
Computational Thinking:
A Historical View from PL/SE

Dr. Barbara G. Ryder
September 26, 2013

References
 Prospects for an Engineering Discipline of

Software, Mary Shaw, IEEE Software, Nov
1990

 *The Impact of Abstraction Concerns on
Modern Programming Languages, Mary Shaw,
IEEE TSE, Sept 1980

 *Computer Science: Reflections on the Field,
Reflections From the Field, National Research
Council, 2004, pp11-23.

 *The Impact of SE Research on Modern PLs, B.
Ryder, M.L. Soffa, M. Burnett, ACM TOSEM,
Oct 2005.(my added reference)

B.G. Ryder 9/26/2013 2

Historical Context for PL & SE
 SE and PL were same field until early 1970’s

o Shared NATO SW Confs 1968, 1969
o First POPL 1973, first ICSE 1975
o Parnas, Dijkstra, Wirth – all considered experts in both fields

 SW in 1970’s going from programming in the small
to programming in the large in the late 1970’s-early
1980’s

 Mary Shaw (CMU, SEI) leader in software
architecture research

o How to design maintainable, extensible programs
o Believes SE principles affected PL design and vice-versa

– Our IMPACT paper sought to prove the influence
of SE research on PL design and vice-versa, using
academic validation

 B.G. Ryder 9/26/2013 3

Presenter
Presentation Notes
Tracing interaction between SE and PL researchers – see our TOSEM 2007 paper on this topic, how the 2 disciplines interacted
Most of lecture is from the TSE and TOSEM papers – I didn’t find the IEEE SW paper very illuminating.

Software Engineering

 Hypothesis: many ideas in evolving PL
designs and discussions of SE Body Of
Knowledge are relevant for defining a CS
perspective on the essentials of
Computational Thinking (CT)

B.G. Ryder 9/26/2013 4

Presenter
Presentation Notes
Both focus on software

Abstraction

“An abstraction is a simplified description or
specification of a system that emphasizes
some of the system’s details or properties
while suppressing others”

• Good abstractions emphasize information significant to
the user, while ignoring other details

• Called analytic modeling in other fields
• For SW, abstraction describes what is to be achieved, not

how to do this;
o Emphasizes functional properties of system

• Abstraction of control, of procedures, of data

B.G. Ryder 9/26/2013 5

Abstraction as Model Building

 Questions to ask
o What system characteristics are important?
o What parameters are needed?
o What formalism to use to build model?
o How can model be validated?

 Can have hierarchical models
o Model is system abstraction
o Specification of a system is abstract description of

model
o Next lower level is implementation
o Verification is validation that the specification is

consistent with implementation

B.G. Ryder 9/26/2013 6

Presenter
Presentation Notes
Abstraction thought of as building a model; what questions need to be asked during this task.

Abstraction - History

 1960s-1970s:
oControl abstraction

– GOTOs considered harmful (structured
programming – Dijkstra vs Knuth);

– Defined clean information flow in and out
of separable blocks of code

» single-entry, single-exit control structures
(e.g., while – break- continue, if-then-else)

oProcedural abstraction
– Separable, parameterizable pieces of code with a

particular function

B.G. Ryder 9/26/2013 7

Presenter
Presentation Notes
GOTOs led to spaghetti code.

Abstraction – History (2)

 Late 1960s-1970s:
oUser-defined datatypes, PL semantics

(e.g., loop invariants)
oStepwise refinement of code (top-down

programming) – conceptualizing a program
in high-level operations and successively
refining them into sequences of PL
instructions with same functionality

oAbstract datatypes – information hiding
(Parnas)

– Precursor to objects

 B.G. Ryder 9/26/2013 8

Presenter
Presentation Notes
User defined data types – Structs in C and Records in Pascal; heterogeneous collections of related data – not like
Homogeneous collections of data in Fortran;

Nicholas Wirth on Successive refinement

Abstraction – History (3)

o Separation of concerns between abstract data
types with certain behaviors and their actual
implementation in code enabled problem
decomposition into smaller and smaller segments
 Problem- Hard to make changes to SW – series of
abstraction decisions not documented (unknown invariants)
 Problem- Lack of precision in descriptions of behavior

o Emphasis on program understanding as SW became
more complex
– Program verification – reasoning about state

