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ABSTRACT 
We present a methodology for building objects-to-think-
computationally-with and illustrate its application in 
developing our Escape Machine game. The input 
mechanism for this game is a tangible state machine built 
with Posey, our computationally enhanced construction kit. 
Through manipulating this state machine children create an 
algorithmic specification for the behavior of both the avatar 
and its enemies in an attempt to navigate a maze without 
being eaten. We outline several strategies for success at 
Escape Machine and discuss how it embeds an important 
computational thinking concept in interaction with a 
tangible device. 
ACM Classification Keywords 
K.3.1 [Computers and Education]: Computer Uses in 
Education; H.1.2 [Models and Principles]: User/Machine 
Systems; H.5.2 [Information Interfaces and 
Presentation]: User Interfaces, Input devices and strategies 
 
INTRODUCTION 
Frank Lloyd Wright credited his aptitude for design to early 
childhood experiences with wooden blocks and other 
educational “gifts” designed by German educator Friedrich 
Froebel [3]. Wooden blocks and other similar toys can 
exert such a powerful influence on children because they 
provide more than narrow skill training; these toys provide 
an entire framework for children to understand the world 
around them, and an intoxicating glimpse of the satisfaction 
of discovery. Papert and others have championed the 
project of enhancing these objects-to-think-with [13, 18] 
with computation to provide an even more fertile 
playground for exploration. The work presented here is part 
of our effort to support what Wing calls “computational 
thinking” [22] by creating objects-to-think-
computationally-with. 
The motivating insight for teaching children computational 
thinking is that many concepts that computer scientists 
apply to manage complex coding tasks such as iteration and 

decomposition into parts can also usefully be applied more 
generally to understanding the world around us. Through 
early education in core computational thinking we can 
provide all children with the cognitive tools to think about 
complex phenomena, while providing the next generation 
of computer scientists with a strong foundation for further 
education. As the field is still in its infancy, one of the most 
pressing projects is enumerating a set of core computational 
thinking concepts as well as methods for presenting them. 
Therefore we have developed a methodology for creating 
objects-to-think-computationally-with that engage children 
in a particular computational thinking concept. We 
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Figure 1. Top: state machine built with Posey kit; bottom: 
screen image of Escape Machine maze. 
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illustrate our methodology by describing how we have 
applied it in building our Escape Machine game. 
Escape Machine is a puzzle game. It is controlled with a 
tangible state machine built with a few parts of Posey, a 
hub-and-strut construction kit instrumented to capture the 
configuration and orientation of constructions its users 
build [21]. The goal of our Escape Machine application is 
to provide a platform for play with a basic state machine, a 
powerful abstraction that is central to computer science. By 
constructing and reconstructing the tangible state machine 
you control the movements of your avatar, the black ghost, 
through a maze (Figure 1). Your goal is to help all your 
fellow ghosts imprisoned in the maze escape. However the 
state machine you build also controls the pink ghost eaters 
who are out to eat both the imprisoned ghosts and you. The 
challenge is to build state machine configurations that lead 
you towards the imprisoned ghosts while holding the ghost 
eaters at bay. We have tried to design game play so that 
discovering successful strategies demands understanding 
the basic mechanisms of specifying behaviors 
algorithmically in terms of a state machine. 
In the following section we describe our methodology for 
building objects-to-think-computationally-with using 
Escape Machine as an example. Next we discuss related 
work. Then we explain the rules of Escape Machine and 
walk through one level of game play. We give examples of 
successful game play strategies to illustrate how applying 
these strategies requires children to comprehend how a 
state machine specifies a system’s behavior. Finally we 
discuss the implications of our methodology and directions 
for future work. 
 
