
Computational Thinking 

Computational Thinking for 
Computer Science (CT4CS) 

Students 



Background 

 An undergraduate course at Virginia Tech 
 Offered twice as an alternative to a required 

problem-solving class 
 Experience report at SIGCSE, 2011 in paper 

co-authored with Deborah Tatar 

Computational Thinking 2 



Summary 

3 Kafura and Tatar, SIGCSE’11 

 Motivation 
 Aspirational: help computer science students develop intuitions, mental 

models, and patterns of thinking about computation (“think like a computer 
scientist”) 

 Pragmatic: engage students in learning experiences related to recurring, 
fundamental concepts about computation 

 Means 
 A non-programming entry level CS course 
 An array of editing/visualization/simulation tools and physical simulations 

 Results 
 Survey of first offering (N=17) and experiential evidence 
 Sufficiently encouraging to pursue a (current) second offering 
 Able to deal with many core computing concepts 
 No good approach (yet) to algorithmic concepts 

 URL: www.cs.vt.edu/~kafura/ComputationalThinking 



Overview 
 
 Motivation 
 Class Outline 
 An example 
 Evaluation 
 Conclusions 

4 Kafura and Tatar, SIGCSE’11 



Motivation 

5 Kafura and Tatar, SIGCSE’11 

 conveys essential thought processes 
    about computation 
 usually to non-CS students 
 informs discipline-specific ways of  
    looking at the world 
 elevates computational sophistication  
 improves collaboration with computer  
    scientists 

Computational Thinking Computer Science 

 it is “not just programming” 
 accessible regardless of background 
 approaches 

 contextualized programming 
 problem-solving 
 great ideas/principles 
 survey of discipline 

Computational Thinking for Computer Science 

 conveys essential thought processes about computation  
  to computer science students 
  without requiring or using programming 
  in concrete, tangible forms  



Class outline 
Wks Topic Concepts/Tools 

.5   

M
odeling 

Definition of CS Guided discussion 

2 State,behavior Finite state machines, acceptors, grammars;  
Tools: JFLAP, ANTLR 

2 Abstraction 
Abstraction, generalization, composition using Venn/tree/UML 
diagrams, XML; Tools: XMLSpear, physical simulation 

1.5 Relationships 
Representing, inferring, visualizing relationships, ontologies; 
Tool: Protege 

1.5 

Engineering 

Concurrency Race conditions, synchronization, Petri nets;  
Tool: Snoopy, physical simulation 

1 Abstraction Layered systems/protocols; Tool: Snoopy 

2 Binding, scope Lambda calculus; Tool: Lambda Teacher 

1 Testing Developing test cases, coverage; Tools: applet, WebCAT 

1 Debugging Puzzle solving with backtracking; Tool: Sodoku system 

1 Data structures Mapping complex structures to memory;  
Tool: physical simulation 

 Slide 6 Kafura and Tatar, SIGCSE’11 



Example (1) 

 Concepts 
• Finite states --- transitions --- inputs/events 

 Assignment 
• Develop a finite state acceptor to recognize if a 

DNA sequence is a possible gene 

 Tool 
• JFLAP 

 Slide 7 Kafura and Tatar, SIGCSE’11 



Gene Acceptor in JFLAP 

 Slide 8 Kafura and Tatar, SIGCSE’11 



Example (2) 

 Concepts 
• Languages – structure – grammar 

 Assignment 
• Develop a BNF grammar for US Currency 

 Tool 
• ANTLR 

 Slide 9 Kafura and Tatar, SIGCSE’11 



Grammar in ANTLR 

 Slide 10 Kafura and Tatar, SIGCSE’11 



Example (3) 

 Concepts 
• Concurrency – synchronization– asynchrony 
• Petri nets 

 Assignment 
• Develop solutions for simple mutual exclusion 

and more complex traffic intersection 
 Tools 

• Physical simulation 
• Snoopy (Petri net simulator) 

Computational Thinking 11 



Mutex in Snoopy 

 

Computational Thinking 12 



Discussion 

 Finite state acceptor  
    junior level computational biology course 
 

 Grammars/languages 
       senior level compiler course 
 
 Concurrency 
   junior level systems course  

 
 Question: What is the relationship between acceptors 

and grammars?  
   senior level formal languages course 

 Slide 13 Kafura and Tatar, SIGCSE’11 



Evaluation 
 An end of term reflections/survey (N=17) 
 Key observations - The students reported that the 

course/topics… 
• deepened their knowledge and perspective on computer science.  
• offered a number of new (to them) concepts and/or improved their 

understanding of concepts they had already seen. 
• helped them develop a better vocabulary for explaining computer 

science issues. 
 Place in curriculum 

• The students expressed divided opinions on the ordering of this course 
with respect to an introductory programming course in computer 
science. 

• Room for adoption flexibility 

14 Kafura and Tatar, SIGCSE’11 



Conclusions 
 Concretely engage students in a wide variety of 

sophisticated computing concepts without the 
entanglements of programming 
 We need to show students that CS is more than 

programming 
 Tools are available  

 CS is about ideas 
 Students need the opportunity to struggle with deep(er) 

aspects of representation and process 
 Appealing to students for deeper reasons 

15 Kafura and Tatar, SIGCSE’11 

? is there a set of “right” topics 
? possibilities for continuation (at VT) and/or adoption 

(elsewhere) 
? <your question here> 



16 Kafura and Tatar, SIGCSE’11 

<end> Thanks! </end> 


	Computational Thinking
	Background
	Summary
	Overview
	Motivation
	Class outline
	Example (1)
	Gene Acceptor in JFLAP
	Example (2)
	Grammar in ANTLR
	Example (3)
	Mutex in Snoopy
	Discussion
	Evaluation
	Conclusions
	Slide Number 16

