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ABOUT ME 



 Illustrating the ways in which computer environments 

have transformed to the practice of mathematics or 

mathematics pedagogy. 

 A series of geometric constructions made in a Boxer 

programming environment reflecting on the resultant 

blended turtle geometric  and dynamic geometry  

environment. 

 Discusses the role and potential of programmable 

applications and programming representation of 

geometric concepts and other sub-domains of 

mathematics. 

OVERVIEW 



 Two strands: 

 Turtle Geometry 

 Dynamic Geometry 

 In principle, they are related but in practice, they have 

remained relatively separate worlds.  

INSTRUCTING GEOMETRY 



 Had its earliest and most familiar incarnations in the Logo 

programming language. 

 Continues to live on in Logo and its descendants.  

 In turtle geometry activity, students write their own programs, 

and the constructions they create are often comparatively 

simple. 

TURTLE GEOMETRY 



 Somewhat recent than Turtle Geometry.  

 Students create and interact with constructions primarily 

though a point-and-click interface.  

 These environments are specifically created for geometry. 

 So they are extremely powerful within this domain 

 Allows students to make complex constructions with relative 

ease. 

DYNAMIC GEOMETRY 



 To explore briefly the merging of these two strands.  

 To look at how, by merging programming and dynamic 

geometry, “new ways of representing” familiar mathematics 

can be created. 

 To illustrate how, through the merging of dynamic geometry 

and turtle geometry, we may be able to create constructions 

that would be dif ficult to construct while working solely with 

one of the component approaches.  

OBJECTIVE OF THIS RESEARCH WORK 



 Programming Environment: Boxer a direct descendent of 

“Logo”.  

 It is possible in Boxer to write turtle geometry procedures 

using Logo‟s familiar turtle graphics commands .  

 It also includes some modern amenities: a programming 

interface that is hierarchically structured as boxes within 

boxes (hence the name). 

TOOLS 



Primitive Function 

point Draws and labels a point at current turtle location. 

join (p1 p2) Draws a line connecting points p2 and p2. 

circle (p1 p2) Draws a circle centered at point p1 and through p2. 

ccint c1 c2 Finds the intersection points of circles c1 and c2. 

llint l1 l2 Finds the intersection of the two lines, l1 and l2. 

goto p1 Moves the turtle to point p1. 

aimto p1 Rotates the turtle so that is headed toward point p1. 

ml (p1 p2) Outputs the length of the segment with endpoints p1 and p2. 

COMMANDS 



EXAMPLE 1 

• Draws a point.  

• Then tells the turtle to turn right 45. and go forward 50 steps  

• Makes a second point. 



EXAMPLE 2 

• First draws two circles, one centered on point a and through point b, and 

the other centered on b and through a. 

• Then, in the third line of the program, the ccint command is used to find 

the intersection of the two circles.  

• Finally, the last line of the procedure draws a line that connects these two 

intersection points. 



EXAMPLE 3 (ADDED SOME 

INTERACTIVITY) 

Made two specific additions that are 

relevant here.  

• First, we created a command called ask-

for-point. When this command is 

executed, the user is prompted to click 

somewhere in the graphics display, and a 

new point is then created at the indicated 

location.  

• When this program runs, the user is 

prompted to select locations for the two 

initial points. The program then joins 

these two points, and then constructs the 

bisector, just as in previous versions of 

bisect-ab. 



EXAMPLE 3 (CONTD.) 

• Second, we also added the capability for some true dynamic interaction with 

the graphical display. When this feature is turned on, the user can drag point a 

or b in our above constructions.  

• The figure above shows a sequence where point b has been dragged down and 

to the right.  



EXAMPLE 4 (INTRODUCING VARIABLES) 

• This new procedure takes two inputs, 

• named p1 and p2, as specified at the 

top of the procedure.  

• The procedure begins by drawing the 

two circles, as before.  

• Then it finds the intersections of 

these two circles and stores them in 

the local variable named „int‟.  

• Finally, int is passed as an argument 

to join, and the bisector segment is 

drawn. 



EXAMPLE 5 (A COMPACT ONE) 

• In this procedure, each of the calls to circle produce outputs that serve as the 

inputs to ccint.  

• The output of ccint (the intersection points) then, in turn, serves as the input to 

join. 



EXAMPLE 6 (A MORE COMPLEX ONE) 

• This figure shows an example in 

which the compact-bisect program 

has been used for the construction of 

the centroid of a triangle.  

• This program constructs bisectors of 

two sides of the triangle. The 

resulting segments are then passed 

as inputs to the llint command, 

which finds the intersection of two 

given lines.  

• In this Figure, I have suppressed the 

circles in the construction for clarity. 



FINAL EXAMPLE (WITH TURTLE GEOMETRY 

PROCEDURE) 

This procedure draws a regular polygon given two inputs, the number of sides 

(number-sides) and the length of a side (slength). 



FINAL EXAMPLE (WITH DYNAMIC 

GEOMETRY SUB-ENVIRONMENT) 

• The revised procedure, which is shown in this Figure , takes the number of sides as 

one of its inputs, but the other two inputs are points that will be the endpoints of 

one side of the polygon.  

• Using these three inputs, the procedure can construct a regular polygon in which all 

of the vertices are labeled points. 

• It uses the goto and aimto commands to position and orient the turtle so that it is 

prepared to draw the remainder of the polygon, and the ml command outputs the 

length of the given line segment. 



 Here the author tried to establish that programming 
representations can be employed for geometric constructions.  

 Through the merging of the two approaches, some of the 
benefits of both turtle geometry and dynamic geometry can 
be achieved. Some of what is hard in dynamic geometry 
environments is comparatively straightforward in turtle 
geometry. Conversely, much of what is hard in turtle geometry 
is relatively easy with dynamic geometry -like tools. 

 If it is possible to get significant functionality by enriching 
programming environments, it may be possible to apply a 
dynamic geometry -like approach to more sub-domains within 
mathematics. Such environments might allow teachers and 
students to harness the power of computation across the 
range of mathematical sub-disciplines. 

CONCLUSION 



Thank You 