METHODOLOGY 
We have developed a methodology generalized from work 
on Logo [8, 13] for the design of objects-to-think-
computationally-with to support a particular core 
computational thinking concept. Our goal is to construct 
environments where children are encouraged to exercise 
these concepts to manipulate the behavior of the system. 
Such a system would: 

1. Promote mastery of a core computational thinking 
concept. 

2. Encourage exercising the concept as a tool for 
manipulating behaviors. 

3. Maintain interest through engaging interaction. 
Logo is an excellent example of a system that fulfills these 
desiderata. Although which concepts should be on the list 
of core computational thinking concepts is still an open 
question, several concepts presented by Logo such as 
variables, functions, and iteration are excellent candidates. 
Logo also arguably fulfills the second desideratum with 
respect to these concepts. For example it is possible to 
construct all sorts of behaviors for the turtle without using 
iteration (or recursion), but it quickly becomes tiresome to 

type so much, to the point that to have any fun you really 
need to figure out iteration (or recursion). Mastery of the 
concept is central to exercising control over the turtle.  
Merely playing with systems that are based on 
computational concepts does not necessarily convey the 
concept: consider the game of tic-tac-toe. Writing a 
program to play tic-tac-toe is an excellent introductory 
exercise for students to explore the concept of a game tree, 
as the space of possible games is relatively small. However, 
merely playing tic-tac-toe is not especially conducive to 
discovering the idea of a game tree, as most people 
intuitively grasp the winning strategy after only a few 
games and are not particularly motivated to think about 
abstractions that could help them achieve further mastery. 
As for our third desideratum, Logo’s widespread 
dissemination is a tribute to its ability to maintain 
children’s interest. The interpreter provides immediate 
gratification, requiring only a few lines of code to generate 
interesting turtle behaviors, but is powerful enough to 
tackle non-trivial computer science challenges. However 
Logo’s strength is also its limitation: it is a thinly disguised 
full-strength Lisp development environment. For the 
project of promoting computational thinking to a broad 
audience, we hope to develop some stepping stones along 
the path to becoming a Logo hacker. 
Computationally Enhanced Objects-to-Think-Computationally-With 
A key aspect of our effort to build more accessible objects-
to-think-computationally-with is the adoption of 
computationally enhanced construction kits [4, 5] as a 
platform. These kits build on the strengths of toys such as 
Froebel’s Blocks [3]  and Tinkertoy 
[http://www.hasbro.com/playskool/tinkertoy/] by 
embedding computation, sensing and actuation to imbue 
systems with additional behaviors and feedback. For 
example Topobo [15] and roBlocks [19] both allow 
children to build creatures and imbue them with behaviors 
purely through physical interaction. Anderson et al.’s self-
describing blocks [2], Triangles [9], Senspectra [11] and 
our Posey kit [21] are construction kits that can be 
manipulated to interact with applications on a host 
computer. These systems illustrate the particularly 
engaging and accessible interaction computationally 
enhanced construction kits afford. 
Application of Methodology in Escape Machine 
Our high level goal in developing the Escape Machine 
game has been to demonstrate the potential of 
computationally enhanced construction kits as a platform 
for situated exploration of computational thinking concepts. 
Two factors influenced our decision to address the concept 
of finite state machines: our Posey kit is well suited to 
modeling graph structures; and our experience teaching 
undergraduate architecture students to design systems with 
embedded computation has made it painfully clear that 
many students are poorly prepared for specifying behaviors 
algorithmically. By providing a tangible state machine as 
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an input mechanism to specify the behavior of animated 
characters in a game we hope to illustrate the potential for 
even relatively simple state machines to generate complex 
behavior. 
To create an engaging environment we designed a puzzle 
game around our tangible state machine input device. By 
challenging players with the goal of helping the ghost 
rescue its friends without getting eaten we hope to motivate 
them to master the state machine interface. We designed 
the rules of play to encourage players to consider the 
relationship between the general specification of 
preferences with the tangible state machine and the 
resulting actions that the game characters will take. We 
tuned game play to be complex enough to require players to 
think through the implications of different possible state 
machine configurations, but not so complex as to be 
inaccessible. 
 
