi-
fying, and analyzing a program. But because there is more lab time than 
in most lecture/discussion courses, the course also has room for a number 
of embedded assessment activities. For example, a lab period often starts 
with a quiz, and it provides opportunities for self-tests. “Gated collabo-
rations” enable instructors to pose a question to students, and after any 
given student answers, s/he sees the answers of his or her lab mates. 

In this environment, lab instructors can monitor most of what the stu-
dents are doing and have a window into much of their thinking and not 
just their finished work. Thus, lab instructors can notice confusion when 
it occurs and address it immediately to provide targeted tutoring. The 
result is that instructors can nip confusion and misconceptions in the bud 
rather than having to wait for them to be revealed in some later venue.

4.6.5  Derek Briggs, University of Colorado, Boulder

Derek Briggs of the School of Education at the University of Colo-
rado, Boulder, began by suggesting several questions that he believed 
should guide any assessment of computational thinking. His first ques-
tion is, What is being assessed? A prerequisite for assessment is a common 
understanding of the important constructs and concepts of the topic being 
assessed. In the case of computational thinking, Briggs noted a lack of 
consensus on its essential elements and commented that even if one isn’t 
willing to put down a thorough definition of what constitutes computa-
tional thinking, there has to be some common ground on the topic. What 
are the important elements?

Second, he argued for clarity about why the topic is being assessed. 
Briggs identified several possible reasons for assessing student under-
standing of a subject:

 
•	 Evaluating a program. If a pedagogical activity purports to promote 
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student learning, the students involved in the activity must be assessed 
to see if the claimed learning indeed took place.

•	 Grading of students. In graded courses, a student’s understanding 
of a topic often relates to the grade s/he receives.

•	 Diagnosing a student’s understanding of a subject in detail. Pinpoint-
ing a student’s misunderstanding of a particular subject-matter point 
provides feedback to a teacher about how to direct his or her pedagogi-
cal efforts to address that particular misunderstanding. For this particu-
lar application, multiple concepts of learning progression are helpful. 
A learning progression can be regarded as an ordered description of a 
specific student’s understanding of a given concept as that student learns 
more about it; a description of successively more sophisticated under-
standing of a concept or ways of reasoning in a content domain; and also 
an ordered description of a typical student’s understanding of a given 
concept as students learn more about it. 

•	 Developing a better intellectual understanding of a subject. It sometimes 
happens that an attempt to assess a student’s understanding of a subject 
demonstrates that the expert’s understanding of the subject is incomplete, 
and it is through the act of developing an instrument, and developing 
questions for students that are intended to elicit information about the 
subject, that the expert gains insight as to what it is that the expert really 
meant.

Third, an instrument for the assessment must be appropriate to the 
purpose of the assessment. For example, if the purpose of the assessment 
is to grade students, an instrument may need only to record the percent-
age of correct answers provided by a student. However, if the purpose of 
the assessment is to diagnose a student’s misunderstandings, the instru-
ment must be constructed in a way that sheds light on the specific nature 
of those misunderstandings. Briggs also noted that diagnosing student 
misunderstandings does not necessarily entail open-ended interactions 
with students—carefully designed multiple-choice items can provide 
diagnostic information that is as meaningful as or more meaningful than 
that obtained through open-ended interviews.

Finally, Briggs argued for the importance of validating an instru-
ment, contrasting the notion of validity to the notion of reliability. A valid 
instrument is one that accurately reflects a student’s knowledge of the 
specific concepts of interest (i.e., what the investigator really wishes to 
assess), whereas reliability is concerned with the consistency with which 
an instrument can produce a given measure. He further noted that low 
reliability of an instrument was not necessarily problematic in the context 
of formative evaluations for real-time informing of in-class pedagogy or 
group-level comparisons. 
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4.6.6  Cathy Lachapelle, Museum of Science, 
Engineering is Elementary Project 

Cathy Lachapelle, director of research and evaluation for the Engi-
neering is Elementary (EiE) project at the Museum of Science, discussed 
her assessment and evaluation experiences with that project. EiE is a cur-
riculum development and improvement effort that develops engineering 
guides and activities for children in grades 1-5. 

Assessments of EiE activities are focused on what students learn and 
measure specific learning objectives.46 Lachapelle noted that there is no 
existing standard “yardstick” against which to assess student learning 
about engineering. Thus, assessment efforts compare progress toward 
learning objectives in an EiE activity group to progress among students 
in a control group. 

Lachapelle suggested that a variety of methods are available for 
assessing student learning, depending on the purpose of the assessment: 

•	 Class observation that focuses on collecting qualitative data. Such data 
include information obtained from helping the teacher implement EiE, 
interviewing students to try to understand their attitudes with respect 
to the learning objectives, and observing how they perform against the 
learning objectives. To illustrate, Lachapelle noted that one of the learn-
ing objectives is to be able to reason from a model and understand that 
a model is representing something in the real world. During class obser-
vation, assessors talk to the teacher and students to see if the students 
are grasping the concept. (They might also point out different ways to 
structure the lessons so that students better understand the learning objec-
tives.) A degree of uniformity in data collection is obtained by using the 
same standards and criteria in each observation.

•	 Embedded assessments, which are often used by teachers to understand 
the pedagogical impact they are having on students as they go along. Embed-
ded assessment can be as simple as examining individual student perfor-
mance on a particular worksheet, so that a teacher can better understand 
which students need more help, whether he or she should give clearer 
instructions, and so on.

•	 Paper-and-pencil assessments, which are very difficult to construct but 
provide an excellent source of feedback. EiE typically uses these paper-and-
pencil assessments for summative evaluation. A great deal of work is 
involved in constructing assessments and testing them, piloting them, 
checking them for reliability, and then using them with hundreds of 

46  Not all investigation of student learning requires such objectives—specifically, some 
research is useful for understanding what students know in general and what they can do 
on average. 
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students. For example, developing multiple-choice questions that yield 
insight into student thinking is sometimes problematic. Lachapelle and 
her colleagues often ask students how they would answer a question, 
and unusual or incorrect student answers become alternative choices for 
answering the question. For example, Lachapelle said, “We asked kids 
what is the function of leaves in a plant and the kids said, to make food. 
We would say well why did you choose that answer? And they said 
because they make salad. You have learned that things are not always as 
they might seem or as you might expect.” Ultimately, they discarded that 
particular question.

•	 Performance assessments, which can be used either by teachers for their 
own understanding of what their students are learning (in formative evalua-
tion) or by the curriculum development team as a summative evaluation of what 
students learned. This type of testing is also time- and resource-intensive 
because the assessment must be administered and scored. EiE uses this 
type of assessment in the final project design exercise. 

Speaking more broadly, Lachapelle addressed formative and sum-
mative evaluations in the EiE project. All work products require regular 
evaluation, including teacher guides, student exercises and activities, 
the learning goals, and teacher professional development materials and 
activities. 

As is usually the case, formative evaluation is used to inform the 
development and improvement of products and processes. In the EiE con-
text, formative evaluations seek evidence of growth in students’ under-
standing and skills as stated in EiE learning objectives, determine the 
age-appropriateness of lessons and activities, and examine the ease of use 
of lessons and materials. Formative evaluation for EiE usually relies on 
feedback from teachers and students. Therefore, it is critical that research-
ers make sure that the lines of communication are open and that feedback 
received is considered in light of the project’s set evaluation criteria. 
Lachapelle explained that if a researcher receives feedback that the project 
was great but too troublesome to clean up afterward or the standard for 
an activity was that a teacher be able to manage the activity the following 
year without any support staff, the activity would be revised accordingly. 

