Virginia

Computational Thinking:
A Historical View from PL/SE

Dr. Barbara G. Ryder
September 26, 2013

Virginia

References

Prospects for an Eng/heer/'/ég Discipline of
ngogfg)‘ware, Mary Shaw, TEEE Software, Nov

*The Impact of Abstraction Concerns on
Modern ngmmm/'%q Languages, Mary Shaw,
TEEE TSE, Sept 1980

*Computer Science: Reflections on the Field,

Reflections From the Field, National Research
Council, 2004, pp11-23.

*The Impact of SE Research on Modern PLs, B.
Ryder, M.L. Soffa, M. Burnett, ACM TOSEM,
Oct 2005.(my added reference)

B.G. Ryder 9/26/2013

Virginia

Historical Context for PL & SE

SE and PL were same field until early 1970's
0 Shared NATO SW Confs 1968, 1969
o First POPL 1973, first ICSE 1975
0 Parnas, Dijkstra, Wirth - all considered experts in both fields

SW in 1970's going from programming in the small
to programming in the large in the late 1970's-early
1980's

Mary Shaw (CMU, SET) leader in software

architecture research
0 How to design maintainable, extensible programs
0 Believes SE principles affected PL design and vice-versa
— Our IMPACT paper sought to prove the influence
of SE research on PL design and vice-versa, using
academic validation

B.G. Ryder 9/26/2013

Presenter
Presentation Notes
Tracing interaction between SE and PL researchers – see our TOSEM 2007 paper on this topic, how the 2 disciplines interacted
Most of lecture is from the TSE and TOSEM papers – I didn’t find the IEEE SW paper very illuminating.

Virginia

Software Engineering

Hypothesis: many ideas in evolving PL
designs and discussions of SE Body Of
Knowledge are relevant for defining a CS
perspective on the essentials of
Computational Thinking (CT)

B.G. Ryder 9/26/2013

Presenter
Presentation Notes
Both focus on software

Abstraction

"An abstraction is a simplified description or
specification of a system that emphasizes
some of the system's details or properties

while suppressing others”

« Good abstractions emphasize information significant to
the user, while ignoring other details

« Called analytic modeling in other fields

« For SW, abstraction describes what is to be achieved, not
how to do this;

0 Emphasizes functional properties of system
« Abstraction of control, of procedures, of data

iroinia
mTech B.G. Ryder 9/26/2013

Abstraction as Model Building

= Questions to ask

0 What system characteristics are important?
0 What parameters are needed?

0 What formalism to use to build model?

0 How can model be validated?

= Can have hierarchical models

0 Model is system abstraction

0 Specification of a system is abstract description of
model

0 Next lower level is implementation

o Verification is validation that the specification is
consistent with implementation

ia
mTech B.G. Ryder 9/26/2013

Presenter
Presentation Notes
Abstraction thought of as building a model; what questions need to be asked during this task.

Virginia

Abstraction - History

= 1960s-1970s:

o Control abstraction

— 60TOs considered harmful (structured
programming - Dijkstra vs Knuth);

— Defined clean information flow in and out

of separable blocks of code

» single-entry, single-exit control structures
(e.g., while - break- continue, if-then-else)

o Procedural abstraction

— Separable, parameterizable pieces of code with a
particular function

B.G. Ryder 9/26/2013

Presenter
Presentation Notes
GOTOs led to spaghetti code.

Virginia

Abstraction - History (2)

= Late 1960s-1970s:

oUser-defined datatypes, PL semantics
(e.g., loop invariants)

0 Stepwise refinement of code (top-down
programming) - conceptualizing a program
in high-level operations and successively
refining them into sequences of PL
instructions with same functionality

0 Abstract datatypes - information hiding
(Parnas)

—Precursor to objects

B.G. Ryder 9/26/2013

Presenter
Presentation Notes
User defined data types – Structs in C and Records in Pascal; heterogeneous collections of related data – not like
Homogeneous collections of data in Fortran;

Nicholas Wirth on Successive refinement

O

O

Virginia

Abstraction - History (3)

Separation of concerns between abstract data
types with certain behaviors and their actual
implementation in code enabled problem
decomposition intfo smaller and smaller segments

Problem- Hard to make changes to SW - series of
abstraction decisions not documented (unknown invariants)

Problem- Lack of precision in descriptions of behavior

Emphasis on program understanding as SW became
more complex
— Program verification - reasoning about state

B.G. Ryder 9/26/2013

Abstraction in PLs

= PLs as primary notation for complex ideas in
problem solving
 PL design can influence algorithm development

