
Recognizing Computational Thinking Patterns
Ashok Basawapatna

University of Colorado Boulder
Department Of Computer Science

Boulder, CO. 80303
(720) 838-5838, 001

 basawapa@colorado.edu

Kyu Han Koh
University of Colorado Boulder

Department of Computer Science
Boulder, CO. 80303
(303) 495-0357, 001

kohkh@colorado.edu

Alexander Repenning
University of Colorado Boulder

Department of Computer Science
Boulder, CO. 80303
(303) 492-1349, 001

ralex@cs.colorado.edu

David C. Webb
University of Colorado Boulder

School of Education
Boulder, CO. 80303
(303) 492-0306, 001

dcwebb@colorado.edu

Krista Sekeres Marshall
University of Colorado Boulder

School of Education
Boulder, CO. 80303
(303) 999-5736, 001

krista.marshall@colorado.edu

ABSTRACT
End-user game design tools are effective in motivating and
exposing students with no prior programming experience to
computer science. However, while there is good evidence that
these environments are effective motivators, the question remains
what do students actually learn? For our purposes, using
AgentSheets, we would like to know if students can apply the
knowledge obtained from programming games to creating science
simulations. Specifically, we want to better understand if students
are able to recognize Computational Thinking Patterns (CTP)
from their game programming experience. Computational
Thinking Patterns are abstract programming patterns that enable
agent interactions not only in games but also in science
simulations. Students and teachers who participated in a game
design summer institute were administered a Computational
Thinking Pattern Quiz (CTP Quiz). This quiz tested the
participants’ ability to recognize and understand patterns in a
context removed from game programming. We found that
participants, for the most part, were able to understand and
recognize the patterns in a variety of contexts.

Categories and Subject Descriptors
K.3.2 Computer and Information Science Education

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
University Programming Education, Middle School Computer
Education, Scalable Game Design, Computational Thinking,
Computational Thinking Patterns, Transfer, Student Observation.

1. INTRODUCTION
Currently end-user video game design is a popular way to teach
programming to students who have little or no prior programming
experience [1,2,3]. The allure of using video games to introduce
students to programming partly lies in students’ natural interest in
video games, but also, in that certain game design tools allow
students to create games relatively quickly as compared to
conventional programming languages [4]. To put this in
perspective, a student using AgentSheets, the end user rapid game
prototyping environment we employ, can make their first
‘Frogger’ game within 5 hours [5].

Much research has shown the teacher effectiveness of using end
user game creation as a motivational tool to get students
interested in Computer Science [4,6]. There has been less
research, in general, on the actual knowledge/skills students
acquire. For example, implicit in these studies is the idea that
students learn “Computational Thinking” [7]. However, the
definition of Computational Thinking at the present time is
abstract at best [8]. For this method of instruction it is essential
we concretely define what exactly we expect students to learn. In
other words, for Computational Thinking to become a notion that
is actionable, teachers require more than just abstract definitions
of what Computational Thinking is or is not.

A different way to think about Computational Thinking is to
move beyond its definitions towards a more pragmatic
conceptualization. In one of the many schools participating in the
Scalable Game Design project, one teacher came up with an
interesting idea. After glancing at some of the current definitions
of Computational Thinking, he indicated that he still did not quite
understand what Computational Thinking really was, but he had
an expectation. He would want to be able to walk up to a student
participating in game design and ask:

“Now that you can make Space Invaders, can you also make a
science simulation.” [9]

To put it another way, the teacher’s expectation is that the student
should be able to use their programming knowledge to solve real
world problems. The ability to create scientific simulations should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE’11, March 9-12, 2011, Dallas, Texas, USA.
Copyright 2011 ACM 978-1-4503-0500-6/11/03...$10.00.

245

be an important benefit of thinking computationally and an
indication of STEM proficiency.