The purpose of summative evaluation is to provide evidence to EiE 
stakeholders, including funders, school districts, teachers, and parents, 
that implementation of specific EiE activity is worthwhile. Robert Panoff 
was particularly struck by this concept of “being worthwhile” and argued 
that this concept is a key factor in terms of scaling, adoptability, and moti-
vation for using the materials or the exercises. Lachapelle stated that one 
criterion for this type of evaluation is to show improved learning of target 
concepts among students as compared to a control group of students. The 
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control group consists of students in a comparable classroom taught the 
same science and engineering topics but not with EiE curriculum materi-
als and tools. In the ideal scenario, EiE has a large pool of teachers from 
which part are admitted to the EiE project and the other part remain as 
control groups. This process does not always work because of constraints 
of funding and time. Another example criterion is that teachers express 
increased efficacy and interest in teaching engineering to their students. 

Randomized, controlled studies with external evaluators are the pre-
ferred method for evaluating and comparing efforts in education, said 
Lachapelle. NSF, for example, prefers this approach when seeking sum-
mative assessments in projects it funds. Unfortunately this type of assess-
ment is very expensive to execute because there is usually a need for a 
fairly large number of students in order to randomize whole classrooms 
into different testing groups. Also external evaluators are an added cost 
and bear their own pros and cons. Although external evaluators are likely 
to be more objective in their assessments, they do not have the advantage 
of an ongoing relationship with the teachers, administrators, and students 
whom they are engaging and thus may miss subtleties that more familiar 
evaluators might observe.

In her discussion, Lachapelle cautioned that assessments and evalu-
ations of computational thinking activities and materials require clearly 
specified learning objectives, which in turn require some community con-
sensus regarding the content of computational thinking—that is, what is 
it that the community wants children at various ages to know (from early 
elementary school to college)? In the EiE context, some learning objectives 
include being able to identify a process, to explain what a process is in an 
engineering context, and to explain why the order of steps in a process 
is important. 

She also argued that the learning objectives should align with psycho-
logical and developmental learning progressions, since doing so provides 
some guidance over time as to where students should be at each stage. 
Thus, learning objectives are and should be the object of research and 
design. She noted that EiE does extensive literature searches and local 
interviews with kids before beginning the design of each of its units in 
order to learn more about what kids know. For example, for a unit on 
sinking and floating, developers would do a literature search and then 
interview local students by asking them things like, “Do you know what 
it means to float?,” “Do you understand why things float?,” and so on. 

Finally, Lachapelle commented that their assessments are also 
designed to address student attitudes toward science and engineering. 
Broadly speaking, these assessments indicate that girls tend be interested 
in engineering things when framed as helping to improve people’s lives 
and boys tend to be interested in engineering things when framed in 
terms of constructing engineering artifacts.
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Conclusion

As noted in the Preface and in Chapter 1, this set of two workshops 
was not intended to develop or to advance a consensus view of com-
putational thinking. In both workshops, participants expressed a wide 
variety of views regarding both the nature of and the pedagogy for com-
putational thinking. It is the committee’s hope that the summaries from 
both workshops will help to stimulate in the relevant communities the 
creative thinking that is necessary for a consensus view on this topic to 
emerge in the future.
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A

Workshop Agenda

PEDAGOGICAL DIMENSIONS OF COMPUTATIONAL THINKING 
KECK CENTER, NATIONAL ACADEMIES, WASHINGTON, D.C.

February 4, 2010

8:30 AM-8:45 AM	 Welcome 
		�  Marcia Linn, University of California, Berkeley,  

	 Committee Chair
		  Jeannette M. Wing, National Science Foundation

8:45 AM-10:15 AM	� Panel 1—Computational Thinking and 
Scientific Visualization 

 
	 •	 �What are the relevant lessons learned and 

best practices for improving computational 
thinking in K-12 education?

	 •	 �What are examples of computational 
thinking and how, if at all, does 
computational thinking vary by discipline at 
the K-12 level? 

	 •	 �What exposures and experiences contribute 
to developing computational thinking in the 
disciplines?

	 •	 �How do computers and programming fit into 
computational thinking?
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	 •	 �What are plausible paths and activities for 
teaching the most important computational 
thinking concepts?

	 Presenters: 
		  Robert Tinker, The Concord Consortium 
		�  Mitch Resnick, Massachusetts Institute of  

	 Technology
		  John Jungck, Beloit College, BioQUEST 
		  Idit Caperton, World Wide Workshop
      
	 Committee respondent: Uri Wilensky

10:15 AM-10:45 AM	 Break

10:45 AM-12:00 PM	� Panel 2—Computational Thinking and 
Technology

	 •	 �What are the relevant lessons learned and 
best practices for improving computational 
thinking in K-12 education?

	 •	 �What are examples of computational 
thinking and how, if at all, does 
computational thinking vary by discipline at 
the K-12 level? 

	 •	 �What exposures and experiences contribute 
to developing computational thinking in the 
disciplines?

	 •	 �How do computers and programming fit into 
computational thinking?

	 •	 �What are plausible paths and activities for 
teaching the most important computational 
thinking concepts?

	 Presenters: 
		  Robert Panoff, Shodor Education Foundation 
		  Stephen Uzzo, New York Hall of Science 
		�  Jill Denner, Education, Training, Research  

	 Associates 
      
	 Committee respondent: Yasmin Kafai
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12:00 PM-1:15 PM	� Working Lunch—Lou Gross, University of  
	 Tennessee (via teleconference) 

1:15 PM-2:45 PM	� Panel 3—Computational Thinking in 
Engineering and Computer Science

	 •	 �What are the relevant lessons learned and 
best practices for improving computational 
thinking in K-12 education?

	 •	 �What are examples of computational 
thinking and how, if at all, does 
computational thinking vary by discipline at 
the K-12 level? 

	 •	 �What exposures and experiences contribute 
to developing computational thinking in the 
disciplines?

	 •	 �How do computers and programming fit into 
computational thinking?

	 •	 �What are plausible paths and activities for 
teaching the most important computational 
thinking concepts?

	 Presenters:  
		�  Christine Cunningham, Museum of Science,  

	 Engineering is Elementary Project 
		  Taylor Martin, University of Texas at Austin 
		  Ursula Wolz, College of New Jersey
		  Peter Henderson, Butler University 
 
	 Committee respondent: Marcia Linn

2:45 PM-3:00 PM	 Break

3:00 PM-4:30 PM	� Panel 4—Teaching and Learning 
Computational Thinking

	 •	 �What is the role of computational thinking in 
formal and informal educational contexts of 
K-12 education? 

	 •	 �What are some innovative environments for 
teaching computational thinking?

	 •	 �Is there a progression of computational 
thinking concepts in K-12 education? 
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What are criteria by which to order such 
a progression? What is the appropriate 
progression?

	 •	 �What are plausible paths to teaching the 
most important computational thinking 
concepts?

	 •	 �How do cognitive learning theory and 
education theory guide the design of 
instruction intended to foster computational 
thinking?

	 Presenters: 
		  Deanna Kuhn, Columbia University 
		  Matthew Stone, Rutgers University 
		  Jim Slotta, University of Toronto
		�  Joyce Malyn-Smith, Education Development  

	 Center, Inc. 
   
	 Committee respondent: Al Aho

4:30 PM-4:45 PM	 Break

4:45 PM-5:00 PM	 Open Discussion 
		  Moderator: Herb Lin, CSTB Staff

5:00 PM-5:25 PM	 Special Session—Update from Jan Cuny
		  Jan Cuny, National Science Foundation

5:25 PM-5:30 PM	 Wrap-up

5:30	 Adjourn Day One Public Sessions 

February 5, 2010

8:30 AM-8:45AM	 Welcome and Housekeeping
		�  Marcia Linn, University of California, Berkeley,  

	 Committee Chair

8:45 AM-10:00 AM	� Panel 5—Report-back on Homework 
Assignments

	 Committee respondent: Brian Blake



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

APPENDIX A	 141

10:00 AM-10:15 AM	 Break

10:15 AM-11:45 AM	 Panel 6—Educating the Educators 

	 •	 �What are our goals for teachers and 
educators to bring computational thinking 
into classrooms effectively? What milestones 
do we hope to reach in computational 
thinking education?