* PLs used to communicate between people as well as
for writing programs

» PL design can make some algorithms more ‘natural’
than others
= 1980s: concerns
» Keep PL design simple
« Try to precisely analyze formal specifications

 Pay attention to long-lived programs
0 Maintenance is longest period in the SW lifecycle

Virginia

mTech B.G. Ryder 9/26/2013

10

Virginia

Abstract Data Types

= 1980s-1990s focus

o Notion of private operations vs public
operations on the data type - modules

0 Type checking provides degree of validation
of programs

0 Invariants of data types

0 Generic definitions (commonly used aggregate
type with its base type as parameter)

B.G. Ryder 9/26/2013 11

Virginia

m Tech

Ideas for CT

CT helps us deal with complex problems by
abstracting away non-essential details

Top-down programming offers a process for
roblem solvm% by successive refinement, i.e.,
reaking a problem into smaller and smaller pieces

Procedural abstraction subdivides problem into
‘thinkable' pieces

Control abstraction requires/facilitates solution
steps which are easy to understand

Abstract data fyfes allow problem solving design in
terms of relevant data and operations on'it

Generics allow 1gyen.er'al ization of a particular
solution into a family of solutions

Essence of CS (Refl on field...2004)

"CS is the study of computers and what the
can do - the inherent powers and limitations
of abstract computers, the designh and
characteristics of real computers, and the
innumerable applications of computers to
solving problems”

Virginia
mTech B.G. Ryder 9/26/2013

13

Virginia

What do Computer Scientists Do?
(From Refl on field..2004, p 12)

"Seek to understand how to reason about
processes and information”

"Amplify human intellect through the
automation of rote tasks and construction of
new capabilities”

"Create abstractions, symbolic
representations of information, HW/SW
artifacts that embody computing capabilities”

"Create, study, experiment with real-world
artifacts (HW, SW)"

Virginia

What is CS Research?
(From Refl on field..2004, p 15)

Involves

Creation and manipulation of symbols and
abstractions

Creates

Algorithms, Artificial constructs unlimied by
physical laws

Addresses

Fundamental limits on what can be computed and
exponential growth

Focus

On complex, analytic, rational action associated with
human intelligence

B.G. Ryder 9/26/2013 15

Y

Exploring further...

= Computers deal with discrete information

0 Bits - discrete info, real numbers - analogue info

= Use of symbolic representation

0 To permit analysis/processing

o Sunflowers
» For analysis, genetic code diffs with marigolds

» For graphical display, describe color, shape,
Interacting parts

» For describing varieties, English words

= Creation and manipulation of abstractions

B.G. Ryder 9/26/2013 16

Exploring further...
(From Refl on field..2004, p 119)

"Algorithms-precise ways to do a particular
task- that perform operations on objects”
0 Running time, optimization

Modeling the world “as it is”, and "as it could
bell

Dealing with scale - larger, faster, more
data

Idea of fundamental limits of computation
0 Undecidability
0 Solvable but not tractable (practically efficient)

Emulation of human intelligence

Concepts

= Abstraction

e Of control (for
understanding and
simplicity)

« Of procedures (for
efficiency/modularity)

« Of data types (for
organizing/accessing
info; for understanding
how data is
transformed)

= Symbolic
representation

Virginia

Key Ideas for CT

Processes

« Stepwise refinement or
top-down Programming
(problem decomposition into
simpler and simpler pieces
« Divide and conquer
(recursive problem
decomposition with
homogeneous solution
procedure)
« Generalization of
problem solution to
family of solutions

B.G. Ryder 9/26/2013

18

Virginia

Discussion

What can we take from this history of SE
and PLs to get insight as to how computer
scientists in these fields viewed problem
solving as a computer scientist?

Does this give us insight into CT?

B.G. Ryder 9/26/2013

19

	Computational Thinking: �A Historical View from PL/SE
	References
	Historical Context for PL & SE
	Software Engineering
	Abstraction
	Abstraction as Model Building
	Abstraction - History
	Abstraction – History (2)
	Abstraction – History (3)
	Abstraction in PLs
	Abstract Data Types
	Ideas for CT
	Essence of CS (Refl on field…2004)
	What do Computer Scientists Do?�(From Refl on field…2004, p 12)
	What is CS Research? �(From Refl on field…2004, p 15)
	Exploring further…
	Exploring further…�(From Refl on field…2004, p 119)
	Key Ideas for CT
	Discussion	

