

Escape Machine: teaching computational thinking with a
tangible state machine game

Michael Philetus Weller
CoDe Lab

Carnegie Mellon University
Pittsburgh, USA

philetus@cmu.edu

Ellen Yi-Luen Do
ACME Lab

Georgia Tech
Atlanta,USA

ellendo@cc.gatech.edu

Mark D Gross
CoDe Lab

Carnegie Mellon University
Pittsburgh, USA

mdgross@cmu.edu

ABSTRACT
We present a methodology for building objects-to-think-
computationally-with and illustrate its application in
developing our Escape Machine game. The input
mechanism for this game is a tangible state machine built
with Posey, our computationally enhanced construction kit.
Through manipulating this state machine children create an
algorithmic specification for the behavior of both the avatar
and its enemies in an attempt to navigate a maze without
being eaten. We outline several strategies for success at
Escape Machine and discuss how it embeds an important
computational thinking concept in interaction with a
tangible device.
ACM Classification Keywords
K.3.1 [Computers and Education]: Computer Uses in
Education; H.1.2 [Models and Principles]: User/Machine
Systems; H.5.2 [Information Interfaces and
Presentation]: User Interfaces, Input devices and strategies

INTRODUCTION
Frank Lloyd Wright credited his aptitude for design to early
childhood experiences with wooden blocks and other
educational “gifts” designed by German educator Friedrich
Froebel [3]. Wooden blocks and other similar toys can
exert such a powerful influence on children because they
provide more than narrow skill training; these toys provide
an entire framework for children to understand the world
around them, and an intoxicating glimpse of the satisfaction
of discovery. Papert and others have championed the
project of enhancing these objects-to-think-with [13, 18]
with computation to provide an even more fertile
playground for exploration. The work presented here is part
of our effort to support what Wing calls “computational
thinking” [22] by creating objects-to-think-
computationally-with.
The motivating insight for teaching children computational
thinking is that many concepts that computer scientists
apply to manage complex coding tasks such as iteration and

decomposition into parts can also usefully be applied more
generally to understanding the world around us. Through
early education in core computational thinking we can
provide all children with the cognitive tools to think about
complex phenomena, while providing the next generation
of computer scientists with a strong foundation for further
education. As the field is still in its infancy, one of the most
pressing projects is enumerating a set of core computational
thinking concepts as well as methods for presenting them.
Therefore we have developed a methodology for creating
objects-to-think-computationally-with that engage children
in a particular computational thinking concept. We

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

IDC '08, June 11-13, 2008 Chicago, IL, USA
Copyright 2008 ACM 978-1-59593-994-4... $5.00

Figure 1. Top: state machine built with Posey kit; bottom:
screen image of Escape Machine maze.

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

282

kgd394
Line

illustrate our methodology by describing how we have
applied it in building our Escape Machine game.
Escape Machine is a puzzle game. It is controlled with a
tangible state machine built with a few parts of Posey, a
hub-and-strut construction kit instrumented to capture the
configuration and orientation of constructions its users
build [21]. The goal of our Escape Machine application is
to provide a platform for play with a basic state machine, a
powerful abstraction that is central to computer science. By
constructing and reconstructing the tangible state machine
you control the movements of your avatar, the black ghost,
through a maze (Figure 1). Your goal is to help all your
fellow ghosts imprisoned in the maze escape. However the
state machine you build also controls the pink ghost eaters
who are out to eat both the imprisoned ghosts and you. The
challenge is to build state machine configurations that lead
you towards the imprisoned ghosts while holding the ghost
eaters at bay. We have tried to design game play so that
discovering successful strategies demands understanding
the basic mechanisms of specifying behaviors
algorithmically in terms of a state machine.
In the following section we describe our methodology for
building objects-to-think-computationally-with using
Escape Machine as an example. Next we discuss related
work. Then we explain the rules of Escape Machine and
walk through one level of game play. We give examples of
successful game play strategies to illustrate how applying
these strategies requires children to comprehend how a
state machine specifies a system’s behavior. Finally we
discuss the implications of our methodology and directions
for future work.