	 •	 �How should training efforts, support, and 
engagement be adapted to the varying 
experience levels of teachers such as pre- 
service, inducted, and in-service levels?

	 •	 �What approaches for computational thinking 
education are most effective for educators 
teaching at the primary versus middle school 
versus secondary level? What methods might 
best serve the generalist teaching approach 
(multisubject/multidiscipline)? What 
methods might best serve subject specialists? 

	 •	 �How does computational thinking education 
connect with other subjects? Should 
computational thinking be integrated into 
other subjects taught in the classroom?

	 •	 �What tools are available to support teachers 
as they teach computational thinking? What 
needs to be developed?

	 Participants: 
		  Michelle Williams, Michigan State University 
		��  Walter Allan, Foundation for Blood Research,  

	 EcoScienceWorks Project 
		�  Jeri Erickson, Foundation for Blood Research,  

	 EcoScienceWorks Project 
		  Danny Edelson, National Geographic Society
 
	 Committee respondent: Larry Snyder

11:45 AM-12:45 PM	 Working Lunch 

12:45 PM-2:15 PM	� Panel 7—Measuring Outcomes (for 
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Evaluation) and Collecting Feedback (for 
Assessment)

	 •	 �How can learning of computational thinking 
be assessed?

	 •	 �What tools are needed to assess learning 
of computational thinking knowledge and 
capabilities? Which are available? What 
needs to be developed?

	 •	 �What roles should embedded assessments 
play? What other assessments are needed?

	 •	 �How can capabilities and skills of individuals 
be assessed when students are working 
collaboratively?

	 •	 �How should the education community 
measure the success of its efforts? How can 
we compare the strengths and weaknesses of 
different efforts?

	 •	 �What can be learned from efforts currently 
underway, and from efforts in our country 
and in other countries?

	 Participants: 
		  Paulo Blikstein, Stanford University 
		  Christina Schwarz, Michigan State University 
		  Mike Clancy, University of California Berkeley 
		  Derek Briggs, University of Colorado, Boulder
		�  Cathy Lachapelle, Museum of Science,  

	 Engineering is Elementary Project 

	 Committee respondent: Janet Kolodner

2:30 PM-4:00 PM	 Discussion and Wrap-up

	 •	 �Committee members summarize their 
individual reactions

	 •	 �Floor thrown open to other workshop 
participants for discussion

4:00 PM	 Adjourn
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B

Short Biographies of  
Committee Members,  

Workshop Participants, and Staff

B.1  COMMITTEE

Marcia C. Linn (Chair) is a professor specializing in education in math-
ematics, science, and technology in the Graduate School of Education at 
the University of California, Berkeley. She directs the National Science 
Foundation-funded Technology-Enhanced Learning in Science (TELS) 
center. She is a member of the National Academy of Education and a 
fellow of the American Association for the Advancement of Science, the 
American Psychological Association, and the Center for Advanced Study 
in Behavioral Sciences. Her board service includes the American Associa-
tion for the Advancement of Science board, the Graduate Record Exami-
nation Board of the Educational Testing Service, the McDonnell Founda-
tion Cognitive Studies in Education Practice Board, and the Education 
and Human Resources Directorate at the National Science Foundation. 
Linn earned a B.A. in psychology and statistics, and a Ph.D. in educational 
psychology from Stanford University. 

Alfred V. Aho (NAE) is the Lawrence Gussman Professor of Computer 
Science and vice chair of undergraduate education for the Computer 
Science Department at Columbia University. Previously, he conducted 
research at Bell Laboratories from 1963 to 1991, and again from 1997 to 
2002 as vice president of the Computing Sciences Research Center. Aho’s 
current research interests include quantum computing, programming 
languages, compilers, and algorithms. He is part of the Language and 
Compilers research group at Columbia. He is widely known for his devel-
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opment of the AWK programming language with Peter J. Weinberger and 
Brian Kernighan (the “A” stands for “Aho”) and for his co-authorship of 
Compilers: Principles, Techniques, and Tools (the “Dragon book”) with Ravi 
Sethi and Jeffrey Ullman. He wrote the initial versions of the Unix tools 
egrep and fgrep. He is also a co-author (along with Jeffrey Ullman and 
John Hopcroft) of a number of widely used textbooks on several areas 
of computer science, including algorithms and data structures, and the 
foundations of computer science. He is a past president of ACM’s Special 
Interest Group on Algorithms and Computability Theory. Aho has chaired 
the Advisory Committee for the Computer and Information Sciences 
Directorate of the National Science Foundation. He has received many 
prestigious honors, including the IEEE’s John von Neumann Medal and 
membership in the American Academy of Arts and Sciences. Aho was 
elected to the National Academy of Engineering in 1999 for contributions 
to the fields of algorithms and programming tools. He earned his B.A.Sc. 
in engineering physics from the University of Toronto and his Ph.D. in 
electrical engineering and computer science from Princeton University.

M. Brian Blake is a professor of computer science and associate dean 
of engineering at the University of Notre Dame. His research interests 
include the investigation of automated approaches to sharing informa-
tion and software capabilities across organization boundaries, sometimes 
referred to as enterprise integration. His investigations cover the spec-
trum of software engineering: design, specification, proof of correctness, 
implementation/experimentation, performance evaluation, and applica-
tion. Blake’s long-term vision is the creation of adaptable software entities 
or software agents that can be deployed on the Internet and, using exist-
ing resources, manage the creation of new processes, sometimes referred 
to as interorganizational workflow. He has several ongoing projects that 
make incremental progress toward this long-term vision. In addition, he 
conducts experimentation in the areas of software engineering education 
and software process and improvement to determine the most effective 
methods for training students and professionals to develop module sys-
tems that by nature are distributed. Blake has consulted for such com-
panies as General Electric, Lockheed Martin, General Dynamics, and the 
MITRE Corporation. He has published more than 95 refereed journal 
papers and conference proceedings in the areas of service-oriented com-
puting, agents and workflow, enterprise integration, component-based 
software engineering, distributed data management, and software engi-
neering education. Blake’s work has been funded by the Federal Aviation 
Administration, the MITRE Corporation, the National Science Founda-
tion, DARPA, the Air Force Research Laboratory, SAIC, and the National 
Institutes of Health. He earned his bachelor’s in electrical engineering and 
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doctorate in information technology and computer science from George 
Mason University.

Robert Constable is the dean of the Faculty of Computing and Infor-
mation Science at Cornell University. Formerly he was the chair of the 
Computer Science Department for 6 years. He also heads a research group 
in automated reasoning and formal methods in the Computer Science 
Department, where he is a professor. Constable is a graduate of Princeton 
University, where he earned his A.B. in mathematics and worked with 
Alonzo Church, one of the pioneers of computer science. He did his M.A. 
and Ph.D. work at the University of Wisconsin with Stephen Cole Kleene, 
a Ph.D. student of Church and another pioneer of computer science. Con-
stable joined the Cornell University faculty in 1968. He has supervised 
more than 43 Ph.D. students in computer science. He is known for work in 
connecting programs and mathematical proofs that has led to new ways 
of automating the production of reliable software. This work is known by 
the slogan “proofs as programs,” and it is embodied in the Nuprl (“new 
pearl”) theorem prover. He has written three books on this topic as well 
as numerous research articles. Since 1980 he has headed a project that 
uses Nuprl to design and verify software systems, instances of which 
are still operational in industry and science. Currently he is working on 
extending this programming method to concurrent processes, realizing 
the notion of “proofs as processes.” In 1999 he became the first dean of 
the Faculty of Computing and Information Science, a unit that includes 
the Computer Science Department, the Department of Statistical Science, 
the Information Science Program, and the Program in Computer Graph-
ics. It also sponsors the undergraduate major and graduate specialty in 
computational biology.

