
Computational Thinking:
A Historical View from PL/SE

Dr. Barbara G. Ryder
September 26, 2013

References
 Prospects for an Engineering Discipline of

Software, Mary Shaw, IEEE Software, Nov
1990

 *The Impact of Abstraction Concerns on
Modern Programming Languages, Mary Shaw,
IEEE TSE, Sept 1980

 *Computer Science: Reflections on the Field,
Reflections From the Field, National Research
Council, 2004, pp11-23.

 *The Impact of SE Research on Modern PLs, B.
Ryder, M.L. Soffa, M. Burnett, ACM TOSEM,
Oct 2005.(my added reference)

B.G. Ryder 9/26/2013 2

Historical Context for PL & SE
 SE and PL were same field until early 1970’s

o Shared NATO SW Confs 1968, 1969
o First POPL 1973, first ICSE 1975
o Parnas, Dijkstra, Wirth – all considered experts in both fields

 SW in 1970’s going from programming in the small
to programming in the large in the late 1970’s-early
1980’s

 Mary Shaw (CMU, SEI) leader in software
architecture research

o How to design maintainable, extensible programs
o Believes SE principles affected PL design and vice-versa

– Our IMPACT paper sought to prove the influence
of SE research on PL design and vice-versa, using
academic validation

 B.G. Ryder 9/26/2013 3

Presenter
Presentation Notes
Tracing interaction between SE and PL researchers – see our TOSEM 2007 paper on this topic, how the 2 disciplines interacted Most of lecture is from the TSE and TOSEM papers – I didn’t find the IEEE SW paper very illuminating.

Software Engineering

 Hypothesis: many ideas in evolving PL
designs and discussions of SE Body Of
Knowledge are relevant for defining a CS
perspective on the essentials of
Computational Thinking (CT)

B.G. Ryder 9/26/2013 4

Presenter
Presentation Notes
Both focus on software

Abstraction

“An abstraction is a simplified description or
specification of a system that emphasizes
some of the system’s details or properties
while suppressing others”

• Good abstractions emphasize information significant to
the user, while ignoring other details

• Called analytic modeling in other fields
• For SW, abstraction describes what is to be achieved, not

how to do this;
o Emphasizes functional properties of system

• Abstraction of control, of procedures, of data

B.G. Ryder 9/26/2013 5

Abstraction as Model Building

 Questions to ask
o What system characteristics are important?
o What parameters are needed?
o What formalism to use to build model?
o How can model be validated?

 Can have hierarchical models
o Model is system abstraction
o Specification of a system is abstract description of

model
o Next lower level is implementation
o Verification is validation that the specification is

consistent with implementation

B.G. Ryder 9/26/2013 6

Presenter
Presentation Notes
Abstraction thought of as building a model; what questions need to be asked during this task.

Abstraction - History

 1960s-1970s:
oControl abstraction

– GOTOs considered harmful (structured
programming – Dijkstra vs Knuth);

– Defined clean information flow in and out
of separable blocks of code

» single-entry, single-exit control structures
(e.g., while – break- continue, if-then-else)

oProcedural abstraction
– Separable, parameterizable pieces of code with a

particular function

B.G. Ryder 9/26/2013 7

Presenter
Presentation Notes
GOTOs led to spaghetti code.

Abstraction – History (2)

 Late 1960s-1970s:
oUser-defined datatypes, PL semantics

(e.g., loop invariants)
oStepwise refinement of code (top-down

programming) – conceptualizing a program
in high-level operations and successively
refining them into sequences of PL
instructions with same functionality

oAbstract datatypes – information hiding
(Parnas)

– Precursor to objects

 B.G. Ryder 9/26/2013 8

Presenter
Presentation Notes
User defined data types – Structs in C and Records in Pascal; heterogeneous collections of related data – not like Homogeneous collections of data in Fortran;Nicholas Wirth on Successive refinement

Abstraction – History (3)

o Separation of concerns between abstract data
types with certain behaviors and their actual
implementation in code enabled problem
decomposition into smaller and smaller segments
 Problem- Hard to make changes to SW – series of
abstraction decisions not documented (unknown invariants)
 Problem- Lack of precision in descriptions of behavior

o Emphasis on program understanding as SW became
more complex
– Program verification – reasoning about state