METHODOLOGY
We have developed a methodology generalized from work
on Logo [8, 13] for the design of objects-to-think-
computationally-with to support a particular core
computational thinking concept. Our goal is to construct
environments where children are encouraged to exercise
these concepts to manipulate the behavior of the system.
Such a system would:

1. Promote mastery of a core computational thinking
concept.

2. Encourage exercising the concept as a tool for
manipulating behaviors.

3. Maintain interest through engaging interaction.
Logo is an excellent example of a system that fulfills these
desiderata. Although which concepts should be on the list
of core computational thinking concepts is still an open
question, several concepts presented by Logo such as
variables, functions, and iteration are excellent candidates.
Logo also arguably fulfills the second desideratum with
respect to these concepts. For example it is possible to
construct all sorts of behaviors for the turtle without using
iteration (or recursion), but it quickly becomes tiresome to

type so much, to the point that to have any fun you really
need to figure out iteration (or recursion). Mastery of the
concept is central to exercising control over the turtle.
Merely playing with systems that are based on
computational concepts does not necessarily convey the
concept: consider the game of tic-tac-toe. Writing a
program to play tic-tac-toe is an excellent introductory
exercise for students to explore the concept of a game tree,
as the space of possible games is relatively small. However,
merely playing tic-tac-toe is not especially conducive to
discovering the idea of a game tree, as most people
intuitively grasp the winning strategy after only a few
games and are not particularly motivated to think about
abstractions that could help them achieve further mastery.
As for our third desideratum, Logo’s widespread
dissemination is a tribute to its ability to maintain
children’s interest. The interpreter provides immediate
gratification, requiring only a few lines of code to generate
interesting turtle behaviors, but is powerful enough to
tackle non-trivial computer science challenges. However
Logo’s strength is also its limitation: it is a thinly disguised
full-strength Lisp development environment. For the
project of promoting computational thinking to a broad
audience, we hope to develop some stepping stones along
the path to becoming a Logo hacker.
Computationally Enhanced Objects-to-Think-Computationally-With
A key aspect of our effort to build more accessible objects-
to-think-computationally-with is the adoption of
computationally enhanced construction kits [4, 5] as a
platform. These kits build on the strengths of toys such as
Froebel’s Blocks [3] and Tinkertoy
[http://www.hasbro.com/playskool/tinkertoy/] by
embedding computation, sensing and actuation to imbue
systems with additional behaviors and feedback. For
example Topobo [15] and roBlocks [19] both allow
children to build creatures and imbue them with behaviors
purely through physical interaction. Anderson et al.’s self-
describing blocks [2], Triangles [9], Senspectra [11] and
our Posey kit [21] are construction kits that can be
manipulated to interact with applications on a host
computer. These systems illustrate the particularly
engaging and accessible interaction computationally
enhanced construction kits afford.
Application of Methodology in Escape Machine
Our high level goal in developing the Escape Machine
game has been to demonstrate the potential of
computationally enhanced construction kits as a platform
for situated exploration of computational thinking concepts.
Two factors influenced our decision to address the concept
of finite state machines: our Posey kit is well suited to
modeling graph structures; and our experience teaching
undergraduate architecture students to design systems with
embedded computation has made it painfully clear that
many students are poorly prepared for specifying behaviors
algorithmically. By providing a tangible state machine as

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

283

an input mechanism to specify the behavior of animated
characters in a game we hope to illustrate the potential for
even relatively simple state machines to generate complex
behavior.
To create an engaging environment we designed a puzzle
game around our tangible state machine input device. By
challenging players with the goal of helping the ghost
rescue its friends without getting eaten we hope to motivate
them to master the state machine interface. We designed
the rules of play to encourage players to consider the
relationship between the general specification of
preferences with the tangible state machine and the
resulting actions that the game characters will take. We
tuned game play to be complex enough to require players to
think through the implications of different possible state
machine configurations, but not so complex as to be
inaccessible.