Yasmin B. Kafai is a professor at the Graduate School of Education, Uni-
versity of Pennsylvania. In addition, she spent more than a decade on 
the faculty at the UCLA Graduate School of Education and Information 
Studies. As a learning scientist, she has researched and developed media-
rich software tools and environments, most recently Scratch, together 
with researchers at the MIT Media Lab, that support youth in schools 
and community centers in becoming designers of games, simulations, 
and virtual worlds. As part of her policy initiatives, she wrote Under the 
Microscope: A Decade of Gender Equity Interventions in the Sciences (2004) and 
participated in the national commission that produced the report Tech-
Savvy Girls: Educating Girls in the Computer Age (2000) for the American 
Association of University Women. She also briefed the committee that 
prepared the National Research Council report Being Fluent with Informa-
tion Technology (National Academy Press, Washington, D.C., 1999). She 
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received her hauptdiplom in psychology from the Technical University of 
Berlin in Germany and her D.E.U.G. in psychology from the Université de 
Haute Bretagne II in France. While conducting research at the Massachu-
setts Institute of Technology Media Laboratory, she received her Ed.D. in 
human development and psychology from Harvard University. 

Janet L. Kolodner is a Regents’ Professor in the School of Interactive 
Computing at Georgia Institute of Technology. Her research over the 
past 30 years has addressed a wide variety of issues in learning, mem-
ory, and problem solving, both in computers and in people. During the 
1980s, she pioneered the computer method called case-based reasoning, 
which allows a computer to reason and learn from its experiences. The 
first case-based design aids (CBDA), such as Archie 2 for architecture, 
came from her lab. During the early 1990s, she used the cognitive model 
implied by case-based reasoning to address issues in creative design 
with the development of programs like JULIA (planned meals), Creative 
JULIA (planned meals with leftovers), IMPROVISOR (simple mechanical 
design), and ALEC (simulated Alexander Graham Bell’s invention of 
the telephone). Later in the 1990s, she used the cognitive model in case-
based reasoning to guide the design of a science curriculum for middle 
school. Learning by Design™ is a design-based learning approach and 
an inquiry-oriented project-based approach to science learning that has 
children learn science from their design experiences. Learning by Design 
curriculum units and embedded sequencing structures were integrated 
into a full 3-year middle-school science curriculum called Project-Based 
Inquiry Science Digging-In (It’s About Time) and published in 2009.

Most recently, Kolodner’s research uses what she learned in design-
ing Learning by Design to create informal learning environments to help 
middle schoolers come to think of themselves as competent scientific 
reasoners through Kitchen Science Investigators (science in cooking), and 
Hovering Around (motion, airflow, and design of hovercrafts).  Kolodner 
is the founding editor in chief of the Journal of the Learning Sciences and 
is a founder and first executive officer of the International Society for the 
Learning Sciences. She has headed up the Cognitive Science Program at 
Georgia Tech and headed an organization called EduTech in the mid-
1990s whose mission was to use what we know about cognition to design 
educational software and integrate it appropriately into educational envi-
ronments. She has a B.S. from Brandeis University in math and computer 
science and an M.S. and a Ph.D. in computer science from Yale University.

Lawrence Snyder is a professor of computer science and engineering 
at the University of Washington in Seattle (UW). Snyder’s research has 
focused on parallel computation, including architecture, algorithms, and 
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languages. He has served on the faculties of Yale and Purdue Universities 
and has had visiting appointments at UW, Harvard, MIT, Sydney Uni-
versity, the Swiss Technological University, the University of Auckland, 
and Kyoto University. In 1980 he invented programmable interconnect, 
a method to dynamically configure on-chip components, and a tech-
nology used today for field-programmable gate arrays. In 1990 he was 
co-designer of Chaos Router, a randomizing adaptive packet router. He 
was the principal investigator of the ZPL language design project, the 
first high-level parallel language to achieve “performance portability” 
across all parallel computer platforms. Snyder is the author of Fluency 
with Information Technology: Skills, Concepts and Capabilities, a textbook for 
non-techie college freshmen that teaches fundamental computing con-
cepts; the book is in its third edition. With former Ph.D. student Calvin 
Lin (University of Texas, Austin), he has written Principles of Parallel Pro-
gramming, published in 2008. Snyder was a three-term member of the 
Computer Research Association Board of Directors, developing a series 
of best-practice white papers. He chaired the NSF CISE Advisory Board 
as well as several CISE directorate oversight panels and numerous review 
panels. The two National Research Council studies that he has chaired 
produced influential reports—Academic Careers for Experimental Computer 
Scientists and Engineers (1994) and Being Fluent with Information Technology 
(1999). He served three terms on the NRC’s Army Research Laboratory 
Technical Advisory Board. He serves on ACM’s Education Board, has 
been general chair or program committee chair of several ACM and IEEE 
conferences, and he is a fellow of both the ACM and the IEEE. He received 
a B.A. from the University of Iowa in mathematics and economics and his 
Ph.D. from Carnegie Mellon University in computer science as a student 
of A. Nico Habermann. 

Uri Wilensky is a professor of learning sciences and computer science 
at Northwestern University and holds appointments in the cognitive 
science program and in complex systems. He is the founder and current 
director of the Center for Connected Learning and Computer-Based 
Modeling and also a founder and member of the governing board of the 
Northwestern Institute on Complex Systems (NICO). His most recent 
projects focus on developing tools that enable users (both researchers 
and learners) to simulate, explore, and make sense of complex sys-
tems. His NetLogo agent-based modeling software is in widespread use 
worldwide. Prior to coming to Northwestern, he taught at Tufts Univer-
sity and MIT and was a research scientist at Thinking Machines Corpo-
ration. Wilensky is a founder and an executive editor of the International 
Journal of Computers for Mathematical Learning. His research interests 
include computer-based modeling and agent-based modeling, STEM 
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education, mathematics in the context of computation, and complex 
systems. He is a recipient of the National Science Foundation’s Career 
Award as well as the Spencer Foundation’s Post-Doctoral Award. He has 
directed numerous NSF research projects focused on developing com-
puter-based modeling tools and studying their use. Among these tools 
are multiagent modeling languages, such as StarLogoT and NetLogo; 
model-based curricula such as GasLab, ProbLab, NIELS, and BEAGLE 
Evolution; and participatory simulation toolkits such as Calc-HubNet 
and Computer-HubNet. The tools enable learners to explore and create 
simulations of complex phenomena across many domains of natural and 
social science and, through creating and exploring such simulations, to 
deepen their understanding of core scientific concepts. Many of these 
tools are also in use by researchers across a wide variety of domains, 
including the natural sciences, social sciences, business, and medicine. 
By providing a low-threshold language for exploring and constructing 
models, Wilensky hopes to promote modeling literacy—the sharing and 
critiquing of models in the scientific community, in education, and in 
the public at large. Wilensky did his undergraduate and graduate stud-
ies in mathematics, philosophy, and computer science at Brandeis and 
Harvard Universities and received his Ph.D. in media arts and sciences 
from the Massachusetts Institute of Technology.

B.2  WORKSHOP PARTICIPANTS

Walter Allan is medical director and consulting scientist to ScienceWorks 
for ME at the Foundation for Blood Research (FBR), a non-profit indepen-
dent research and education institution in Scarborough, Maine. He was 
the first pediatric neurologist in Maine and was the director of both the 
Pediatric and the Adult Neurology Divisions at the Maine Medical Center, 
where his responsibilities included teaching medical and pediatric resi-
dents prior to coming to the FBR. His interests include the consequences 
of central nervous system injury in children and science education. He 
is the principal investigator on a National Institutes of Health Science 
Education Partnership Award that has developed a curriculum (Biomedi-
cineWorks) that introduces evidence-based medicine to advanced high 
school biology classes and a National Science Foundation ITEST (Infor-
mation Technology Experiences for Students and Teachers) grant that has 
developed a computer simulation-focused curriculum (EcoScienceWorks) 
to teach ecology and introductory computer programming in Maine’s 
seventh- and eighth-grade laptop-equipped classrooms. 

Paulo Blikstein is an assistant professor at Stanford’s School of Educa-
tion, he has a courtesy appointment in the Computer Science Department. 