For our purposes, any useful educational benefit obtained through
end-user game design would have the following properties:

The above specifications initially motivated us to look at the
elements of game programming that enable transfer to science
simulations. This led us to define Computational Thinking
Patterns, which are abstracted programming patterns that are
learned by students when they create games and can readily be
used by students to model scientific phenomena [5]. For example,
in Frogger, students must program a truck-frog collision; this
situation, wherein two agents physically collide, can be used to
model molecules colliding or even a car crash. The following
table shows some example games and their corresponding
Computational Thinking Patterns. It should be noted that these
patterns are a work in progress and this table is by no means
comprehensive.

Table 1 Games and their corresponding Computational
Thinking Patterns [5]

The following is a brief description of selected Computational
Thinking Patterns and how they relate to game programming and
STEM simulation design. For a more in-depth description of these
and other patterns please see [5].

Generation: To satisfy this pattern, an agent is required to create
another agent; in real life, for example, raindrops emanate from
clouds. Analogously, in predator/prey science simulations,
animals breed to create new animals. Conversely, the Absorb
pattern is when one agent deletes another agent.
Collision: The collision pattern occurs when two agents
physically collide. In real life, a car crashing into another car is an
example of a collision. In science simulations atoms can collide
with other atoms to make new elements.

Transportation: In the transportation pattern, one agent carries
another agent. In real life a car transports a person. In science
simulations red blood cells transport oxygen molecules to parts of
the body.
Diffusion: Diffusion allows for the “scent” of an agent to be
dispersed around a level. In real life, the scent of freshly baked
bread originating from the kitchen is present in other rooms. In a
science simulation diffusion can be used to depict how heat is
transferred from one side of a heated metal bar to the other side.
Hill Climbing: An agent employing a hill-climbing algorithm
looks at neighboring values of interest and moves towards the one
with the largest value. These values could be, for example, the
“scent” of another agent. In real life, mosquitoes hill climb the
smell given off by humans.
One possible method of evaluating Computational Thinking in the
classroom, in the context of end user game programming, is
evaluating the ability of teachers and students to understand and
make use of these Computational Thinking Patterns. Previous
research has indicated that students do indeed use these
Computational Thinking Patterns to implement science
simulations of their own [5,11]. Further research into
automatically recognizing which patterns a student has used to
implement a game/simulation yielded an analysis called the
Computational Thinking Pattern Graph [10]. The Computational
Thinking Pattern Graph employs an approach similar to Latent
Semantic Analysis to create a graph that depicts the
Computational Thinking Patterns used to program a given game
[12]. Basically, the underlying code of a game or simulation is
compared to canonical Computational Thinking Patterns coded in
the same programming language. For instance, the dimension of
collision indicates if there is some code exhibiting a similar
pattern to a canonical implementation of two object colliding. The
following figure is a Computational Thinking Pattern graph of a
student’s Frogger implementation as compared to the tutorial
Frogger.

Figure 1: Computational Thinking Pattern graph. Depicts the
Computational Thinking Patterns for a student’s
implementation of Frogger as compared to the tutorial’s
implementation.

Games Computational
Thinking Patterns

Frogger
Generation, Absorption,

Collision,
Transportation

Sokoban Push, Pull

Centipede Generation, Absorption,
Collision, Push, Pull

Space Invaders Generation, Absorption,
Collision

Sims Diffusion, Hill Climbing

Educational Characteristics of Game Design:

1) Enables students to transfer their skills to science
simulations and/or mathematical models

2) Is based on concepts that are easily recognizable a
and usable by both instructors and students

3) Is automatically measurable for evaluation and
progress tracking purposes.

246

This graph is one way to visually evaluate the Computational
Thinking Patterns students use in a game. For example, using Figure
1, a teacher could readily see that, to a large extent, the student was
able to successfully implement all the Computational Thinking
Patterns necessary for Frogger. Therefore, the graph seems to
indicate the student has met a high level of proficiency in the end
user game design task; this relates to point 3 of the above
Educational Characteristics of Game Design. Furthermore, previous
research has indicated this transfer between games and simulations
seems to occur [5,11]. This relates to point 1 of the Educational
Characteristics of Game Design. However, the question still remains
whether the user can now recognize and re-implement these patterns
in the context of a STEM simulation.