BACKGROUND AND RELATED WORK 
Objects-to-think-with 
This work builds on the educational tradition of learning 
through engaging self-guided activities rather than lecturing 
and memorization. One foundation of this tradition is the 
object-to-think-with, an artifact intentionally crafted to 
support discovery and learning. 
Froebel [3] introduced a series of what he called gifts for 
young children that supported a variety of activities 
incorporated into the first kindergarten curriculum. One of 
the most famous gifts was a set of modular wooden blocks 
for constructing buildings and other shapes similar to those 
found on the shelves of a toy store today. 
There are a wide variety of commercial construction kits 
that have not been the subject of scholarly research but 
have served as inspiration. Tinkertoys are an early hub-and-
strut kit with a mix of static and rotationally free 
connectors. Zoob is a more recent entry into the hub-and-
strut genre with poseable ball and socket connectors. Other 
systems such as Lego, Erector and Meccano provide 
complex construction systems capable of realizing a wide 
variety of functional mechanical systems. 
Feurzeig and Papert [8] created Logo to leverage the power 
of computing to create an environment for children to 
explore and discover computational concepts. Early 
versions of Logo drove a physical robot turtle around on a 
piece of paper [13], later versions were entirely screen-and-
keyboard based. Feurzeig and Papert were among the first 
to explicitly identify computation as a promising medium 
for extending the tradition of objects-to-think-with. 
Computationally Enhanced Construction Kits 
Resnick and others at the MIT Media Lab have advanced 
the approach of using physical media to express and 
explore computational ideas [12, 17, 18]. Eisenberg and 
Wrensch applied these techniques to construction kits [4, 
23]. These projects range from systems to describe 3D 

geometry to kits of parts to assemble functional robots. All 
provide tangible interfaces for interacting with 
computational systems. 
Our Posey kit (Figure 1, top) [21] is a computationally 
enhanced poseable hub and strut construction kit. Its hub 
and strut form maps to model anything that a graph 
structure can describe, for example an articulated skeleton, 
a chemical molecule, a kinematic linkage or a building 
structure. Posey employs a ball and socket connection that 
allows users to move the parts of an assembled model. 
Hubs and struts are optocoupled through the ball and socket 
joints using infrared LEDs and photosensors. Wireless 
transmitters in the hubs send connection and geometry 
information to a host computer. The host computer 
assembles a representation of the physical model as the user 
creates and configures it. Application programs can then 
use this representation to control domain specific 
computational models. 
Several early efforts provided tangible interfaces for 
describing 3D geometry. Aish’s three dimensional Building 
Block System [1] enabled architects to input models to a 
CAD system. Frazer et al.’s 3D input devices [7] enabled 
designers to build models that interface with software that 
can give design advice. “Self-describing blocks” [2] 
facilitate computer modeling with instrumented Lego-style 
snap-together plastic blocks. 
In Triangles [9], a construction kit of flat plastic triangles 
interfaced to a computer, each tile corresponds to a 
different application, such as an email client or a personal 
calendar; and in a later version, to a character or object in a 
story. Mechanical and electronic magnetic connectors 
support constructing a variety of geometric forms that 
correspond to a suite of applications. 
Glume [14] is composed of soft modules each with six 
stubby arms filled with hair gel that communicate 
conductively to determine the overall model topology. 
Glume presents an interesting and original tactile quality, 
but geometry is not directly sensed, only inferred from 
topology. Although the form of these various kits differ, in 
each a user can make only static and rigid configurations. 
Monkey [6] is a specialized input device for virtual body 
animation. It is basically an artist’s lay figure instrumented 
for use as an input device. Instead of constructing a 
simulation of human animation and locomotion using a 
screen interface, the animator poses and moves the Monkey 
to define the character’s animation. However, although 
Monkey demonstrates the potential of this form of tangible 
interaction, it cannot be reconfigured and can only be used 
to control one particular (humanoid) geometry. 
Schweikardt and Gross’s roBlocks [19] are cubes that 
connect with magnetic data connections and provide either 
sensing, actuation or logic functions. By assembling a 
group of roBlocks you simultaneously define the system’s 
physical form and interactive behavior. 
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Speech-Enabled Alphabet Blocks [5] send data packets 
over an infrared optocoupled serial connection to build up 
words from the letters on the top face of the blocks and 
then speak the word out loud. 
Topobo [15] is a construction kit of articulating vertebra-
like pieces for building models with embedded kinetic 
memory. A Topobo construction is composed of a few 
active hubs with sensing, communications and actuation, 
and a variety of passive limb components that attach to the 
hubs and each other to construct a model of a creature. 
Each hub records angular movement at its joints when a 
button is pressed, and then replays the same movement in a 
loop with its motors after the button is released. Users build 
a creature, move the model across a terrain, and then watch 
the model replay its movement from its embedded kinetic 
memory. The Backpacks project [16] extends Topobo by 
adding timers and sensors that modulate the reproduction of 
recorded movements. These projects demonstrate how 
engaging a kinematic construction kit interface can be, but 
neither Topobo nor its Backpacks have sensors to detect the 
topology or geometry of most of the pieces in the kit. 
Senspectra [11]  is a flexible hub-and-strut construction kit. 
It is composed of balls with several embedded female 
headphone jacks that serve as hubs and flexible struts with 
male headphone jacks at each end. The struts bend to allow 
connecting hubs and struts in a wide variety of 
configurations, but are not poseable—sensors in each strut 
detect the degree, but not the direction, of bending. 
Although Senspectra’s connectors are under-sensed, in 
models with many hubs and struts the constraints imposed 
by the topology allow Senspectra to infer the model’s 
overall geometry. 
Tetrobot [10] is composed of hubs and actuated struts that 
can be combined to form actuated truss structures. Støy’s 
Odin system [20] also presents a kit of parts for assembling 
actuated truss structures. It is composed of hubs and struts 
that connect to form space-frame structures as well as an 
electrical bus to transmit power and control signals. Some 
struts have ball and socket joints at one or both ends, and 
others contain linear actuators that extend and contract the 
strut. By strategically combining different sorts of struts, 
subassemblies capable of taking steps or other actuations 
can be created. 
PARC’s Polybot chain-type module [24] is capable of self-
reconfiguration. Each module has two hermaphroditic 
connection plates with a rotational actuator in between. A 
series of modules can be connected together to form a 
snake or loop. By adding another passive cubic module 
with six connection plates, configurations with legs can 
also be made. Assemblies of these modules can perform 
rolling, snaking, and walking gaits. 
Computational Puzzle Games 
There is a rich tradition of puzzle games that are not 
necessarily electronic but support computational thinking. 