Copyright © National Academy of Sciences. All rights reserved.

Report of a Workshop of Pedagogical Aspects of Computational Thinking 

APPENDIX B	 149

His research focuses on computational literacy, low-cost educational tech-
nologies for students in low-income settings, and STEM education. His 
work cuts across age groups, and he has worked extensively with inner- 
city students in developing countries such as Brazil, Mexico, Senegal, and 
Costa Rica, but also with undergraduates in elite U.S. institutions. His 
research tries to bring the most cutting-edge computational tools to the 
classroom, creating environments for students to engage authentically in 
advanced, deep scientific inquiry. He completed his Ph.D. at the Center 
for Connected Learning and Computer-Based Modeling at Northwestern 
University, earned a B.S. in metallurgical engineering and an M.Sc. in 
digital systems engineering from the University of São Paulo, Brazil (1998, 
2001), and obtained an M.Sc. from the MIT Media Lab (2002), where he 
was also a visiting scholar (2003). 

Derek Briggs is chair of the Research and Evaluation Methodology Pro-
gram at the University of Colorado, Boulder, where he also serves as 
an associate professor of quantitative methods and policy analysis. His 
research agenda focuses on building sound methodological approaches 
for the valid measurement and evaluation of growth in student achieve-
ment. Examples of his research interests in the area of educational mea-
surement include (1) characterizing the gap between validity theory and 
practice in the context of high-stakes standardized testing and (2) devel-
oping and applying psychometric models to assess learning progressions. 
He holds a B.A. in economics from Carleton College and a Ph.D. in educa-
tion from the University of California, Berkeley.

Idit Harel Caperton is a pioneer in using new-media technology for 
cultivating creative learning, innovation, and globalization through con-
structionist learning theory. She founded the World Wide Workshop in 
2004 to leverage her unique blend of award-winning research, social 
entrepreneurship, and leadership in new-media learning projects around 
the world. In 2006 the foundation launched the Globaloria.org network 
to implement ways of using social media technology and Web 2.0 tools 
to teach innovative game making to and build computational creative 
capacities in youth worldwide. Throughout the 1980s and 1990s, Caperton 
conducted breakthrough research at the MIT Media Lab that led to pub-
lishing the book Constructionism with Seymour Papert. Her book Children 
Designers received the 1991 Outstanding Book Award from the American 
Educational Research Association. In 1995, she founded MaMaMedia 
and launched MaMaMedia.com, ConnectedFamily.com, and Papert.org. 
Pioneering kids’ Internet media activities, MaMaMedia established global 
distribution and advertising partnerships and won numerous honors, 
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including the Computerworld-Smithsonian Award (1999), the Internet 
industry’s coveted Global Information Infrastructure Award (1999), and 
the 21st-Century Achievement Award from the Computerworld Honors 
Program (2002). In 2002, she was honored by the Network of Educators in 
Science and Technology and MIT “for devotion, innovation, and imagina-
tion in science and technology on behalf of children and youth around the 
world.” In 2007-2008 MaMaMedia activities were reprogrammed for One 
Laptop per Child (OLPC). Caperton has served on numerous advisory 
boards (for Harvard University, MIT, CU-ATLAS, CUNY, PBSKids, TIG, 
MEET, and Saybot), and she has been an adviser to commercial, govern-
mental, higher education, and not-for-profit organizations on inventing, 
developing, and harnessing technology and innovative programs to trans-
form education. Caperton holds degrees from Tel Aviv University (B.A., 
1982), Harvard University (Ed.M., 1984; CAS, 1985), and MIT (Ph.D., 
1988). 

Mike Clancy has been on the University of California, Berkeley, computer 
science faculty since 1977. He is an active member both of the U.S. com-
puter science education community and of the community of research-
ers who study the psychology of programming. In 2009 he received the 
ACM SIGCSE award for lifetime contributions to computer science edu-
cation. His work, in collaboration with Marcia Linn in Berkeley’s School 
of Education, spans a spectrum from exploration of student misconcep-
tions through development of curriculum components and programming 
environment features to support integration of programming knowledge. 
Clancy and Linn have focused in particular on the use of case studies in 
programming instruction and on issues arising from teaching LISP in 
introductory courses. Among the results of their efforts were successful 
NSF grant proposals, numerous research papers, and two textbooks of 
case studies. More recently, Clancy has explored “lab-centric” instruction, 
a technique that swaps lecture and discussion time for supervised hands-
on computer lab work. He and his Berkeley colleagues have developed 
several courses based on this approach. He currently has NSF support to 
build a community around lab-centric instruction. Results are promising, 
and research is ongoing.

Christine Cunningham is a vice president at the Museum of Science, 
Boston, where she oversees curricular materials development, teacher 
professional development, and research and evaluation efforts related to 
K-16 engineering and science learning and teaching. Her projects focus 
on making engineering and science more relevant, understandable, and 
accessible to everyone, especially marginalized populations such as 
women, underrepresented minorities, people from low socioeconomic 
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backgrounds, and people with disabilities. She is particularly interested 
in the ways that the teaching and learning of engineering and science 
can change to include and also benefit from a more diverse popula-
tion. Cunningham’s projects span the elementary to college educational 
continuum. Principal among these is Engineering is Elementary (EiE), a 
project she founded in 2003. EiE is creating a research-driven, standards-
based, and classroom-tested curriculum that integrates engineering and 
technology concepts and skills with elementary science topics. Connec-
tions are also made with literacy, social studies, and mathematics. EiE 
also helps elementary school educators enhance their understanding of 
engineering concepts and pedagogy through professional development 
workshops and resources. A research and assessment effort is studying 
how children and their educators engage with engineering concepts and 
skills. As the director of EiE, Cunningham is responsible for the vision, 
strategy, and funding for the project. She received her B.A. and M.A. in 
biology from Yale University and her Ph.D. in science education and cur-
riculum instruction from Cornell University.

Jan Cuny has been a program officer at the National Science Foundation 
since 2004, heading the Broadening Participation in Computing Initiative. 
Before coming to NSF, she was a faculty member in computer science at 
Purdue University, the University of Massachusetts, and the University of 
Oregon. Cuny has been involved for many years in efforts to increase the 
participation of women in computing research. A longtime member of the 
Computing Research Association’s Committee on the Status of Women 
(CRA-W), she has served among other activities as a CRA-W co-chair, a 
mentor in its Distributed Mentoring Program, and a lead on its Academic 
Career Mentoring Workshop, Grad Cohort, and Cohort for Associated 
Professors projects. She was also a member of the advisory board for the 
Anita Borg Institute for Women and Technology, the leadership team of 
the National Center for Women in Technology, and the executive com-
mittee of the Coalition to Diversify Computing. She was program chair 
of the 2004 Grace Hopper Conference and the general chair of the 2006 
conference. For her efforts with underserved populations, she is a recipi-
ent of one of the 2006 ACM President’s Awards and the 2007 CRA A. Nico 
Habermann Award. Cuny earned a B.A. in computer science from Princ-
eton University, an M.A. from the University of Wisconsin, and a Ph.D. 
from the University of Michigan, Ann Arbor. 

Jill Denner is the associate director of research at Education, Training, 
Research (ETR) Associates, a non-profit organization in California. She 
does applied research, with a focus on increasing the number of women 
and underrepresented minorities in computing. She has developed 
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several after-school programs, and her research on these programs has 
contributed to an understanding of effective strategies for promoting 
youth leadership, building youth-adult partnerships, increasing girls’ 
confidence and capacity to produce technology, and engaging girls in 
information technology. Her current focus is on how students learn while 
creating computer games, and the development of computational think-
ing. As part of a long-standing commitment to bridge research and prac-
tice, her research is designed and conducted in collaboration with schools 
and community-based agencies. Denner has been a principal investigator 
on several NSF grants, written numerous peer-reviewed articles, and 
co-edited two books: Beyond Barbie and Mortal Kombat: New Perspectives 
on Gender and Gaming, published by MIT Press in 2008, and Latina Girls: 
Voices of Adolescent Strength in the US, published by New York University 
Press in 2006. She has a Ph.D. in developmental psychology from Teachers 
College, Columbia University, and a B.A. in psychology from the Univer-
sity of California, Santa Cruz.