B.G. Ryder 9/26/2013 9

Abstraction in PLs

 PLs as primary notation for complex ideas in
problem solving
• PL design can influence algorithm development
• PLs used to communicate between people as well as

for writing programs
• PL design can make some algorithms more ‘natural’

than others
 1980s: concerns

• Keep PL design simple
• Try to precisely analyze formal specifications
• Pay attention to long-lived programs

o Maintenance is longest period in the SW lifecycle

B.G. Ryder 9/26/2013 10

Abstract Data Types

 1980s-1990s focus
oNotion of private operations vs public

operations on the data type – modules
oType checking provides degree of validation

of programs
oInvariants of data types
oGeneric definitions (commonly used aggregate

type with its base type as parameter)

B.G. Ryder 9/26/2013 11

Ideas for CT

 CT helps us deal with complex problems by
abstracting away non-essential details

 Top-down programming offers a process for
problem solving by successive refinement, i.e.,
breaking a problem into smaller and smaller pieces

 Procedural abstraction subdivides problem into
‘thinkable’ pieces

 Control abstraction requires/facilitates solution
steps which are easy to understand

 Abstract data types allow problem solving design in
terms of relevant data and operations on it

 Generics allow generalization of a particular
solution into a family of solutions

 B.G. Ryder 9/26/2013 12

Essence of CS (Refl on field…2004)

“CS is the study of computers and what the
can do - the inherent powers and limitations
of abstract computers, the design and
characteristics of real computers, and the
innumerable applications of computers to
solving problems”

B.G. Ryder 9/26/2013 13

What do Computer Scientists Do?
(From Refl on field…2004, p 12)

 “Seek to understand how to reason about
processes and information”

 “Amplify human intellect through the
automation of rote tasks and construction of
new capabilities”

 “Create abstractions, symbolic
representations of information, HW/SW
artifacts that embody computing capabilities”

 “Create, study, experiment with real-world
artifacts (HW, SW)”

B.G. Ryder 9/26/2013 14

What is CS Research?
(From Refl on field…2004, p 15)

 Involves
• Creation and manipulation of symbols and

abstractions
 Creates

• Algorithms, Artificial constructs unlimied by
physical laws

 Addresses
• Fundamental limits on what can be computed and

exponential growth
 Focus

• On complex, analytic, rational action associated with
human intelligence

B.G. Ryder 9/26/2013 15

Exploring further…

 Computers deal with discrete information
o Bits – discrete info, real numbers – analogue info

 Use of symbolic representation
oTo permit analysis/processing
oSunflowers

» For analysis, genetic code diffs with marigolds
» For graphical display, describe color, shape,

interacting parts
» For describing varieties, English words

 Creation and manipulation of abstractions

B.G. Ryder 9/26/2013 16

Exploring further…
(From Refl on field…2004, p 119)

 “Algorithms-precise ways to do a particular
task- that perform operations on objects”

o Running time, optimization
 Modeling the world “as it is”, and “as it could

be”
 Dealing with scale – larger, faster, more

data
 Idea of fundamental limits of computation

o Undecidability
o Solvable but not tractable (practically efficient)

 Emulation of human intelligence
B.G. Ryder 9/26/2013 17

Key Ideas for CT

 Abstraction
• Of control (for

understanding and
simplicity)

• Of procedures (for
efficiency/modularity)

• Of data types (for
organizing/accessing
info; for understanding
how data is
transformed)

 Symbolic
representation

B.G. Ryder 9/26/2013 18

Concepts Processes

• Stepwise refinement or
 top-down Programming
(problem decomposition into
simpler and simpler pieces
• Divide and conquer
(recursive problem
decomposition with
homogeneous solution
procedure)
• Generalization of

problem solution to
family of solutions

Discussion

 What can we take from this history of SE
and PLs to get insight as to how computer
scientists in these fields viewed problem
solving as a computer scientist?

 Does this give us insight into CT?

B.G. Ryder 9/26/2013 19

	Computational Thinking: �A Historical View from PL/SE
	References
	Historical Context for PL & SE
	Software Engineering
	Abstraction
	Abstraction as Model Building
	Abstraction - History
	Abstraction – History (2)
	Abstraction – History (3)
	Abstraction in PLs
	Abstract Data Types
	Ideas for CT
	Essence of CS (Refl on field…2004)
	What do Computer Scientists Do?�(From Refl on field…2004, p 12)
	What is CS Research? �(From Refl on field…2004, p 15)
	Exploring further…
	Exploring further…�(From Refl on field…2004, p 119)
	Key Ideas for CT
	Discussion	