B.G. Ryder 9/26/2013 9

Abstraction in PLs

 PLs as primary notation for complex ideas in
problem solving
• PL design can influence algorithm development
• PLs used to communicate between people as well as

for writing programs
• PL design can make some algorithms more ‘natural’

than others
 1980s: concerns

• Keep PL design simple
• Try to precisely analyze formal specifications
• Pay attention to long-lived programs

o Maintenance is longest period in the SW lifecycle

B.G. Ryder 9/26/2013 10

Abstract Data Types

 1980s-1990s focus
oNotion of private operations vs public

operations on the data type – modules
oType checking provides degree of validation

of programs
oInvariants of data types
oGeneric definitions (commonly used aggregate

type with its base type as parameter)

B.G. Ryder 9/26/2013 11

Ideas for CT

 CT helps us deal with complex problems by
abstracting away non-essential details

 Top-down programming offers a process for
problem solving by successive refinement, i.e.,
breaking a problem into smaller and smaller pieces

 Procedural abstraction subdivides problem into
‘thinkable’ pieces

 Control abstraction requires/facilitates solution
steps which are easy to understand

 Abstract data types allow problem solving design in
terms of relevant data and operations on it

 Generics allow generalization of a particular
solution into a family of solutions

 B.G. Ryder 9/26/2013 12

Essence of CS (Refl on field…2004)

“CS is the study of computers and what the
can do - the inherent powers and limitations
of abstract computers, the design and
characteristics of real computers, and the
innumerable applications of computers to
solving problems”

B.G. Ryder 9/26/2013 13

What do Computer Scientists Do?
(From Refl on field…2004, p 12)

 “Seek to understand how to reason about
processes and information”

 “Amplify human intellect through the
automation of rote tasks and construction of
new capabilities”

 “Create abstractions, symbolic
representations of information, HW/SW
artifacts that embody computing capabilities”

 “Create, study, experiment with real-world
artifacts (HW, SW)”

B.G. Ryder 9/26/2013 14

What is CS Research?
(From Refl on field…2004, p 15)

 Involves
• Creation and manipulation of symbols and

abstractions
 Creates

• Algorithms, Artificial constructs unlimied by
physical laws

 Addresses
• Fundamental limits on what can be computed and

exponential growth
 Focus

• On complex, analytic, rational action associated with
human intelligence

B.G. Ryder 9/26/2013 15

Exploring further…

 Computers deal with discrete information
o Bits – discrete info, real numbers – analogue info

 Use of symbolic representation
oTo permit analysis/processing
oSunflowers

» For analysis, genetic code diffs with marigolds
» For graphical display, describe color, shape,

interacting parts
» For describing varieties, English words

 Creation and manipulation of abstractions

B.G. Ryder 9/26/2013 16

Exploring further…
(From Refl on field…2004, p 119)

 “Algorithms-precise ways to do a particular
task- that perform operations on objects”

o Running time, optimization
 Modeling the world “as it is”, and “as it could

be”
 Dealing with scale – larger, faster, more

data
 Idea of fundamental limits of computation

o Undecidability
o Solvable but not tractable (practically efficient)

 Emulation of human intelligence
B.G. Ryder 9/26/2013 17

Key Ideas for CT

 Abstraction
• Of control (for

understanding and
simplicity)

• Of procedures (for
efficiency/modularity)

• Of data types (for
organizing/accessing
info; for understanding
how data is
transformed)

 Symbolic
representation

B.G. Ryder 9/26/2013 18

Concepts Processes

• Stepwise refinement or
 top-down Programming
(problem decomposition into
simpler and simpler pieces
• Divide and conquer
(recursive problem
decomposition with
homogeneous solution
procedure)
• Generalization of

problem solution to
family of solutions

Discussion

 What can we take from this history of SE
and PLs to get insight as to how computer
scientists in these fields viewed problem
solving as a computer scientist?

 Does this give us insight into CT?

B.G. Ryder 9/26/2013 19

	Computational Thinking: �A Historical View from PL/SE
	References
	Historical Context for PL & SE
	Software Engineering
	Abstraction
	Abstraction as Model Building
	Abstraction - History
	Abstraction – History (2)
	Abstraction – History (3)
	Abstraction in PLs
	Abstract Data Types
	Ideas for CT
	Essence of CS (Refl on field…2004)
	What do Computer Scientists Do?�(From Refl on field…2004, p 12)
	What is CS Research? �(From Refl on field…2004, p 15)
	Exploring further…
	Exploring further…�(From Refl on field…2004, p 119)
	Key Ideas for CT
	Discussion	