Danny C. Edelson is vice president for education at the National Geo-
graphic Society and is executive director of the National Geographic Edu-
cation Foundation. In these positions he leads the National Geographic 
Society’s efforts to improve public understanding of geography and 
related disciplines through both formal and informal education programs. 
Throughout his career Edelson has conducted educational research and 
development, with a primary focus on environmental science and geog-
raphy. The products of his research and development include My World 
GIS, a geographic information system (GIS) designed for educational use; 
Investigations in Environmental Science: A Case-Based Approach to the Study of 
Environmental Systems, a technology-integrated high school environmental 
science textbook; and Earth science units for two comprehensive, middle 
school science programs. He has also developed professional develop-
ment programs for teachers in middle school through college and has led 
several large-scale instructional reform efforts in urban public schools. 
Edelson has written extensively on motivation, classroom teaching and 
learning, educational technology, and teacher professional development, 
drawing on research conducted with colleagues and students. Prior to 
joining National Geographic, Edelson was a faculty member in education 
and computer science at Northwestern University for 13 years, where 
he founded and directed the Geographic Data in Education (GEODE) 
Initiative. He is an author on more than 50 papers in journals, edited 
books, and conference proceedings, including The Cambridge Handbook of 
the Learning Sciences, The International Handbook on Science Education, Jour-
nal of the Learning Sciences, Journal of Research on Science Teaching, and The 
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Science Teacher. Edelson received his Ph.D. in computer science (artificial 
intelligence) from Northwestern University and his B.S. in engineering 
sciences from Yale University. 

Jeri Erickson is the ScienceWorks for ME outreach education coordinator 
at the Foundation for Blood Research. She is a genetic counselor whose 
interest in promoting science education and understanding led to her 
involvement with ScienceWorks for ME, an innovative program designed 
to offer scientific equipment and professional expertise to Maine’s sci-
ence teachers and their students. She is the project director of both the 
NIH-funded high school biology curriculum project BiomedicineWorks, 
and the NSF-funded ITEST project, EcoScienceWorks. She has an M.S. in 
human genetics from Sarah Lawrence College and a B.A. in biology from 
Wellesley College.

Louis J. Gross is the James R. Cox Professor of Ecology and Evolutionary 
Biology and Mathematics and director of the Institute for Environmental 
Modeling at the University of Tennessee, Knoxville. He is also director 
of the National Institute for Mathematical and Biological Synthesis, a 
National Science Foundation-funded center to foster research and edu-
cation at the interface between math and biology. He has been a faculty 
member at the University of Tennessee, Knoxville, since 1979. His research 
focuses on applications of mathematics and computational methods in 
many areas of ecology, including disease ecology, landscape ecology, spa-
tial control for natural resource management, photosynthetic dynamics, 
and the development of quantitative curricula for life science undergradu-
ates. He has led the effort at the University of Tennessee, Knoxville, to 
develop an across-trophic-level modeling framework to assess the biotic 
impacts of alternative water planning for the Everglades of Florida. He 
has co-directed several courses and workshops in mathematical ecology 
at the International Centre for Theoretical Physics in Trieste, Italy, and 
has served as program chair of the Ecological Society of America, as 
president of the Society for Mathematical Biology, as president of the the 
University of Tennessee, Knoxville, Faculty Senate, and as chair of the 
National Research Council Committee on Education in Biocomplexity 
Research. He is the 2006 Distinguished Scientist awardee of the American 
Institute of Biological Sciences and is a fellow of the American Associa-
tion for the Advancement of Science. He currently serves on the National 
Research Council Board on Life Sciences and on the board of directors 
of the American Institute of Biological Sciences. He completed a B.S. in 
mathematics at Drexel University and a Ph.D. in applied mathematics at 
Cornell University.
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Peter Henderson is co-founder of the math thinking discussion group 
(www.math-in-cs.org), which advocates the importance of mathematics 
and mathematical reasoning in computer science and software engineer-
ing education. He retired in 2007 as the chair and founder of the Depart-
ment of Computer Science and Software Engineering at Butler University, 
and he is currently the editor of two educational columns, “Software Engi-
neering Education” in the ACM Special Interest Group Software Engi-
neering Notes, and “Math CountS” in the ACM Special Interest Group 
on Computer Science Education InRoads. In addition, he has conducted 
workshops and given numerous presentations on the role of mathematics 
in computer science and software engineering education. Henderson has 
been instrumental in formulating recommendations on the mathemati-
cal needs of undergraduate computer science and software engineering 
programs for the Mathematical Association of America’s Committee on 
the Undergraduate Program in Mathematics, and he has been active at 
various mathematics and computer science education conferences pro-
moting mathematical thinking. He received his B.S. and M.S. in electri-
cal engineering from Clarkson University. He holds a Ph.D. in electrical 
engineering from Princeton University and taught computer science and 
software engineering at SUNY Stony Brook and Butler University from 
1974 to 2007.

John R. Jungck is vice president of the International Union of Biological 
Sciences, president of the IUBS’s Commission on Biology Education, and 
chairperson of the U.S. National Academy of Sciences’ National Commit-
tee of the IUBS. He is the Mead Chair of the Sciences at Beloit College, the 
principal investigator (PI) and founder of the BioQUEST Curriculum Con-
sortium, the PI of BEDROCK (Bioinformatics Education Dissemination: 
Reaching Out, Connecting, and Knitting-together), PI of the SELECTION 
Working Group of the National Evolutionary Synthesis Center (NESCent), 
and PI of a subcontract for NUMB3R5 COUNT! (Numerical Undergradu-
ate Mathematical Biology Education). He is the editor of Biology Inter-
national and is on the editorial boards of several journals, including the 
Bulletin of Mathematical Biology, Evolutionary Bioinformatics, and Life Science 
Education. Formerly, he was editor of both the American Biology Teacher and 
Bioscene: Journal of College Biology Teaching, was president of the Associa-
tion of College and University Biology Educators, and was chairperson of 
the Education Committee of the Society for Mathematical Biology for 14 
years. He serves on numerous boards such as for the National Electron-
ics and Computer Technology Center (NECTEC) in Thailand, the Alan C. 
Wilson Center for Molecular Evolution in New Zealand, and the National 
Institute for Mathematical Biology Synthesis Center (NIMBioS) in the 
United States, and he is on the revision committee of the College Board 
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Advanced Placement Biology program. He is an international leader in 
biology education reform, a mathematical molecular evolutionary biolo-
gist, and a computer software developer of biological simulations, tools, 
and databases. His research interests include the origins of genetic codes, 
patterns in nature, and evolutionary analysis of complex data sets. His 
awards, honors, and offices include AAAS Fellow, an honorary doctor-
ate from the University of Minnesota, American Institute of Biological 
Sciences Education Award, Fulbright Scholar to Chiang Mai University 
in Thailand, Mina Shaughnessy Scholar of the U.S. Department of Educa-
tion, and a National Science Teachers Association Gustav Ohaus Award 
for Outstanding Innovations in College Science Teaching. Jungck earned 
a B.S. in biochemistry and an M.S. in genetics and microbiology from 
the University of Minnesota. He received his Ph.D. in evolution from the 
University of Miami.

Deanna Kuhn is a professor of psychology and education at Teachers 
College, Columbia University. She was previously a faculty member at 
the Harvard Graduate School of Education. She has published widely in 
psychology and education, in journals ranging from Psychological Review 
to Harvard Educational Review. She has written three major books: The 
Development of Scientific Thinking Skills, The Skills of Argument, and, most 
recently, Education for Thinking (Harvard University Press, 2005). She is 
editor of the journal Cognitive Development, a former editor of the journal 
Human Development, and co-editor of the last two editions of the Cogni-
tion volume of the Handbook of Child Psychology. In recent years, her work 
has focused on developing inquiry and argument curricula for middle 
schoolers. Her Ph.D. is from the University of California, Berkeley, in 
developmental psychology. 