To put this another way, though the Computational Thinking Pattern
graph shows that teachers can teach and students can implement
these patterns, a real educational question arises as to whether the
students and teachers truly understand what is being learned. In
order for students to implement and teachers to teach these
Computational Thinking Patterns in another context, they must first
be able recognize and understand these patterns. This relates to
point 2 in the above Educational Characteristics of Game Design.
For example, given that a class has finished the Frogger unit, are the
students able to recognize that to model a car crash simulation they
would employ the same collision pattern that they used in Frogger?
Specifically, the research question we are asking is “To what extent
are these Computational Thinking Patterns accessible and useful to
teachers teaching game design and students learning game design.”
To help gain better insight into this question, we developed the
Computational Thinking Pattern Quiz.

The Computational Thinking Pattern Quiz starts with several videos
that depict one or a combination of Computational Thinking
Patterns. The last question of the Computational Thinking Pattern
Quiz is a paragraph specification of a given science simulation, and
game designers are asked to list the Computational Thinking
Patterns that should be used to implement this simulation. The
videos and paragraph description questions allow us to see if game
designers can, and to what extent, recognize various Computational
Thinking Patterns outside the context of game programming.
Therefore, the Computational Thinking Pattern Quiz could be an
important aspect of evaluating what students actually learn from
end-user game programming as well as method of evaluating the
usability of Computational Thinking Patterns themselves.

2. METHOD
In the summer of 2010 a National Science Foundation-funded 2-
week Summer Institute was held at the University of Colorado,
Boulder. The goal of this Institute was to present to middle school
teachers and community college students methods of using game
design to teach computer science and Computational Thinking in
middle school classrooms across the state of Colorado, and sites in
Texas, Alaska and South Dakota. Specifically, this Institute was
held as part of NSF funded iDREAMS Scalable Game Design
project which has, thus far, educated over 2,000 students in
Colorado.

There were 2 groups that participated in the Summer Institute.
Group 1 consisted of participants who had not participated in the
2009 Summer Institute. This group attended the Summer Institute
for the entire 2-week session. Group 2 was made up of participants
who had experienced the prior Summer Institute in 2009, therefore,

they were only present for the second week session of the Summer
Institute. Group 2 had completed everything Group 1 did in a
previous Summer Institute and thus, by week 2, both groups were at
comparable levels of expertise. Teachers in both Groups 1 and 2
came from diverse backgrounds; for example, participant teachers
taught everything from computer science to Spanish to accounting.
Moreover, community college students were also from diverse
backgrounds such as computer science, creative writing, art, and
philosophy.

The curriculum for the Summer Institute exposed all the participants
to multiple Computational Thinking Patterns. In week 1,
participants programmed Frogger, Sims, and Space Invaders (refer
to Table 1 to see the Computational Thinking Patterns implemented
in these games). In week 2, the participants implemented two
science simulations and the game Pacman (which uses the patterns
diffusion and hill climbing).

At the end of the Institute, all participants were given an 8 question
Computational Thinking Pattern Quiz. The first 7 questions
involved video of real-life phenomena relating to patterns
participants programmed in previous games. The final question of
the quiz was a paragraph description of a predator/prey model and
asked the participants to list and describe all the Computational
Thinking Patterns necessary for implementation. The following
section covers these 8 questions more in-depth.

2.1 Computational Thinking Pattern Quiz
As mentioned above, the Computational Thinking Pattern quiz has 8
questions, 7 of which are video of real life phenomena that resemble
in-game Computational Thinking Patterns and one of which is a
specification for a predator/prey simulation. The questions were
administered online and the 43 participants were given an hour to
complete the quiz. The descriptions of the questions are as follows.

Question 1 is a video of 2 people sledding down a hill. At the end
of the video one of the sledders collides with a person standing at
the bottom of the hill. The patterns depicted in this video are
‘transportation’ and ‘collision’ and the participants were specifically
asked how this related to something in the “Frogger” game. Figure 2
depicts sequential screenshots of this video as an example as to what
these videos looked like. Participants were given credit if they
correctly identified either one of the patterns.

