
Presented by:

Mohammad Shabbir Hasan

shabbir5@vt.edu

REPRESENTING GEOMETRIC

CONSTRUCTIONS AS

PROGRAMS

Author: Bruce Sherin

School of Education and Social Pol icy,

Nor thwestern University

 Name: Mohammad Shabbir Hasan

 Ph.D. Student in the CS department.

 Working with Dr. Liqing Zhang in the Computational Biology

and Bioinformatics Lab.

 Working on predicting Insertions and Deletions (InDel) in Next

Generation Sequencing data (main concentration is on Human

Genome).

 Obtained Masters in CS from the University of Akron, Ohio on

Summer 2013.

 From Bangladesh.

ABOUT ME

 Illustrating the ways in which computer environments

have transformed to the practice of mathematics or

mathematics pedagogy.

 A series of geometric constructions made in a Boxer

programming environment reflecting on the resultant

blended turtle geometric and dynamic geometry

environment.

 Discusses the role and potential of programmable

applications and programming representation of

geometric concepts and other sub-domains of

mathematics.

OVERVIEW

 Two strands:

 Turtle Geometry

 Dynamic Geometry

 In principle, they are related but in practice, they have

remained relatively separate worlds.

INSTRUCTING GEOMETRY

 Had its earliest and most familiar incarnations in the Logo

programming language.

 Continues to live on in Logo and its descendants.

 In turtle geometry activity, students write their own programs,

and the constructions they create are often comparatively

simple.

TURTLE GEOMETRY

 Somewhat recent than Turtle Geometry.

 Students create and interact with constructions primarily

though a point-and-click interface.

 These environments are specifically created for geometry.

 So they are extremely powerful within this domain

 Allows students to make complex constructions with relative

ease.

DYNAMIC GEOMETRY

 To explore briefly the merging of these two strands.

 To look at how, by merging programming and dynamic

geometry, “new ways of representing” familiar mathematics

can be created.

 To illustrate how, through the merging of dynamic geometry

and turtle geometry, we may be able to create constructions

that would be dif ficult to construct while working solely with

one of the component approaches.

OBJECTIVE OF THIS RESEARCH WORK

 Programming Environment: Boxer a direct descendent of

“Logo”.

 It is possible in Boxer to write turtle geometry procedures

using Logo‟s familiar turtle graphics commands .

 It also includes some modern amenities: a programming

interface that is hierarchically structured as boxes within

boxes (hence the name).

TOOLS

Primitive Function

point Draws and labels a point at current turtle location.

join (p1 p2) Draws a line connecting points p2 and p2.

circle (p1 p2) Draws a circle centered at point p1 and through p2.

ccint c1 c2 Finds the intersection points of circles c1 and c2.

llint l1 l2 Finds the intersection of the two lines, l1 and l2.

goto p1 Moves the turtle to point p1.

aimto p1 Rotates the turtle so that is headed toward point p1.

ml (p1 p2) Outputs the length of the segment with endpoints p1 and p2.

COMMANDS

EXAMPLE 1

• Draws a point.

• Then tells the turtle to turn right 45. and go forward 50 steps

• Makes a second point.

EXAMPLE 2

• First draws two circles, one centered on point a and through point b, and

the other centered on b and through a.

• Then, in the third line of the program, the ccint command is used to find

the intersection of the two circles.

• Finally, the last line of the procedure draws a line that connects these two

intersection points.

EXAMPLE 3 (ADDED SOME

INTERACTIVITY)

Made two specific additions that are

relevant here.

• First, we created a command called ask-

for-point. When this command is

executed, the user is prompted to click

somewhere in the graphics display, and a

new point is then created at the indicated

location.

• When this program runs, the user is

prompted to select locations for the two

initial points. The program then joins

these two points, and then constructs the

bisector, just as in previous versions of

bisect-ab.

EXAMPLE 3 (CONTD.)

• Second, we also added the capability for some true dynamic interaction with

the graphical display. When this feature is turned on, the user can drag point a

or b in our above constructions.

• The figure above shows a sequence where point b has been dragged down and

to the right.

EXAMPLE 4 (INTRODUCING VARIABLES)

• This new procedure takes two inputs,

• named p1 and p2, as specified at the

top of the procedure.

• The procedure begins by drawing the

two circles, as before.

• Then it finds the intersections of

these two circles and stores them in

the local variable named „int‟.

• Finally, int is passed as an argument

to join, and the bisector segment is

drawn.

EXAMPLE 5 (A COMPACT ONE)

• In this procedure, each of the calls to circle produce outputs that serve as the

inputs to ccint.

• The output of ccint (the intersection points) then, in turn, serves as the input to

join.

EXAMPLE 6 (A MORE COMPLEX ONE)

• This figure shows an example in

which the compact-bisect program

has been used for the construction of

the centroid of a triangle.

• This program constructs bisectors of

two sides of the triangle. The

resulting segments are then passed

as inputs to the llint command,

which finds the intersection of two

given lines.

• In this Figure, I have suppressed the

circles in the construction for clarity.

FINAL EXAMPLE (WITH TURTLE GEOMETRY

PROCEDURE)

This procedure draws a regular polygon given two inputs, the number of sides

(number-sides) and the length of a side (slength).

FINAL EXAMPLE (WITH DYNAMIC

GEOMETRY SUB-ENVIRONMENT)

• The revised procedure, which is shown in this Figure , takes the number of sides as

one of its inputs, but the other two inputs are points that will be the endpoints of

one side of the polygon.

• Using these three inputs, the procedure can construct a regular polygon in which all

of the vertices are labeled points.

• It uses the goto and aimto commands to position and orient the turtle so that it is

prepared to draw the remainder of the polygon, and the ml command outputs the

length of the given line segment.

 Here the author tried to establish that programming
representations can be employed for geometric constructions.

 Through the merging of the two approaches, some of the
benefits of both turtle geometry and dynamic geometry can
be achieved. Some of what is hard in dynamic geometry
environments is comparatively straightforward in turtle
geometry. Conversely, much of what is hard in turtle geometry
is relatively easy with dynamic geometry -like tools.

 If it is possible to get significant functionality by enriching
programming environments, it may be possible to apply a
dynamic geometry -like approach to more sub-domains within
mathematics. Such environments might allow teachers and
students to harness the power of computation across the
range of mathematical sub-disciplines.

CONCLUSION

Thank You