BACKGROUND AND RELATED WORK
Objects-to-think-with
This work builds on the educational tradition of learning
through engaging self-guided activities rather than lecturing
and memorization. One foundation of this tradition is the
object-to-think-with, an artifact intentionally crafted to
support discovery and learning.
Froebel [3] introduced a series of what he called gifts for
young children that supported a variety of activities
incorporated into the first kindergarten curriculum. One of
the most famous gifts was a set of modular wooden blocks
for constructing buildings and other shapes similar to those
found on the shelves of a toy store today.
There are a wide variety of commercial construction kits
that have not been the subject of scholarly research but
have served as inspiration. Tinkertoys are an early hub-and-
strut kit with a mix of static and rotationally free
connectors. Zoob is a more recent entry into the hub-and-
strut genre with poseable ball and socket connectors. Other
systems such as Lego, Erector and Meccano provide
complex construction systems capable of realizing a wide
variety of functional mechanical systems.
Feurzeig and Papert [8] created Logo to leverage the power
of computing to create an environment for children to
explore and discover computational concepts. Early
versions of Logo drove a physical robot turtle around on a
piece of paper [13], later versions were entirely screen-and-
keyboard based. Feurzeig and Papert were among the first
to explicitly identify computation as a promising medium
for extending the tradition of objects-to-think-with.
Computationally Enhanced Construction Kits
Resnick and others at the MIT Media Lab have advanced
the approach of using physical media to express and
explore computational ideas [12, 17, 18]. Eisenberg and
Wrensch applied these techniques to construction kits [4,
23]. These projects range from systems to describe 3D

geometry to kits of parts to assemble functional robots. All
provide tangible interfaces for interacting with
computational systems.
Our Posey kit (Figure 1, top) [21] is a computationally
enhanced poseable hub and strut construction kit. Its hub
and strut form maps to model anything that a graph
structure can describe, for example an articulated skeleton,
a chemical molecule, a kinematic linkage or a building
structure. Posey employs a ball and socket connection that
allows users to move the parts of an assembled model.
Hubs and struts are optocoupled through the ball and socket
joints using infrared LEDs and photosensors. Wireless
transmitters in the hubs send connection and geometry
information to a host computer. The host computer
assembles a representation of the physical model as the user
creates and configures it. Application programs can then
use this representation to control domain specific
computational models.
Several early efforts provided tangible interfaces for
describing 3D geometry. Aish’s three dimensional Building
Block System [1] enabled architects to input models to a
CAD system. Frazer et al.’s 3D input devices [7] enabled
designers to build models that interface with software that
can give design advice. “Self-describing blocks” [2]
facilitate computer modeling with instrumented Lego-style
snap-together plastic blocks.
In Triangles [9], a construction kit of flat plastic triangles
interfaced to a computer, each tile corresponds to a
different application, such as an email client or a personal
calendar; and in a later version, to a character or object in a
story. Mechanical and electronic magnetic connectors
support constructing a variety of geometric forms that
correspond to a suite of applications.
Glume [14] is composed of soft modules each with six
stubby arms filled with hair gel that communicate
conductively to determine the overall model topology.
Glume presents an interesting and original tactile quality,
but geometry is not directly sensed, only inferred from
topology. Although the form of these various kits differ, in
each a user can make only static and rigid configurations.
Monkey [6] is a specialized input device for virtual body
animation. It is basically an artist’s lay figure instrumented
for use as an input device. Instead of constructing a
simulation of human animation and locomotion using a
screen interface, the animator poses and moves the Monkey
to define the character’s animation. However, although
Monkey demonstrates the potential of this form of tangible
interaction, it cannot be reconfigured and can only be used
to control one particular (humanoid) geometry.
Schweikardt and Gross’s roBlocks [19] are cubes that
connect with magnetic data connections and provide either
sensing, actuation or logic functions. By assembling a
group of roBlocks you simultaneously define the system’s
physical form and interactive behavior.