Figure 2 Sequential screenshots from question 1 of the
Computational Thinking Pattern Quiz wherein 2 sleds
‘transport’ 2 people down a hill and one of the sledders
‘collides’ with a person at the bottom of the hill.
Question 2 depicted a marching band coming out of a tunnel and
again asked participants to say how this was similar to the
“Frogger” game they programmed (i.e.: the tunnel in the
“Frogger” game ‘generates’ trucks).

Question 3 depicts a ‘collision’ between two soccer players.
Again participants are asked how this is similar to something they
programmed in “Frogger” (i.e.: when the truck hits the frog).

247

Question 4 depicts a hot-dog eating contest and asks the
participants how this is similar to something they programmed in
“Pacman” (i.e.: the “Pacman” eats or ‘absorbs’ the pellets)

Question 5 depicts several football players chasing after a player
with a football and the participants are asked how this relates to
something they programmed in “Pacman” (ie: the ghosts ‘hill
climbing’ of Pacman’s ‘diffused’ scent resembles the players
running after the person with the football). As for Question 1, which
also depicted 2 patterns, describing either pattern yielded a correct
answer.

Question 6 is a video depicting one type of liquid being ‘diffused’
in another type of liquid and participants were asked to state how
this was similar to “Pacman” (ie: Pacman’s scent is diffused around
the level so the ghosts can track Pacman).

Question 7 is a video that depicts marathon runners running
towards the finish line and participants were asked to describe how
this resembles something in the Ant Foraging simulation they used
earlier in the week (ie: runners running towards the goal is visually
similar to ants following a pheromone scent to food and/or taking
food back to the nest).

Question 8) As mentioned above, Question 8 was a written
paragraph that described a predator/prey simulation, and participants
were asked to talk about all the Computational Thinking Patterns
they would use to create this simulation. The specification of the
simulation was as follows:

“This simulation involves the Predator Prey relationship between
the Fox and the Rabbit. The Foxes find and eat Rabbits when they
are hungry. Otherwise, Foxes will breed with other Foxes to create
new Foxes. The Rabbits also breed with other Rabbits to create new
Rabbits. Finally Rabbits, when hungry, seek out and eat grass.”
Based on what participants experienced at the Summer Institute, we
would expect the following patterns to be identified as necessary to
complete the simulation:

• Generation because the animals breed creating new
animals.

• Absorption because the foxes eat (or absorb) rabbits and
the rabbits eat grass.

• Diffusion because the rabbits diffuse a scent around the
level.

• Hill Climbing because the foxes follow the rabbit’s
diffused scent and the rabbits seek out grass when
hungry.

Unlike Question 1 and Question 5, in Question 8 participants
were specifically asked to list all the patterns they thought would
be necessary to implement the predator/prey paragraph
description. Therefore, Question 8 was out of 4 points.

Participant answers to all questions were given in paragraph long-
answer format, and the answers were categorized and coded. As

mentioned above, participants were awarded a correct answer if
they named or described an intended Computational Thinking
Pattern for a particular question, with the exception of Question 8
which was out of 4 correct answers.

3. RESULTS
Table 2 depicts the average scores for each question. In general,
the results show that participants were able to understand and
recognize Computational Thinking Patterns in a different context;
the average score for all questions was over 78%, and for the first 7
questions, the average score was over 84%. This is remarkable since
the participants came from diverse backgrounds and had minimal
instruction on Computational Thinking Patterns before they took the
quiz.
The nature of responses took two main forms. Some participants
named the specific Computational Thinking Pattern that was shared
between both the game and the Computational Thinking Quiz video.
Other participants actually described the interaction in the video that
was similar to the patterns. Both were deemed correct answers. The
specific results are as follows.
The first three question refer to how the videos (described above)
resemble something the participants had seen in Frogger.

Question 1 depicted two people sledding down a hill and with a
sledder collision at the bottom. Surprisingly, every participant got
one of the two Computational Thinking Patterns leading to every
participant getting the question right. Some participants even wrote
both Computational Thinking Patterns though it was specifically not
required by the question. This is not too surprising since collision
and transport are both taught in Frogger, the first game everyone
learns (and the one that is most taught by participants in their
respective schools). The following answer is indicative of a correct
answer to both patterns:
“The people are being transported by the tubes and the announcer
is hit (collision) like the frog and the truck.”

