
The Present and Future of Computational Thinking

Owen Astrachan
Computer Science

Duke University
Durham, NC 27708

(919) 660-6522
ola@cs.duke.edu

 Susanne Hambrusch
Computer Science
Purdue University

West Lafayette, IN 47906
765-494-1831

seh@cs.purdue.edu

Joan Peckham
(Moderator)

NSF
Arlington, VA 22230

(703) 292-734
jpeckham@nsf.gov

Amber Settle
Computing

DePaul University
Chicago, IL 60604

(312) 362-5324
asettle@cdm.depaul.edu

Categories and Subject Descriptors
K3.2 [Computing Milieux]: Computers and Education -
Computer and Information Science Education

General Terms
Design, Experimentation.

Keywords
Computational Thinking, Curriculum, Education.

1. Summary
Intellectual constructs and tools that are widely used to solve the
problems of society have been woven into educational programs.
For example, the three R’s (reading, ‘riting & ‘rithmetic) are core
to a strong fundamental education, and practitioners and
researchers routinely apply these tools to their daily work.
Computing has become an essential and pervasive problem-
solving toolset. This development has fostered much discussion
about the role of computing in a modern education, the
broadening nature of computing majors and concentrations and
their place in post-secondary institutions, for example, [6,7].
Computer science educators recognize the importance of
improving information technology (IT) skills and fluency, and a
number of studies have developed guidelines on how to do this
[3,4]. However, computer science has analytical concepts and
tools that offer educational benefits beyond simple IT fluency.

Computational thinking was introduced [9] as a continuation of
earlier discussions on the nature of computing (e.g. [5]). Similar
discussions and the same terminology were introduced
independently in a series of workshops and reports [2]. This has
helped the computing community to strengthen description and
definition of the problem solving skills that computing brings to
society, through education, outreach, and research.

Over the past few years, computational thinking concepts have
served as a basis for several projects, workshops and efforts aimed
at more precise, and at the same time, deeper and wider
interpretation of computing. This includes attention to K-12

curricula, general education at colleges and universities, as well as
interdisciplinary research and technology transfer.

This panel will outline a sampling of the activities and projects
that have begun to define and address computational thinking. The
moderator will start with an outline of national computational
thinking activities and developments. The panelists will talk
about their individual projects and activities, and outline their
visions for future developments in the computing and broader
educational communities around computational thinking. The
session will then be opened for discussion; the audience will be
encouraged to ask questions and contribute ideas for the
development of computational thinking across its many
dimensions.

2. Owen Astrachan
We are working in several areas to incorporate computational
thinking into our core courses for majors, into new courses for
non-majors, and as part of re-imagining introductory courses
before college, e.g., at the high school level. Some of our work
mirrors approaches seen at other institutions (for example, [8])
where introductory courses are changing to match the needs of
students in other disciplines who are using computation and
programming. We have developed interdisciplinary minors in
Computational Biology and Computational Economics, but in
some ways these represent low-hanging fruit since we have
faculty active in these areas and developing the programs and
courses naturally reflect their interests as well as those of the
students enrolling in these programs. We are also changing the
approach we use in our CS2 course so that programming is
presented as a tool used to explore areas from computer science,
other sciences, and society [1]. Programming is still of great
importance in this course, but students are using the scientific
method where appropriate and focusing on solving and
understanding problem-domains in many areas rather than
understanding inheritance. Although the early work exhorting the
community to “think computationally” [2,9] specifically talks
about skills and processes that go beyond and transcend
programming, these articles do specifically ask that we develop
approaches to explaining how to “think like a computer scientist”.
We have developed a course for majors, now being introduced to
non-majors, that takes a different approach to computational
thinking. The course is titled Technical and Social Foundations of Copyright is held by the author/owner(s).

SIGCSE’09, March 3–7, 2009, Chattanooga, Tennessee, USA.
ACM 978-1-60558-183-5/09/03.

549

the Internet. One view is that we look at how computational
thinking has transformed the world. But it is not computational
thinking that we study, it is the products and methodologies of
those who have done the thinking and built the internet, the world-
wide web, Skype, and Youtube that we study. A somewhat related
course is being developed at Harvard by Hal Abelson, Harry
Lewis and others.

We will also discuss possible new directions for introductory
courses, including Advanced Placement courses that directly
incorporate computation in their development. These possible
approaches reflect collaborations between educators at all levels,
the College Board, and the National Science Foundation.