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

284

Speech-Enabled Alphabet Blocks [5] send data packets
over an infrared optocoupled serial connection to build up
words from the letters on the top face of the blocks and
then speak the word out loud.
Topobo [15] is a construction kit of articulating vertebra-
like pieces for building models with embedded kinetic
memory. A Topobo construction is composed of a few
active hubs with sensing, communications and actuation,
and a variety of passive limb components that attach to the
hubs and each other to construct a model of a creature.
Each hub records angular movement at its joints when a
button is pressed, and then replays the same movement in a
loop with its motors after the button is released. Users build
a creature, move the model across a terrain, and then watch
the model replay its movement from its embedded kinetic
memory. The Backpacks project [16] extends Topobo by
adding timers and sensors that modulate the reproduction of
recorded movements. These projects demonstrate how
engaging a kinematic construction kit interface can be, but
neither Topobo nor its Backpacks have sensors to detect the
topology or geometry of most of the pieces in the kit.
Senspectra [11] is a flexible hub-and-strut construction kit.
It is composed of balls with several embedded female
headphone jacks that serve as hubs and flexible struts with
male headphone jacks at each end. The struts bend to allow
connecting hubs and struts in a wide variety of
configurations, but are not poseable—sensors in each strut
detect the degree, but not the direction, of bending.
Although Senspectra’s connectors are under-sensed, in
models with many hubs and struts the constraints imposed
by the topology allow Senspectra to infer the model’s
overall geometry.
Tetrobot [10] is composed of hubs and actuated struts that
can be combined to form actuated truss structures. Støy’s
Odin system [20] also presents a kit of parts for assembling
actuated truss structures. It is composed of hubs and struts
that connect to form space-frame structures as well as an
electrical bus to transmit power and control signals. Some
struts have ball and socket joints at one or both ends, and
others contain linear actuators that extend and contract the
strut. By strategically combining different sorts of struts,
subassemblies capable of taking steps or other actuations
can be created.
PARC’s Polybot chain-type module [24] is capable of self-
reconfiguration. Each module has two hermaphroditic
connection plates with a rotational actuator in between. A
series of modules can be connected together to form a
snake or loop. By adding another passive cubic module
with six connection plates, configurations with legs can
also be made. Assemblies of these modules can perform
rolling, snaking, and walking gaits.
Computational Puzzle Games
There is a rich tradition of puzzle games that are not
necessarily electronic but support computational thinking.

We were inspired by many of these games to adopt turn-
taking puzzle-solving game play for Escape Machine.
Think-A-Dot [http://www.geocities.com/jaapsch/puzzles/
thinkadot.htm] is a toy with mechanical logic flip-flops
arranged to display a pattern on the front of the case. The
player drops a marble in one of three slots at the top of the
toy and several gates both direct the path of the marble and
change state. The challenge is to create certain patterns by
dropping marbles into the slots in the sequence.
Dr. Nim [http://www.cs.rit.edu/~ark/museum/drnim01.shtml]
is a mechanical toy that allows a human to play against the
mechanism at the game of Nim, the object of which to
avoid taking the last marble.
Chipwits [http://chipwits.com] is a computer game
developed for the original macintosh computer in which
players use an iconic programming language to program
on-screen robots to navigate on-screen mazes.
RoboRally [http://www.roborally.com] is a board game that
allows players to specify programs for their robots by
selecting five cards from those dealt to them and placing
them face down. Each round of play then unfolds in stages
as all players each turn over cards in unison, and move their
game pieces around the board accordingly. Players whose
program has not wrecked their robot are dealt a new hand
and select a new five-card program.
These last two games share a key feature with Escape
Machine: the player, through some mechanism, programs
the behavior of game characters. In Chipwits the
programming language is icon based; in RoboRally the
program is expressed in cards, and executed manually by
the players; and in Escape Machine the players program the
behavior in the game by manipulating a physical model that
expresses a finite state machine.

GAME DESIGN
Several gaming traditions influence our Escape Machine.
We have adopted the iconography and gestalt of Pac-Man
[http://www.mameworld.net/pacman/] which introduced a
simple yet engaging mode of game play: steering a
character to clear a series of markers from a maze without
being eaten by monsters. However, our game-play
mechanism eschews Pac-Man’s raw test of reflexes and
instead relies on puzzle-solving. Escape Machine is a game
of strategy.
We were also influenced by more recent games that
abandon the joystick in favor of specialized input devices
such as Guitar Hero’s [http://www.guitarhero.com/] guitar
controller. Guitar Hero is not using a game to teach guitar,
but rather leveraging the guitar as an interaction mechanism
to promote engaging play. With Escape Machine’s tangible
state machine input we aim to leverage finite state
machines to fashion an interaction mechanism that is both
fun to play and satisfying to master.