Question 2 was a video of a marching band coming out of a tunnel.
As with Question 1, the participants correctly identified this pattern
as the average score was 93%. The following correct answer is
representative of how many participants described the game/video
similarity:
“Generation of trucks, logs, turtles is similar (sic) to the tunnel
generating people so to speak.”
Question 3 depicted a scene from the 2004 World Cup where one
player infamously head-butts another player. 88% of the participants
correctly identified the Computational Thinking Pattern. Though
many people described this pattern, fewer people were able to
correctly name or describe this Computational Thinking Pattern than
in prior questions. The reason for this might lie in the fact that in the
video one player head-butts another player in the context of a soccer
game which could lead to participants adding information from their
own experiences or knowledge of, in this case, soccer to answer the
question. For example, a typical incorrect answer looked as follows.

 Q1 (1) Q2 (1) Q3 (1) Q4 (1) Q5 (1) Q6 (1) Q7 (1) Q8 (4)

Participants 1 0.929 .881 .952 .976 .951 0.846 3.14

Table 2 Average score of participants for each question in the Computational Thinking Quiz. The numbers in parenthesis
denote the total possible points for a given question

248

“It could be either the guy getting a red flag . . . or a third agent
keeping track of a loss.”
The participant refers to aspects of a soccer game (red card
cheating vs. cheating in Frogger and referee scoring) that are not
explicitly shown in the video. Everything this participant alluded
to is correct, but is not the simple ‘collision’ pattern we were
looking for in this case. Ambiguity brought about by the implied
video context is a shortcoming of the Computational Thinking
Pattern Quiz. The typical correct answer resembled the following.
“There is a collision with two different team members just as the
car collides with the frog. . .”
Questions 4 through 6 deal with how the videos are similar to the
game Pacman. The answers to this portion of the quiz were for the
most part all correct; this might be due to the fact that Pacman
was one of the most recent games the participants had
programmed so it was fresh in their minds.

Question 4 depicted a hot dog eating contest. This question was
answered correctly by 95% of the participants; most people
seemed to understand that hotdogs being eaten by a person was
similar to how Pacman absorbs the pellets. This is one of the main
patterns in Pacman. Furthermore, absorb is a simple pattern that is
also shared in other games such as Frogger when a truck is
absorbed by a tunnel at the end of the road; thus, participants
were very familiar with this particular pattern. A typical answer
for Question 4 looked as follows:
“PacMan eats pellets and they erase, just like the hot dogs erase
when they are eaten.”

Question 5 was a video of a football player being chased by other
football players. This question had 2 answers, if the participants
answered or described hill climbing or diffusion they were
awarded a correct answer. Similar to Question 4, everybody
basically answered Question 5 correctly (98%). An indicative
correct answer given by participants is as follows.
“Both are seeking - the football players are seeking the player
with the ball and the ghosts are seeking Pacman.”

Question 6 examines the similarity between one liquid diffusion
into another liquid and how Pacman’s scent is diffused across a
level. Unlike the liquid, Pacman’s diffused scent is invisible
making the contextual leap more challenging. However,
participants still uniformly understood the connection between
this Computational Thinking Pattern of diffusion in Pacman and
the diffusion of one liquid into another as 95% of participants got
this question right. The following is a common participant answer
we came across
“This shows the diffusion of the dye which represents the scent we
assigned to pacman.”
Question 7 referred to an Ant foraging simulation that the
participants modified.
Question 7 depicted marathon runners running on a path towards
the finish line much like the ants in the ant simulation followed
pheromones to food and followed an implicit path back to the nest
once finding food. Of the first 7 questions this is the one that
participants had most trouble with as only 85% of participants got
it right. As with Question 3, this question might have suffered
from ambiguity relating to the video as participants may not have
understood the significance of a person travelling on a path
(something they see in everyday life and possibly deem as not

notable). For example, the following incorrect answer was given
by one participant:
“This is similar to the ant simulation because they both have a
large number of similar "agents" moving around quickly.”
This answer completely disregards any notion of agents moving
on a path in favor of how the video matches the overall aesthetic
of the ant simulation. In contrast, the correct answers all noticed
the trail aspect of the video. A common correct answer
participants provided is as follows:
“The runners are behaving like the ants after they have located
some food. They are all heading in the same general direction as
fast as they can.”
Note that the second answer is somewhat similar to the first
answer but focuses on the idea of seeking which involves the
diffusion and hill climbing Computational Thinking Patterns.