We were inspired by many of these games to adopt turn-
taking puzzle-solving game play for Escape Machine. 
Think-A-Dot [http://www.geocities.com/jaapsch/puzzles/ 
thinkadot.htm] is a toy with mechanical logic flip-flops 
arranged to display a pattern on the front of the case. The 
player drops a marble in one of three slots at the top of the 
toy and several gates both direct the path of the marble and 
change state. The challenge is to create certain patterns by 
dropping marbles into the slots in the sequence. 
Dr. Nim [http://www.cs.rit.edu/~ark/museum/drnim01.shtml] 
is a mechanical toy that allows a human to play against the 
mechanism at the game of Nim, the object of which to 
avoid taking the last marble. 
Chipwits [http://chipwits.com] is a computer game 
developed for the original macintosh computer in which 
players use an iconic programming language to program 
on-screen robots to navigate on-screen mazes. 
RoboRally [http://www.roborally.com] is a board game that 
allows players to specify programs for their robots by 
selecting five cards from those dealt to them and placing 
them face down. Each round of play then unfolds in stages 
as all players each turn over cards in unison, and move their 
game pieces around the board accordingly. Players whose 
program has not wrecked their robot are dealt a new hand 
and select a new five-card program. 
These last two games share a key feature with Escape 
Machine: the player, through some mechanism, programs 
the behavior of game characters. In Chipwits the 
programming language is icon based; in RoboRally the 
program is expressed in cards, and executed manually by 
the players; and in Escape Machine the players program the  
behavior in the game by manipulating a physical model that 
expresses a finite state machine.  
 