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

285

Goals
Our design for Escape Machine has several goals. Foremost
is to create a game play mechanism based on the
algorithmic specification of behavior through state
machines. This mechanism should not just be amenable to
thinking in terms of state machines, it should promote
thinking in terms of state machines as successful strategy.
Another goal for Escape Machine is to demonstrate the use
of our Posey construction kit to support accessible and
engaging application interfaces through sensing the
player’s manipulations of the model’s shape and
orientation.
Our final goal for Escape Machine is to create a game that
is fun to play. Our puzzle-style maze game inverts the roles
of the Pac-Man characters: the player’s avatar is a ghost,
and the goal is to prevent the ghost-eaters from eating you
and your fellow ghosts. The tangible state machine game
controller brings the control mechanism into the physical
space of the room. We mean to encourage experimentation
and collaboration as strategies to achieve the satisfaction of
creating desired behaviors and solving the puzzles.
Rules of Play
Escape Machine is played on a maze composed of a
connected set of red, green, blue or yellow rooms as shown
in the screen snapshot in Figure 2 (right). The Escape
Machine provides a maze in which no room connects to
more than three others and no two of a room’s neighbors
have the same color. The colors of the rooms in the maze
correspond to the colors of the four hubs in the controller
that the player holds and manipulates to program the
behavior of the characters in the maze. Figure 2-left shows
a diagram of the tangible state machine controller (see also
Figure 1-top). It is essential to note that the different
colored hubs also have different numbers of connecting
sockets—yellow has one; green has two; red, three; and
blue has four connections.
A maze contains three kinds of characters: the ghost (in the
middle, red, room in Figure 2) is the player’s avatar in the
game; imprisoned ghosts (like the one in the yellow room
at the left) wait helplessly to be either rescued by the ghost
or eaten by a ghost eater (the Pac-Man figure in the green
room at the right). Your goal is to guide the ghost to rescue
as many imprisoned ghosts as you can before they are eaten
by ghost eaters, while avoiding being eaten yourself.
Leaf nodes of each maze are initially populated with
imprisoned ghosts. When the ghost moves into a room with
an imprisoned ghost, it helps that ghost escape and you
receive a credit. If a ghost eater enters a room with an
imprisoned ghost, it eats that ghost and you receive a
demerit. If a ghost eater enters the same room as the ghost
you are eaten and the game is over. When all imprisoned
ghosts have escaped or been eaten, the maze is clear and
you move on to a new maze.

Play proceeds in a sequence of discrete steps. On each step
the player reconfigures and/or re-orients the tangible state
machine to program the characters’ actions. Then the
characters move according to that state machine
configuration. Ghost eaters move first, then the ghost.
The configuration of the tangible state machine (Figure 2-
left) controls the movement of both the ghost and ghost
eaters. It specifies which room a character will move to in
the next turn. For example, in Figure 2-left, the connections
in the state machine graph specify that a character in a blue
room can move only to a neighboring red or green room. If,
as in this case, the state machine graph allows more than
one move (i.e., red or green) then the character’s move
depends on which hub is (physically) higher or lower. The
ghost prefers the lower hubs (in this case red), while the
ghost eaters prefer higher hubs (in this case green). Thus
the specification of the character’s behavior is sensitive to
the topology, position and orientation of the tangible state
machine.
To determine where the ghost in the red room (in Figure 2-
right) will move in the next turn we first look at the state
machine. We see that the red state connects to all three
other color states (blue, yellow, and green). Then we look
at the colors of neighboring rooms in the maze. The red
room is also connected to rooms of all three colors. The
state machine graph specifies more than one possible move,
so each character chooses based on the vertical order of the
state hubs. The ghost prefers the lowest one (yellow in
Figure 2), so it will move into the yellow room on the next
turn. The yellow room in the maze contains an imprisoned
ghost, so when the ghost enters that room it will enable the
imprisoned ghost to escape.
Unfortunately, before the ghost may move all the ghost
eaters must move. To determine where the ghost eater in
the green room will move we look at the tangible state
machine again. Green connects to both blue and red, so
both moves are allowed, and blue is preferred because it is
higher. In this case, however, the room the ghost eater is in
connects only to one room (the red room) so there is only
one choice. The ghost eater will move into the red room
and eat us before we have a chance to move!

Figure 2. Diagram of state machine (left) and maze fragment

(right).