Question 8 deals with the specification of a predator/prey science
simulation. As mentioned above, the patterns needed to correctly
implement this simulation are generate, absorb, hill climbing, and
diffusion. Of all the Computational Thinking Quiz questions, we
thought Question 8 would be the most challenging and the most
indicative of whether participants could actively recognize and
transfer the Computational Thinking Patterns they learned in prior
game development to a science simulation. Surprisingly, the
results were positive. 20 of the 43 participants were able to name
or describe all 4 computational thinking patterns. An excerpt
representative answer from this group is as follows
“You would use collaborative diffusion, the fox will hill climb to
find a rabbit, the fox will then absorb the rabbit. . . When one (of
the) foxes are stacked on another fox it will generate a new fox.”
An additional 13 participants were able to correctly identify 2-3
correct patterns. Many of these participants missed the less
complex patterns such as absorb and generate while correctly
pointing out the more sophisticated patterns of hill climbing and
diffusion. A typical answer from this group is as follows:
“Foxes and Rabbits use DIFFUSION/HILL CLIMBING in order
to find their food sources, or you can have it be based on random
movement. Foxes and rabbits will GENERATE new versions of
themselves when they're with another one of their species, also
found by either diffusion or random movement. I would make the
rabbits/foxes give off a low level of scent for "heat" . . .”
It is hard to say why this would be the case. A possible reason
might be that since absorb and generate are simpler patterns, they
are easier to overlook. 9 participants were able to name one
Computational Thinking Patterns and only 1 participant was not
able to name any. Given the performance on prior quiz questions,
it could be that these participants were able to correctly recognize
the patterns in different contexts visually but were not yet at the
level where they could recognize the patterns from a more
abstract English description.
Though participants did well in the Computational Thinking
Pattern Quiz, there are a few issues with using this as a method of
evaluation for Computational Thinking Patterns. The first, as
referred to in Question 3 and Question 7, is the possible video
ambiguity as to the specific Computational Thinking Pattern they
would use to program a specific phenomenon. Sometimes
participants added their own knowledge to the context of the
video. Other times participants referred to shared actions that

249

happened both in the video and the previous game they
programmed; however, these were not at the generalized level of
Computational Thinking Patterns, but rather, at a more specific
implementation level or more of an aesthetic similarity between the
video and the previously programmed game. In Question 8, wherein
participants were given a specification and asked to list the
Computational Thinking Patterns they would use for
implementation, participants sometimes overlooked some of the
more obvious patterns to describe the more complex patterns
involved. It could be that if these participants actually programmed
the predator/prey simulation they would, in fact, readily recognize
and implement all the patterns correctly as the missing patterns
would be made more explicit (i.e.: grass would not disappear when
eaten by rabbits leading them to implement the absorb pattern).
Even with these problems, the Computational Thinking Pattern Quiz
is a good first step towards evaluating if students recognize what
they learn from game programming as well as validating the
usefulness of Computational Thinking Patterns themselves.
The Computational Thinking Quiz results imply that in 1 to 2 weeks
time the diverse participants in the Summer Institute were able to
recognize Computational Thinking Patterns in a variety of different
contexts. The fact that middle school teachers and community
college students could relatively easily pick up on these patterns
helps to support point 2 in the Educational Characteristics of Game
Design above wherein we ask if the educational elements are readily
recognizable and understandable by teachers to students. This
coupled with prior research showing that Computational Thinking
Patterns can be used for automatic evaluation and that students tend
to transfer these patterns when creating simulations, indicates that
Computational Thinking Patterns are one way to measure the
educational benefit of end-user game design.