GAME DESIGN 
Several gaming traditions influence our Escape Machine. 
We have adopted the iconography and gestalt of Pac-Man 
[http://www.mameworld.net/pacman/] which introduced a 
simple yet engaging mode of game play: steering a 
character to clear a series of markers from a maze without 
being eaten by monsters. However, our game-play 
mechanism eschews Pac-Man’s raw test of reflexes and 
instead relies on puzzle-solving.  Escape Machine is a game 
of strategy.  
We were also influenced by more recent games that 
abandon the joystick in favor of specialized input devices 
such as Guitar Hero’s [http://www.guitarhero.com/] guitar 
controller. Guitar Hero is not using a game to teach guitar, 
but rather leveraging the guitar as an interaction mechanism 
to promote engaging play. With Escape Machine’s tangible 
state machine input we aim to leverage finite state 
machines to fashion an interaction mechanism that is both 
fun to play and satisfying to master.  
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Goals 
Our design for Escape Machine has several goals. Foremost 
is to create a game play mechanism based on the 
algorithmic specification of behavior through state 
machines. This mechanism should not just be amenable to 
thinking in terms of state machines, it should promote 
thinking in terms of state machines as successful strategy. 
Another goal for Escape Machine is to demonstrate the use 
of our Posey construction kit to support accessible and 
engaging application interfaces through sensing the 
player’s manipulations of the model’s shape and 
orientation.  
Our final goal for Escape Machine is to create a game that 
is fun to play. Our puzzle-style maze game inverts the roles 
of the Pac-Man characters: the player’s avatar is a ghost, 
and the goal is to prevent the ghost-eaters from eating you 
and your fellow ghosts.  The tangible state machine game 
controller brings the control mechanism into the physical 
space of the room. We mean to encourage experimentation 
and collaboration as strategies to achieve the satisfaction of 
creating desired behaviors and solving the puzzles.  
Rules of Play 
Escape Machine is played on a maze composed of a 
connected set of red, green, blue or yellow rooms as shown 
in the screen snapshot in Figure 2 (right). The Escape 
Machine provides a maze in which no room connects to 
more than three others and no two of a room’s neighbors 
have the same color. The colors of the rooms in the maze 
correspond to the colors of the four hubs in the controller 
that the player holds and manipulates to program the 
behavior of the characters in the maze. Figure 2-left shows 
a diagram of the tangible state machine controller (see also 
Figure 1-top). It is essential to note that the different 
colored hubs also have different numbers of connecting 
sockets—yellow has one; green has two; red, three; and 
blue has four connections.  
A maze contains three kinds of characters: the ghost (in the 
middle, red, room in Figure 2) is the player’s avatar in the 
game; imprisoned ghosts (like the one in the yellow room 
at the left) wait helplessly to be either rescued by the ghost 
or eaten by a ghost eater (the Pac-Man figure in the green 
room at the right). Your goal is to guide the ghost to rescue 
as many imprisoned ghosts as you can before they are eaten 
by ghost eaters, while avoiding being eaten yourself.  
Leaf nodes of each maze are initially populated with 
imprisoned ghosts. When the ghost moves into a room with 
an imprisoned ghost, it helps that ghost escape and you 
receive a credit. If a ghost eater enters a room with an 
imprisoned ghost, it eats that ghost and you receive a 
demerit. If a ghost eater enters the same room as the ghost 
you are eaten and the game is over. When all imprisoned 
ghosts have escaped or been eaten, the maze is clear and 
you move on to a new maze. 

Play proceeds in a sequence of discrete steps. On each step 
the player reconfigures and/or re-orients the tangible state 
machine to program the characters’ actions. Then the 
characters move according to that state machine 
configuration. Ghost eaters move first, then the ghost. 
The configuration of the tangible state machine (Figure 2-
left) controls the movement of both the ghost and ghost 
eaters. It specifies which room a character will move to in 
the next turn. For example, in Figure 2-left, the connections 
in the state machine graph specify that a character in a blue 
room can move only to a neighboring red or green room. If, 
as in this case, the state machine graph allows more than 
one move (i.e., red or green) then the character’s move 
depends on which hub is (physically) higher or lower. The 
ghost prefers the lower hubs (in this case red), while the 
ghost eaters prefer higher hubs (in this case green). Thus 
the specification of the character’s behavior is sensitive to 
the topology, position and orientation of the tangible state 
machine. 
To determine where the ghost in the red room (in Figure 2-
right) will move in the next turn we first look at the state 
machine. We see that the red state connects to all three 
other color states (blue, yellow, and green). Then we look 
at the colors of neighboring rooms in the maze. The red 
room is also connected to rooms of all three colors. The 
state machine graph specifies more than one possible move, 
so each character chooses based on the vertical order of the 
state hubs. The ghost prefers the lowest one (yellow in 
Figure 2), so it will move into the yellow room on the next 
turn. The yellow room in the maze contains an imprisoned 
ghost, so when the ghost enters that room it will enable the 
imprisoned ghost to escape. 
Unfortunately, before the ghost may move all the ghost 
eaters must move. To determine where the ghost eater in 
the green room will move we look at the tangible state 
machine again. Green connects to both blue and red, so 
both moves are allowed, and blue is preferred because it is 
higher. In this case, however, the room the ghost eater is in 
connects only to one room (the red room) so there is only 
one choice. The ghost eater will move into the red room 
and eat us before we have a chance to move! 