Cathy Lachapelle, director of research and evaluations for the Engineer-
ing is Elementary (EiE) project at the Museum of Science, currently leads 
the assessment and evaluation efforts for the EiE curriculum, designing 
assessment instruments, piloting and field-testing them, and conducting 
research on how children use the EiE materials. She has worked on a 
number of research and evaluation projects related to K-16 engineering 
education. She has worked in numerous classrooms studying children’s 
learning of science, mathematics, and engineering content and processes. 
She received her S.B. in cognitive science from MIT and her Ph.D. in psy-
chological studies in education from Stanford University.

Joyce Malyn-Smith is strategic director of the Workforce and Human 
Development Program for the Education Development Center, Inc.’s 
Learning and Teaching Division. Her unique combination of experience 
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includes more than 10,000 contact hours as a K-12 classroom teacher and 
13 years as a public school administrator responsible for curriculum and 
professional development in more than 30 career and technical educa-
tion programs in 15 high schools. Her EDC projects help expert workers 
articulate their skills and knowledge and develop systems and tools to 
integrate these into programs and curricula for K-20. With ongoing inter-
ests in youth who are power users of technology, Malyn-Smith is a PI for 
NSF’s ITEST Learning Resource Center, serving more than 160 ITEST proj-
ects, and leads its working group on computational thinking. She is also 
a PI for the NSF-ATE IT Across Careers (I-III). She led the U.S. Education 
Department’s IT Career Cluster Initiative in creating the national career 
cluster model and curricular framework used in 49 states. She developed 
national voluntary skill standards for bioscience, human services, and 
chemical process industries and co-authored Making Skill Standards Work 
(U.S. Department of Labor). She led the development of scenario-based 
assessments for New York and rubrics for NSF’s ITAC projects and the 
U.S. Department of Energy’s Real World Design Challenge (2008-2010). 
Malyn-Smith served on the ETS International ICT Literacy Panel (Digital 
Transformation: A Framework for ICT Literacy). She currently serves on Cer-
tiport’s Global Digital Literacy Council and other project advisory boards. 
A USOE Fellow in Bilingual Education, Malyn-Smith holds a doctorate 
from Boston University, a master’s degree from Boston State Teacher’s 
College, and a B.S. from Universidad InterAmericana, Puerto Rico. 

Taylor Martin joined the faculty at the University of Texas at Austin in 
2003. Her primary research interest is how people learn content in com-
plex domains from active participation, both physical and social. She is 
cooperating with local elementary schools to improve tools for assessing 
young children’s learning of mathematics and to examine how learning 
is affected by hands-on activities, and she is investigating the develop-
ment of adaptive expertise through cooperation with the Vanderbilt–
Northwestern–Texas–Harvard (VaNTH)/MIT Engineering Research Cen-
ter in Bioengineering Educational Technologies. Martin received a B.A. in 
linguistics and an initial teaching certification from Dartmouth College 
in 1992, an M.S. in psychology from Vanderbilt University in 2000, and a 
Ph.D. in education from Stanford University in 2003.

Robert Panoff is founder and executive director of the Shodor Eduation 
Foundation, a non-profit education and research corporation dedicated 
to the reform and improvement of mathematics and science education 
through computational and communication technologies. As PI on several 
National Science Foundation (NSF) and U.S. Department of Education 
grants that explore interactions between technology and education, he 
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develops interactive simulation modules that combine standards, cur-
riculum, supercomputing resources, and desktop computers. In recogni-
tion of Panoff’s efforts in college faculty enhancement and curriculum 
development, the Shodor Education Foundation was named as an NSF 
Foundation Partner for the revitalization of undergraduate education. 
Shodor established the Shodor Computational Science Institute, which 
was expanded with NSF funding to become the National Computational 
Science Institute. Shodor’s Computational Science Education Reference 
Desk was funded as a Pathway portal of the National Science Digital 
Library. Panoff consults at several national laboratories and is a frequent 
presenter at NSF workshops on visualization, supercomputing, and net-
working. He has served on the NSF advisory panel for the Applications of 
Advanced Technology program, and he is a founding partner of the NSF-
affiliated Corporate and Foundation Alliance. Panoff received his M.A. 
and Ph.D. degrees in theoretical physics from Washington University in 
St. Louis, with both pre- and postdoctoral work at the Courant Institute of 
Mathematical Sciences at New York University. Wofford College awarded 
Panoff an honorary doctor of science degree in recognition of his leader-
ship in computational science education.

Mitch Resnick, a professor of learning research at the MIT Media Lab, 
develops new technologies to engage people (especially children) in cre-
ative learning experiences. His Lifelong Kindergarten research group 
developed the “programmable bricks” that were the basis for the LEGO 
Mindstorms robotics kits, and he co-founded the Computer Clubhouse 
network of after-school learning centers for youth from low-income com-
munities. Resnick’s group recently developed a programming language 
and online community called Scratch (http://scratch.mit.edu), which 
enables children to create their own interactive stories, games, animations, 
and simulations—and share their creations online. In the process, children 
learn to think creatively, reason systematically, and work collaboratively. 
Resnick earned a B.S. in physics from Princeton University and an M.S. 
and a Ph.D. in computer science from MIT. He worked for 5 years as a 
science and technology journalist for Business Week magazine, and he has 
consulted around the world on the uses of new technologies in education. 
He is the author or co-author of several books, including Turtles, Termites, 
and Traffic Jams. 

Christina Schwarz is an associate professor of teacher education at Michi-
gan State University. Her research centers on teaching and learning sci-
ence and the role that technology might play in this process. She focuses 
specifically on inquiry-oriented and model-centered constructivist learn-
ing environments, particularly at the elementary and middle school lev-
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els. Her current research involves helping students and teachers develop 
an understanding of scientific practices such as inquiry and modeling 
and helping them learn how to engage in those practices. Other inter-
ests include teacher and student learning progressions, frameworks for 
teaching science, educational technology, science teaching and learning in 
urban schools, science curriculum development and evaluation, and the 
history and philosophy of science. Schwarz received her Ph.D. from the 
University of California, Berkeley.

Jim Slotta, a professor at the University of Toronto’s Ontario Institute for 
Studies in Education, teaches a graduate-level course titled “Special Top-
ics: Doctoral Level: Technology, Cognition and Instruction.” He has been 
involved in a group research project to encourage school district partners 
to use technology in classrooms. He is a recipient of the IBM Faculty 
Award for e-Learning Design, 2003. Slotta has received a variety of grants 
from public and private organizations. Currently, he is co-principal inves-
tigator of several funded research projects, including a 3-year NSF-funded 
project titled “Partnership Model for Integrating Technology, Curriculum, 
and Professional Development in Response to New Science Assessments,” 
a 5-year NSF-funded project titled “The Educational Accelerator Center: 
Technology-Enhanced Learning in Science (TELS),” and a 2-year German 
DFC-funded research project titled “NetCoIL: Scientific Network for Col-
laborative Inquiry Learning.”

Matthew Stone is an associate professor in the Department of Com-
puter Science and Center for Cognitive Science at Rutgers University. He 
received his Ph.D. in 1998 in computer and information science from the 
University of Pennsylvania. He was a postdoctoral fellow at Rutgers from 
1998 to 1999 and joined the faculty in 1999. From 2005 to 2006 he was a 
visiting fellow in the School of Informatics at the University of Edinburgh. 
He serves on the editorial board of the journals Computational Linguistics 
and Artificial Intelligence and just served as program co-chair for the 2007 
North American Association for Computational Linguistics Human Lan-
guage Technology Conference. His research is funded by the NSF. 

