
Computational Thinking

Computational Thinking for
Computer Science (CT4CS)

Students

Background

 An undergraduate course at Virginia Tech
 Offered twice as an alternative to a required

problem-solving class
 Experience report at SIGCSE, 2011 in paper

co-authored with Deborah Tatar

Computational Thinking 2

Summary

3 Kafura and Tatar, SIGCSE’11

 Motivation
 Aspirational: help computer science students develop intuitions, mental

models, and patterns of thinking about computation (“think like a computer
scientist”)

 Pragmatic: engage students in learning experiences related to recurring,
fundamental concepts about computation

 Means
 A non-programming entry level CS course
 An array of editing/visualization/simulation tools and physical simulations

 Results
 Survey of first offering (N=17) and experiential evidence
 Sufficiently encouraging to pursue a (current) second offering
 Able to deal with many core computing concepts
 No good approach (yet) to algorithmic concepts

 URL: www.cs.vt.edu/~kafura/ComputationalThinking

Overview

 Motivation
 Class Outline
 An example
 Evaluation
 Conclusions

4 Kafura and Tatar, SIGCSE’11

Motivation

5 Kafura and Tatar, SIGCSE’11

 conveys essential thought processes
 about computation
 usually to non-CS students
 informs discipline-specific ways of
 looking at the world
 elevates computational sophistication
 improves collaboration with computer
 scientists

Computational Thinking Computer Science

 it is “not just programming”
 accessible regardless of background
 approaches

 contextualized programming
 problem-solving
 great ideas/principles
 survey of discipline

Computational Thinking for Computer Science

 conveys essential thought processes about computation
 to computer science students
 without requiring or using programming
 in concrete, tangible forms

Class outline
Wks Topic Concepts/Tools

.5

M
odeling

Definition of CS Guided discussion

2 State,behavior Finite state machines, acceptors, grammars;
Tools: JFLAP, ANTLR

2 Abstraction
Abstraction, generalization, composition using Venn/tree/UML
diagrams, XML; Tools: XMLSpear, physical simulation

1.5 Relationships
Representing, inferring, visualizing relationships, ontologies;
Tool: Protege

1.5

Engineering

Concurrency Race conditions, synchronization, Petri nets;
Tool: Snoopy, physical simulation

1 Abstraction Layered systems/protocols; Tool: Snoopy

2 Binding, scope Lambda calculus; Tool: Lambda Teacher

1 Testing Developing test cases, coverage; Tools: applet, WebCAT

1 Debugging Puzzle solving with backtracking; Tool: Sodoku system

1 Data structures Mapping complex structures to memory;
Tool: physical simulation

 Slide 6 Kafura and Tatar, SIGCSE’11

Example (1)

 Concepts
• Finite states --- transitions --- inputs/events

 Assignment
• Develop a finite state acceptor to recognize if a

DNA sequence is a possible gene

 Tool
• JFLAP

 Slide 7 Kafura and Tatar, SIGCSE’11

Gene Acceptor in JFLAP

 Slide 8 Kafura and Tatar, SIGCSE’11

Example (2)

 Concepts
• Languages – structure – grammar

 Assignment
• Develop a BNF grammar for US Currency

 Tool
• ANTLR

 Slide 9 Kafura and Tatar, SIGCSE’11

Grammar in ANTLR

 Slide 10 Kafura and Tatar, SIGCSE’11

Example (3)

 Concepts
• Concurrency – synchronization– asynchrony
• Petri nets

 Assignment
• Develop solutions for simple mutual exclusion

and more complex traffic intersection
 Tools

• Physical simulation
• Snoopy (Petri net simulator)

Computational Thinking 11

Mutex in Snoopy

Computational Thinking 12

Discussion

 Finite state acceptor
  junior level computational biology course

 Grammars/languages
  senior level compiler course

 Concurrency
  junior level systems course

 Question: What is the relationship between acceptors

and grammars?
  senior level formal languages course

 Slide 13 Kafura and Tatar, SIGCSE’11

Evaluation
 An end of term reflections/survey (N=17)
 Key observations - The students reported that the

course/topics…
• deepened their knowledge and perspective on computer science.
• offered a number of new (to them) concepts and/or improved their

understanding of concepts they had already seen.
• helped them develop a better vocabulary for explaining computer

science issues.
 Place in curriculum

• The students expressed divided opinions on the ordering of this course
with respect to an introductory programming course in computer
science.

• Room for adoption flexibility

14 Kafura and Tatar, SIGCSE’11

Conclusions
 Concretely engage students in a wide variety of

sophisticated computing concepts without the
entanglements of programming
 We need to show students that CS is more than

programming
 Tools are available

 CS is about ideas
 Students need the opportunity to struggle with deep(er)

aspects of representation and process
 Appealing to students for deeper reasons

15 Kafura and Tatar, SIGCSE’11

? is there a set of “right” topics
? possibilities for continuation (at VT) and/or adoption

(elsewhere)
? <your question here>

16 Kafura and Tatar, SIGCSE’11

<end> Thanks! </end>

	Computational Thinking
	Background
	Summary
	Overview
	Motivation
	Class outline
	Example (1)
	Gene Acceptor in JFLAP
	Example (2)
	Grammar in ANTLR
	Example (3)
	Mutex in Snoopy
	Discussion
	Evaluation
	Conclusions
	Slide Number 16