  
Figure 2. Diagram of state machine (left) and maze fragment 

(right). 
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Example Game Play 
The sequence in Figure 3 shows the movements of the 
ghost and a ghost eater through a simple maze according to 
a series of state machine configurations. Screen 0 shows the 
maze. The state machine is initially arranged as shown in a, 
yellow hub down. The ghost eater is in a yellow room, and 
in the state machine yellow connects only to red, so when 
the player presses Go, the ghost eater moves to the adjacent 
red room and eats the ghost imprisoned there (oops).  
The ghost is in a red room with adjacent rooms of each 
color, and the red hub is connected to the hubs of all three 
colors, so (as explained above) the ghost moves to the color 
of the lowest hub, yellow. The ghost imprisoned there 
escapes. Screen 1 shows the state after all characters have 
moved. 
For the second move, the player has not reconfigured the 
tangible state machine but just turned it upside down, 
(shown in b) causing both the ghost and ghost eater to 
return to their original positions (screen 2).  
For the third move the player bends the tangible state 
machine (c), placing the green hub below the yellow and 
blue hubs. The ghost will drop to the green room as shown 
in screen 3; but the ghost eater can still only move back 
into the adjacent red room. For the final state machine 
configuration in d, the player disconnects the yellow hub 
from the red hub and reattaches it to the blue hub, trapping 
the ghost eater in the red room. The whole assembly is then 
rotated so that the ghost slides down from the green room 
to the blue room and rescues the last imprisoned ghost 
(screen 4). 

STRATEGIES FOR SUCCESSFUL PLAY 
Although the maze shown here is small and somewhat 
trivial to complete, it illustrates the fundamental tension of 
Escape Machine: the physical constraints of the state 
machine make the colors of the rooms important. Yellow 
rooms work as buffers as it is fairly easy to manipulate 
which other (one) color the yellow hub attaches to, whereas 
the blue hub is always attached to at least two other colors. 
Care must be taken to move the ghost in the desired 
direction without letting the ghost eaters run amok. 
We have attempted to make game play accessible and 
engaging, while encouraging children to think abstractly 
about specifying behavior algorithmically. At each turn the 
movement of the ghost and ghost eaters provides feedback 
for children to validate their expectations of behavior 
expressed by the current game controller construction. We 
have tuned game play to allow children to discover the 
following strategies for success, and others, through 
experimentation. 
Imprison Ghost Eaters 
This strategy is demonstrated in the game play example 
above. If a player is willing to sacrifice the ghost 
imprisoned in a leaf node then a ghost eater can often be 
trapped in that node by disconnecting (in the state machine) 
the color of that leaf node from that of its neighbor in the 
maze. In steps 3 and 4 above, the ghost eater is trapped in a 
red leaf node room; its only way out is through a yellow 
room, but in the state machine red does not connect to 
yellow. If at some point it becomes necessary to release the 
imprisoned ghost eater (by reconnecting red and yellow in 
the state machine) for the ghost to make progress, the ghost 

Figure 3 Sequence illustrating one round of play for a simple maze. 
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eater will still remain trapped cycling between the two 
nodes. By exercising this strategy children develop an 
understanding of how connections between nodes in the 
state machine limit the motion of characters through the 
maze. 
Isolate Portions of the Maze with Valves 
Some mazes are divided into two subgraphs by a single 
room. When the room is yellow or green a player can use it 
as a one-way valve to contain ghost eaters in one area of 
the maze while the black ghost travels safely around the 
now ghost-eater-free area rescuing imprisoned ghosts. By 
exercising this strategy children develop the ability to 
reason about extended patterns of behavior through 
multiple turns. 
Identify Valley Paths 
Because the ghost prefers (physically) lower state machine 
nodes and ghost eaters prefer higher nodes, in certain 
situations one can construct a state machine configuration 
that creates peaks and ridges for the ghost eaters to occupy, 
leaving a safe valley pathway past them. Exercising this 
strategy helps children to identify higher-order patterns that  
they can leverage to generate desirable behaviors. 
 