Robert Tinker has, for 30 years, pioneered research on innovative 
approaches to education that exploit technology. The initial develop-
ment of probeware for learning based on real-time measurements was 
performed in his group. His team at TERC was the first to develop “net-
work science” for dispersed science investigations. The initial result of 
this work was the NGS Kids Network, a groundbreaking curriculum 
that was the first to make extensive use of student collaboration and data 
sharing. Fifteen years ago he founded the non-profit Concord Consortium 
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to concentrate on innovative applications of technology in education. 
The Concord Consortium developed some of the earliest professional 
development based on online courses. This led to the establishment of 
the Virtual High School, a fully accredited high school that has a unique 
low-cost cooperative design. Current work focuses on sophisticated simu-
lations in science, probeware, and handhelds, and applications of these 
technologies to pressing educational issues, with a particular focus on 
underrepresented students. A current focus is applying technology to 
monitoring student progress and to supporting diverse learners. The 
open-source, free technologies emerging from the Concord Consortium 
are being integrated into learning modules that offer a glimpse of what 
inquiry-based education could look like in a few years. Tinker earned his 
Ph.D. in experimental low-temperature physics from MIT and has taught 
college physics for 10 years. His focus on education developed as a result 
of teaching at Stillman College, a historically African American college 
in Alabama.
 
Stephen Uzzo is vice president of technology at the New York Hall of 
Science, where he focuses on a number of projects related to science, tech-
nology, engineering, and mathematics (STEM) learning; sustainability; 
and network science, including “Connections: the Nature of Networks,” 
a public exhibition on network science that opened in 2004. He was also 
the local organizer for the 2007 International Conference and Workshop 
on Network Science. In addition to his work at the Hall of Science, Uzzo 
serves on the faculty of the New York Institute of Technology Graduate 
School of Education, where he teaches STEM teaching and learning. Dur-
ing the 1980s, he worked on a number of media and technology projects. 
In 1981, he was part of the launch team for MTV and was appointed chief 
engineer for video/computer graphics production and distance learning 
networks for the NYIT Video Center in 1984. Other projects during that 
period included the first all-digital satellite television transmission, best 
practices group for the NBC Summer Olympic Games in Barcelona, and a 
team of scientists and engineers at the Space Studies Institute at Princeton 
to develop and test lunar teleoperations simulators. During the 1990s, 
Uzzo served on numerous advisory boards for educational institutions, 
as well as facilitating major technology initiatives among K-12 public/
private schools, higher education, and government to improve STEM 
literacy. His work on various projects important to conservation includes 
ecosystems studies that were instrumental in blocking offshore oil drilling 
in New York waters and a cross-sound bridge in Oyster Bay, as well as 
cleanup planning for Superfund sites. He has worked on preservation and 
open space projects on Long Island and the San Francisco Bay Peninsula. 
He holds a Ph.D. in network theory and environmental studies from the 
Union Institute.
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Michelle Williams is an assistant professor of science education in the 
Department of Teacher Education at Michigan State University. Her 
research focuses on both teaching and learning in science and technology 
education. She recently received a National Science Foundation Faculty 
Early Career Development Award titled “CAREER: Tracing Children’s 
Developing Understanding of Heredity over Time.” Williams’ current 
work explores how upper elementary and middle school students develop 
coherent understandings of genetic inheritance and related ideas within 
and across successive grades using the Web-based Inquiry Science Envi-
ronment. She earned a B.B.A. in marketing from the University of Texas at 
Austin in 1992 and an M.A. and a Ph.D. in development in mathematics 
and science from the University of California, Berkeley, in 2001 and 2004.

Jeannette Wing is the President’s Professor of Computer Science in the 
Computer Science Department at Carnegie Mellon University. From 2004 
to 2007, she was head of the Computer Science Department at Carnegie 
Mellon University. From 2007 to 2010 she was the assistant director of the 
Computer and Information Science and Engineering Directorate at the 
National Science Foundation. Wing’s general research interests are in the 
areas of specification and verification, concurrent and distributed systems, 
programming languages, and software engineering. Her current focus is 
on the foundations of trustworthy computing, with specific interests in 
security and privacy. She published a viewpoint article in the March 2006 
issue of Communications of the Association for Computing Machinery entitled 
“Computational Thinking.” Wing received her S.B., S.M., and Ph.D. from 
the Massachusetts Institute of Technology. 

Ursula Wolz is an associate professor of computer science and interactive 
multimedia at the College of New Jersey, is the principal investigator for 
the NSF program Broadening Participation in Computing via Community 
Journalism for Middle Schoolers, and was the principal investigator for a 
Microsoft Research project on multidisciplinary game development. She 
is a recognized computer science educator with a broad range of publica-
tions who has taught students including disabled children, urban teach-
ers, and elite undergraduates for more than 30 years. She is a co-founder 
of the Interactive Multimedia Program at the College of New Jersey. She 
has a background in computational linguistics, with a Ph.D. in computer 
science from Columbia University, a master’s degree in computing in 
education from Columbia Teachers College, and a bachelor’s degree from 
MIT, where she was part of Seymour Papert’s Logo group at the very 
beginning of research on constructivist computing environments.
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B.3  STAFF

Herbert S. Lin, the study director, is chief scientist for the National 
Research Council’s Computer Science and Telecommunications Board, 
where he has been a study director for major projects on public policy and 
information technology. These studies include a 1996 study on national 
cryptography policy (Cryptography’s Role in Securing the Information Soci-
ety), a 1991 study on the future of computer science (Computing the Future), 
a 1999 study of Defense Department systems for command, control, com-
munications, computing, and intelligence (Realizing the Potential of C4I: 
Fundamental Challenges), a 2000 study on workforce issues in high tech-
nology (Building a Workforce for the Information Economy), a 2002 study on 
protecting kids from Internet pornography and sexual exploitation (Youth, 
Pornography, and the Internet), a 2004 study on aspects of the FBI’s infor-
mation technology modernization program (A Review of the FBI’s Trilogy 
IT Modernization Program), a 2005 study on electronic voting (Asking the 
Right Questions About Electronic Voting), a 2005 study on computational 
biology (Catalyzing Inquiry at the Interface of Computing and Biology), a 
2007 study on privacy and information technology (Engaging Privacy and 
Information Technology in a Digital Age), a 2007 study on cybersecurity 
research (Toward a Safer and More Secure Cyberspace), a 2009 study on health 
care information technology (Computational Technology for Effective Health 
Care), and a 2009 study on cyberattack (Technology, Policy, Law, and Ethics 
Regarding U.S. Acquisition and Use of Cyberattack Capabilities). Before his 
NRC service, he was a professional staff member and staff scientist for 
the House Armed Services Committee (1986-1990), where his portfolio 
included defense policy and arms control issues. He received his doctor-
ate in physics from MIT. 

Enita A. Williams is an associate program officer with the Computer Sci-
ence and Telecommunications Board of the National Research Council. 
She formerly served as a research associate for the NRC’s Air Force Stud-
ies Board, where she supported a number of projects, including those of a 
standing committee for the Special Operations Command (SOCOM) and a 
standing committee for the intelligence community (TIGER). Prior to her 
work at the NRC, she served as a program assistant with the Scientific 
Freedom, Responsibility and Law Program of the American Association 
for the Advancement of Science, where she drafted the human enhance-
ment workshop report. Ms. Williams graduated from Stanford University 
with a B.A. in public policy with a focus on science and technology policy 
and an M.A. in communications. She is currently pursuing a law degree 
at Georgetown University Law Center.
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Shenae Bradley is a senior program assistant at the Computer Science 
and Telecommunications Board of the National Research Council. She 
currently provides support for the Committee on Sustaining Growth in 
Computing Performance, and has worked with the Committee on Wire-
less Technology Prospects and Policy Options, among others. She for-
merly served as an administrative assistant for the Ironworker Manage-
ment Progressive Action Cooperative Trust and managed a number of 
apartment rental communities for Edgewood Management Corporation 
in the Maryland/DC/Delaware metropolitan areas. She is in the process 
of earning her B.S. in family studies from the University of Maryland at 
College Park.
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