3. Amber Settle
Faculty in the School of Computing and the School of Cinema
and Interactive Media in the College of Computing and Digital
Media (CDM) began a project in August 2008 to integrate
computational thinking in various general education courses at
DePaul University. Over the past 5 years in partnership with
many academic units, the CDM faculty have developed nearly 50
liberal arts courses in nearly every area of the Liberal Studies
Program. While primarily developed to teach liberal arts concepts
and skills, these and other courses developed by CDM faculty
include elements of computational thinking.

In the first year of the project, the CDM faculty are working to
make computational thinking explicit in a selection of these
courses, to develop tools that evaluate the learning of
computational thinking, and to create a framework that can be
used by non-technical instructors to integrate computational
thinking in their own courses. Computational thinking will be
enhanced and expanded in 10 CDM courses in a variety of areas,
including computer science, e-commerce technology, computer
game development, animation, and digital cinema. Computational
thinking activities, assessments, and learning goals from these
courses will be highlighted, and time-permitting, the initial
framework will be discussed.

Faculty from outside the College of Computing and Digital Media
and from outside DePaul University will participate in the project
during the second year. We would particularly like to see the
integration of computational thinking in the humanities, arts, and
social sciences.

4. Susanne Hambrusch
At Purdue, all science undergraduates must fulfill a computing
requirement. CS Faculty, in collaboration with science
departments, developed a new course on computational thinking.
The course uses a problem-driven approach focused on scientific
discovery through computational methods grounded in computer
science principles. Course development was guided by five main
principles: (1) Lay the groundwork for computational thinking,
(2) Teach in a problem-driven way, (3) Present examples in a
language familiar to the students, (4) Use a programming
language that right away allows a focus on computational
principles, and (5) Make effective use of visualization.

CS faculty met with faculty from science departments to
understand computational needs and expectations. The results

showed a wide range of goals. The decision was made to design a
course that will serve all science disciplines and to keep the
background for projects and examples at a sufficiently elementary
level. Our main objective was to give science majors a firm
foundation of basic programming and establish an understanding
of the algorithmic thought process. We chose Python as the
language as it quickly allows the writing of meaningful programs
and is used in serious ways by many scientific communities. After
programming basics were in place, we introduced MatPlotLib and
VPython, a library that allows creating sophisticated 3D visuals.
Visual computing is an engaging activity that is underutilized in
many CS curricula. Some lectures were given by Physics and
Bioinformatics faculty who conveyed an authentic applications
perspective. These lectures included concepts such as Maxwell’s
Demon and used state-of-the-art software, such as NetworkX and
CytoScape. The interaction with science faculty is a critical
element in designing an effective course for science majors.

5. ACKNOWLEDGMENTS
Our thanks to Harriet Taylor of NSF for suggesting this panel as a
mode for encouraging discussion in the computing community
about computational thinking. Amber Settle would like to thank
NSF for support of CPATH program No. 0829671. Owen
Astrachan would like to thank NSF for support of CPATH
program No. 072227, and BPC program No. 0848267. Susanne
Hambrusch would like to thank NSF for support of CPATH
program No. 0722210.

6. REFERENCES
[1] Astrachan, O. and Denning, P. Innovating our self image.

SIGCSE Technical Symposium on Computer Science
Education, SIGCSE Bulletin 40, 1 (March 2008), 178-179.

[2] Bundy, A. 2007. Computational Thinking is Pervasive.
Journal of Scientific and Practical Computing. 1,2 67-69.

[3] Computer Science and Telecommunications Board, National
Research Council. 1999. Being Fluent in Information
Technology. National Academy Press.

[4] Computing Curricula 2001: Computer Science. IEEE
Computer Society and the ACM.

[5] Denning, P. 2005. Is Computer Science Science? CACM.
48,4 (April 2005). 27-31.

[6] Guzdial, M. Paving the Way for Computational Thinking.
CACM. 51,8 (August 2008), 25-27.

[7] Snir, M. 2008. Computing and Information Science and
Engineering: Quo Vadimus. University of Illinois at Urbana
Champaign, Technical Report 13-2008-1.
http://www.cs.uiuc.edu/homes/snir/PDF/Computing%20and
%20Information%20Science%20and%20Engineering%20TR
.pdf

[8] Wilson, G. Alvarado C., Campbell J., Landau, R., and
Sedgewick, R. 2008. CS-1 for scientists. Proceedings of the
SIGCSE Technical Symposium on Computer Science
Education, SIGCSE Bulletin 40, 1 (March 2008), 36-37.

[9] Wing, J. 2006. Computational Thinking. CACM. 15, 5
(March 2006), 33-35.

550