DISCUSSION 
It is difficult in a paper to convey a sense of what it is like 
to play what seems like an intricately complicated  game. 
(In fact, the game is far easier to understand by playing it 
than reading about it might suggest). One might well ask, 
“But is it fun?”  Although we have not yet engaged children 
in user studies, a dozen or so students at our university have 
played the first working versions of Escape Machine.  The 
game proceeds quite slowly, at the pace of chess, as players 
ponder the consequences that their state machine 
construction will have on the characters’ actions in the 
maze.  In informal testing, it was not unusual for a player to 
take ten or fifteen minutes for each move. What we found 
remarkable is that, despite this slow pace of play, people 
remained strongly engaged in the game!  We also observed 
that people enjoyed playing together in pairs, thinking 
aloud as they contemplated their next move. In informal 
discussions players reported that the game was intriguing, 
unusual, and fun. We plan to conduct more formal studies 
involving players of different ages.  
We plan to assess the Escape Machine with respect to the 
goals we set out above. Can people play it, and is it 
engaging and fun? Our preliminary testing shows that 
people can and it is, but we would expand the evaluation to 
include a wider demographic. Does it promote mastery of 
the core concept of a state machine? In a sense, if they learn 
to play the game successfully they have mastered the core 
concept, although this does not guarantee that they can 
transfer what they have learned to other situations. We 
could include play with Escape Machine in a college level 
computer science course to see whether it helps students 
understand state machines more easily. Our main purpose, 

though, is not to help CS students, but to provide children a 
foundation for computational thinking. To assess whether 
Escape Machine serves that goal, we might learn a lot 
simply by listening to the conversation among Escape 
Machine play partners as they play through the game. Do 
they acquire or develop language for talking about the 
game that reflects a structural understanding that in turn 
might map to other domains?  
More formally we might design an evaluation that requires 
using state machine concepts to solve a problem in a 
different (non-game) domain, and see whether people who 
have mastered Escape Machine can apply what they have 
learned to the new domain. And of course there are a set of 
studies to perform that compare tangible interaction in 
Posey with a screen-based state machine diagram to control 
the game. 
The Escape Machine tangible state machine game 
controller illustrates our methodology for creating objects-
to-think-computationally-with. The system engages players 
in tangibly manipulating simple algorithmic specifications 
of behavior. Although the abstractions involved are simple, 
we believe that they provide an accessible taste of the 
power of algorithmic specification, and hope that they will 
whet children’s appetites to tackle more powerful 
environments such as Logo. 
Clearly, Escape Machine is not—and is not intended as—
an open-ended constructionist environment like Logo.  
Compared with Logo, Escape Machine is a very limited 
microworld: it does not have variables or functions, 
conditionals, or iteration, and all you can do is control the 
actions of some simple game characters.  
Yet Escape Machine shares one essential property with 
Logo and other programming environments: the player 
controls behavior in a microworld by constructing a 
symbolic representation. In the case of Logo, the symbolic 
representation is a program expressed in code. In Escape 
Machine it is the connections, geometry, and orientation of 
the Posey model, which represents a finite state machine 
graph. Whereas a finite state machine is a powerful 
computational abstraction usually reserved for college 
computer science students, Escape Machine conveys this 
concept directly through manipulating a physical model. To 
program the state machine requires writing no code; only 
connecting, reconnecting, and reorienting the Posey model. 
Escape Machine’s tangible interface—made up of Posey 
construction kit parts—functions quite differently from a 
traditional joystick controller or keyboard game interface.  
Whereas keyboard (e.g., arrow key) controls and joysticks 
provide instantaneous input to drive game characters 
around the screen (up, down, left, right, fire!) in the Escape 
Machine players engage in constructing a description that 
drives game play. That is, conventional game interfaces 
employ direct manipulation; Escape Machine on the other 
hand quite deliberately demands indirect description.  
Players are, in a simple but essential sense, programming. 
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This last observation—that by configuring and 
manipulating the pieces of a construction kit, players are 
programming—points to a relatively unexplored and 
potentially promising area of application for 
computationally enhanced construction kits: physical 
programming. Our other applications of Posey—for 
example chemistry and puppeteering—capture and map 
physical manipulations to a domain modeled in the 
computer. But Escape Machine’s domain is itself 
computation: and the physical constructions that players 
make are themselves representations of computational 
behavior. The particular affordances of the Posey kit and 
mapping these to a state machine are less important than 
the general idea that construction kits can provide powerful 
interfaces to computation. They then become not merely 
computationally enhanced construction kits, but physical 
construction kits for computation. 
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