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

286

Example Game Play
The sequence in Figure 3 shows the movements of the
ghost and a ghost eater through a simple maze according to
a series of state machine configurations. Screen 0 shows the
maze. The state machine is initially arranged as shown in a,
yellow hub down. The ghost eater is in a yellow room, and
in the state machine yellow connects only to red, so when
the player presses Go, the ghost eater moves to the adjacent
red room and eats the ghost imprisoned there (oops).
The ghost is in a red room with adjacent rooms of each
color, and the red hub is connected to the hubs of all three
colors, so (as explained above) the ghost moves to the color
of the lowest hub, yellow. The ghost imprisoned there
escapes. Screen 1 shows the state after all characters have
moved.
For the second move, the player has not reconfigured the
tangible state machine but just turned it upside down,
(shown in b) causing both the ghost and ghost eater to
return to their original positions (screen 2).
For the third move the player bends the tangible state
machine (c), placing the green hub below the yellow and
blue hubs. The ghost will drop to the green room as shown
in screen 3; but the ghost eater can still only move back
into the adjacent red room. For the final state machine
configuration in d, the player disconnects the yellow hub
from the red hub and reattaches it to the blue hub, trapping
the ghost eater in the red room. The whole assembly is then
rotated so that the ghost slides down from the green room
to the blue room and rescues the last imprisoned ghost
(screen 4).

STRATEGIES FOR SUCCESSFUL PLAY
Although the maze shown here is small and somewhat
trivial to complete, it illustrates the fundamental tension of
Escape Machine: the physical constraints of the state
machine make the colors of the rooms important. Yellow
rooms work as buffers as it is fairly easy to manipulate
which other (one) color the yellow hub attaches to, whereas
the blue hub is always attached to at least two other colors.
Care must be taken to move the ghost in the desired
direction without letting the ghost eaters run amok.
We have attempted to make game play accessible and
engaging, while encouraging children to think abstractly
about specifying behavior algorithmically. At each turn the
movement of the ghost and ghost eaters provides feedback
for children to validate their expectations of behavior
expressed by the current game controller construction. We
have tuned game play to allow children to discover the
following strategies for success, and others, through
experimentation.
Imprison Ghost Eaters
This strategy is demonstrated in the game play example
above. If a player is willing to sacrifice the ghost
imprisoned in a leaf node then a ghost eater can often be
trapped in that node by disconnecting (in the state machine)
the color of that leaf node from that of its neighbor in the
maze. In steps 3 and 4 above, the ghost eater is trapped in a
red leaf node room; its only way out is through a yellow
room, but in the state machine red does not connect to
yellow. If at some point it becomes necessary to release the
imprisoned ghost eater (by reconnecting red and yellow in
the state machine) for the ghost to make progress, the ghost

Figure 3 Sequence illustrating one round of play for a simple maze.

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

287

eater will still remain trapped cycling between the two
nodes. By exercising this strategy children develop an
understanding of how connections between nodes in the
state machine limit the motion of characters through the
maze.
Isolate Portions of the Maze with Valves
Some mazes are divided into two subgraphs by a single
room. When the room is yellow or green a player can use it
as a one-way valve to contain ghost eaters in one area of
the maze while the black ghost travels safely around the
now ghost-eater-free area rescuing imprisoned ghosts. By
exercising this strategy children develop the ability to
reason about extended patterns of behavior through
multiple turns.
Identify Valley Paths
Because the ghost prefers (physically) lower state machine
nodes and ghost eaters prefer higher nodes, in certain
situations one can construct a state machine configuration
that creates peaks and ridges for the ghost eaters to occupy,
leaving a safe valley pathway past them. Exercising this
strategy helps children to identify higher-order patterns that
they can leverage to generate desirable behaviors.

DISCUSSION
It is difficult in a paper to convey a sense of what it is like
to play what seems like an intricately complicated game.
(In fact, the game is far easier to understand by playing it
than reading about it might suggest). One might well ask,
“But is it fun?” Although we have not yet engaged children
in user studies, a dozen or so students at our university have
played the first working versions of Escape Machine. The
game proceeds quite slowly, at the pace of chess, as players
ponder the consequences that their state machine
construction will have on the characters’ actions in the
maze. In informal testing, it was not unusual for a player to
take ten or fifteen minutes for each move. What we found
remarkable is that, despite this slow pace of play, people
remained strongly engaged in the game! We also observed
that people enjoyed playing together in pairs, thinking
aloud as they contemplated their next move. In informal
discussions players reported that the game was intriguing,
unusual, and fun. We plan to conduct more formal studies
involving players of different ages.
We plan to assess the Escape Machine with respect to the
goals we set out above. Can people play it, and is it
engaging and fun? Our preliminary testing shows that
people can and it is, but we would expand the evaluation to
include a wider demographic. Does it promote mastery of
the core concept of a state machine? In a sense, if they learn
to play the game successfully they have mastered the core
concept, although this does not guarantee that they can
transfer what they have learned to other situations. We
could include play with Escape Machine in a college level
computer science course to see whether it helps students
understand state machines more easily. Our main purpose,