4. CONCLUSION
Claiming an educational benefit through end-user game design
necessitates the ability for students to gain tangible and measurable
Computational Thinking skills in order to be useful in the
classroom. For our purposes, our expectation of whether
Computational Thinking has occurred is based on whether students
are able to transfer the knowledge they gained from game
programming to science simulations. We define Computational
Thinking Patterns as the specific units of transfer between games
and science simulations. In this paper, we show that Computational
Thinking Patterns are readily recognizable and understandable by
teachers and community college students across different contexts,
which is an important step in showing the usefulness of
Computational Thinking Patterns in the classroom.
Future research will look at other ways to make Computational
Thinking Patterns more explicit in the programming process,
identify more useful Computational Thinking Patterns, and develop
further evaluations of student learning and methods of evaluating
the usefulness of patterns themselves. We will administer the
Computational Thinking Quiz to over 2000 middle school students
during the 2010-2011 school year. Results from the quiz will further
inform this research.

5. ACKNOWLEDGMENTS
This material is based in part upon work supported by the National
Science Foundation under Grant Numbers No. 0833612 and DMI-

0712571. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation. A special thanks to Andri Ioannidou for all her help and
invaluable advice.

6. REFERENCES
[1] Cooper, S., Dann, W., Pausch, R., Cooper, S., Dann, W., and

Pausch, R., Teaching Objects-first In Introductory Computer
Science, In Proc. SIGCSE 2003, Reno, Nevada, USA, 2003

[2] Peppler, K. and Kafai, Y. B., Collaboration, Computation, and
Creativity: Media Arts Practices in Urban Youth Culture. In C.
Hmelo- Silver & A. O'Donnell (Eds.), In Proc. Computer
Supported Collaborative Learning, New Brunswick, NJ, USA,
2007

[3] Repenning, A., Excuse me, I need better AI! Employing
Collaborative Diffusion to make Game AI Child's Play. In
Proc. ACM SIGGRAPH Video Game Symposium, Boston,
MA, USA, ACM Press, 2006.

[4] Sturtevant, N. R., Hoover, H. J., Schaeffer, J., Gouglas, S.,
Bowling, M. H., Southey, F., Bouchard, M., and Zabaneh, G.
2008. Multidisciplinary students and instructors: a second-year
games course. In proc 39th SIGCSE Technical Symposium on
Computer Science Education, Portland, OR, USA, 2008.

[5] Basawapatna, A. R., Koh, K., and Repenning, A. 2010. Using
scalable game design to teach computer science from middle
school to graduate school. In Proceedings of ITiCSE '10.
ACM, Bilkent, Turkey 2010.

[6] Squire, K., Video games in education. International Journal of
Intelligent Simulations and Gaming, (2) 1. 2003

[7] Ruthmann, A., Heines, J. M., Greher, G. R., Laidler, P., and
Saulters, C. 2010. Teaching computational thinking through
musical live coding in scratch. In Proceedings of the 41st ACM
Technical Symposium on Computer Science Education
Milwaukee, Wisconsin, USA, March 10 - 13, 2010. SIGCSE
'10.

[8] National Academy of Sciences on Computational Thinking.
Report of a Workshop on The Scope and Nature
Computational Thinking, National Academies Press, 2010

[9] Repenning, A., Webb, D., and Ioannidou, A., “Scalable Game
Design and the Development of a Checklist for Getting
Computational Thinking into Public Schools”, Proc. SIGCSE’
10, ACM Press, WI, USA, 2010

[10] Koh, K., Basawapatna, A., Bennet, V., and Repenning, A.,
“Towards the Automatic Recognition of Computational
Thinking For Adaptive Visual Language Learning,” to appear
in Proceedings of the 2010 Conference on Visual Languages
and Human Centric Computing (VL/HCC 2010), IEEE
Computer, Madrid, Spain.

[11] Basawapatna, A., and Repenning, A., “Visualizing Student
Game Design Project Similarities”, In Proc. Diagrams 2010,
Portland, Oregon, USA 2010.

[12] Landauer, T. K., Foltz, P. W., and Laham, D., Introduction to
Latent Semantic Analysis. Discourse Processes, 25, 1998, 259-
284.

250

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