though, is not to help CS students, but to provide children a
foundation for computational thinking. To assess whether
Escape Machine serves that goal, we might learn a lot
simply by listening to the conversation among Escape
Machine play partners as they play through the game. Do
they acquire or develop language for talking about the
game that reflects a structural understanding that in turn
might map to other domains?
More formally we might design an evaluation that requires
using state machine concepts to solve a problem in a
different (non-game) domain, and see whether people who
have mastered Escape Machine can apply what they have
learned to the new domain. And of course there are a set of
studies to perform that compare tangible interaction in
Posey with a screen-based state machine diagram to control
the game.
The Escape Machine tangible state machine game
controller illustrates our methodology for creating objects-
to-think-computationally-with. The system engages players
in tangibly manipulating simple algorithmic specifications
of behavior. Although the abstractions involved are simple,
we believe that they provide an accessible taste of the
power of algorithmic specification, and hope that they will
whet children’s appetites to tackle more powerful
environments such as Logo.
Clearly, Escape Machine is not—and is not intended as—
an open-ended constructionist environment like Logo.
Compared with Logo, Escape Machine is a very limited
microworld: it does not have variables or functions,
conditionals, or iteration, and all you can do is control the
actions of some simple game characters.
Yet Escape Machine shares one essential property with
Logo and other programming environments: the player
controls behavior in a microworld by constructing a
symbolic representation. In the case of Logo, the symbolic
representation is a program expressed in code. In Escape
Machine it is the connections, geometry, and orientation of
the Posey model, which represents a finite state machine
graph. Whereas a finite state machine is a powerful
computational abstraction usually reserved for college
computer science students, Escape Machine conveys this
concept directly through manipulating a physical model. To
program the state machine requires writing no code; only
connecting, reconnecting, and reorienting the Posey model.
Escape Machine’s tangible interface—made up of Posey
construction kit parts—functions quite differently from a
traditional joystick controller or keyboard game interface.
Whereas keyboard (e.g., arrow key) controls and joysticks
provide instantaneous input to drive game characters
around the screen (up, down, left, right, fire!) in the Escape
Machine players engage in constructing a description that
drives game play. That is, conventional game interfaces
employ direct manipulation; Escape Machine on the other
hand quite deliberately demands indirect description.
Players are, in a simple but essential sense, programming.

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

288

This last observation—that by configuring and
manipulating the pieces of a construction kit, players are
programming—points to a relatively unexplored and
potentially promising area of application for
computationally enhanced construction kits: physical
programming. Our other applications of Posey—for
example chemistry and puppeteering—capture and map
physical manipulations to a domain modeled in the
computer. But Escape Machine’s domain is itself
computation: and the physical constructions that players
make are themselves representations of computational
behavior. The particular affordances of the Posey kit and
mapping these to a state machine are less important than
the general idea that construction kits can provide powerful
interfaces to computation. They then become not merely
computationally enhanced construction kits, but physical
construction kits for computation.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful
comments. This work was supported by the National
Science Foundation under ITR-0326054.

REFERENCES
1. Aish, R. 3d Input for CAAD Systems. Computer-Aided

Design, 11 (2). 66–70.
2. Anderson, D., Frankel, J., Marks, J., Leigh, D., Ryall, K.,

Sullivan, E. and Yedidia, J. Building Virtual Structures
with Physical Blocks User Interface Software and
Technology (UIST), ACM, 1999, 71-72.

3. Brosterman, N. Inventing Kindergarten. H. N. Abrams,
New York, 1997.

4. Eisenberg, M., Buechley, L. and Elumeze, N.
Computation and Construction Kits: Toward the Next
Generation of Tangible Building Media for Children
Cognition and Exploratory Learning in the Digital Age
(CELDA 2004), Lisbon, Portugal, 2004, 423-426.

5. Eisenberg, M., Eisenberg, A., Gross, M.D.,
Kaowthumrong, K., Lee, N. and Lovet, W.
Computationally-enhanced Construction Kits for
Children: Prototype and Principles Intl. Conf. of the
Learning Sciences (ICLS), Seattle, USA, 2002, 79–85.

6. Esposito, C., Paley, W.B. and Ong, J. Of Mice and
Monkeys: A specialized input device for virtual body
animation Symposium on Interactive 3D Graphics (I3D),
ACM, 1995, 109–114.

7. Frazer, J., Frazer, J. and Frazer, P. New Developments in
Intelligent Modelling. Computer Graphics, 81. 139–154.

8. Fuerzeig, W., Papert, S., Bloom, M., Grant, S. and
Solomon, C. Programming-Languages as a Conceptual
Framework for Teaching Mathematics. ACM SIGCUE
Outlook, 4 (2). 13-17.

9. Gorbet, M.G., Orth, M. and Ishii, H. Triangles: tangible
interface for manipulation and exploration of digital

information topography Human Factors in Computing
(CHI), ACM, Los Angeles, USA, 1998, 49-56

10. Hamlin, G.J. and Sanderson, A.C. Tetrobot: a modular
approach to parallel robotics. Robotics & Automation, 4
(1). 42-50.

11. LeClerc, V., Parkes, A. and Ishii, H. Senspectra: A
computationally augmented physical modeling toolkit for
sensing and visualization of structural strain Human
Factors in Computing (CHI), ACM, San Jose, USA,
2007, 801–804.

12. McNerney, T.S. From turtles to Tangible Programming
Bricks: explorations in physical language design.
Personal Ubiquitous Computing, 8 (5). 326-337.

13. Papert, S. Mindstorms: children, computers, and powerful
ideas. Basic Books, Inc., New York, 1980.

14. Parkes, A., LeClerc, V. and Ishii, H. Glume: exploring
materiality in a soft augmented modular modeling system
Human Factors in Computing (CHI), ACM, 2006, 1211–
1216.

15. Raffle, H., Parkes, A. and Ishii, H. Topobo: A constructive
assembly system with kinetic memory Human Factors in
Computing (CHI), ACM, 2004, 647-654.

16. Raffle, H., Parkes, A., Ishii, H. and Lifton, J. Beyond
record and play: backpacks: tangible modulators for
kinetic behavior Human Factors in Computing (CHI),
ACM Press, 2006, 681–690.

17. Resnick, M., Bruckman, A. and Martin, F. Pianos not
stereos: creating computational construction kits.
interactions, 3 (5). 40-50.

18. Resnick, M., Martin, F., Berg, R., Borovoy, R., Colella,
V., Kramer, K. and Silverman, B. Digital manipulatives:
new toys to think with Human Factors in Computing
(CHI), ACM Press, Los Angeles, USA, 1998, 281-287.

19. Schweikardt, E. and Gross, M.D. roBlocks: a robotic
construction kit for mathematics and science education
Intl. Conf. on Multimodal Interfaces (ICMI), ACM,
Banff, Canada, 2006, 72-75.

20. Stoy, K., Lyder, A., Garcia, R.F.M. and Christensen, D.
Hierarchical Robots Workshop on Self-Reconfiguring
Robots at Intelligent Robots and Systems (IROS), IEEE,
San Diego, USA, 2007.

21. Weller, M.P., Do, E.Y.-L. and Gross, M.D. Posey:
Instrumenting a Poseable Hub and Strut Construction Toy
Tangible and Embedded Interaction (TEI), ACM, Bonn,
Germany, 2008, 39-46.

22. Wing, J.M. Computational Thinking. Communications of
the ACM, 49 (3). 33-35.

23. Wrensch, T. and Eisenberg, M. The programmable hinge:
toward computationally enhanced crafts User Interface
Software and Technology (UIST), ACM, San Francisco,
USA, 1998, 89-96.

24. Yim, M., Duff, D. and Roufas, K. PolyBot: A Modular
Reconfigurable Robot Intl. Conf. on Robotics and
Automation (ICRA), IEEE, 2000, 515-519.

IDC 2008 - Papers July 11-13, 2008 - Chicago, IL, USA

289

