
Computational Thinking in K-12 
and Scalable Game Design

Michael Shuffett



Computational Thinking in K-12: A 
Review of the State of the Field

Shuchi Grover and Roy Pea

Computational Thinking 2



Summary

 What and Why of Computational Thinking

 Summary of Pertinent Research on CT in     
K-12

• Environments and Tools That Foster CT

• Assessment of CT

 Computing Education in K-12

 Broadening the Scope of the Discourse and 
Priorities for Empirical Inquiry

Computational Thinking 3



“computational thinking involves solving problems, 
designing systems, and understanding human behavior, 
by drawing on the concepts fundamental to computer 
science” – Wing (2006)

“Computational thinking is the thought process 
involved in formulating problems and their solutions so 
that the solutions are represented in a form that can be 
effectively carried out by an information-processing 
agent.” – Wing (2011)

“their solutions can be represented as computational 
steps and algorithms” – Aho (2012)

Computational Thinking 4



Seven Big Ideas

1. Computing is a creative human activity
2. Abstraction reduces information and detail to focus on 

concepts relevant to understanding and solving problems
3. Data and information facilitate the creation of knowledge
4. Algorithms are tools for developing and expressing solutions to 

computational problems
5. Programming is a creative process that produces computational 

artifacts
6. Digital devices, systems, and the networks that interconnect 

them enable and foster computational approaches to solving 
problems

7. Computing enables innovation in other fields, including 
science, social science, humanities, arts, medicine, engineering, 
and business.

Computational Thinking 5



Computational thinking 

vs. 

computational literacy

Computational Thinking 6



Widely Accepted as Comprising CT

 Abstractions and pattern generalizations (including 
models and simulations)

 Systematic processing of information

 Symbol systems and representations

 Algorithmic notions of flow of control

 Structured problem decomposition (modularizing)

 Iterative, recursive, and parallel thinking

 Conditional logic

 Efficiency and performance constraints

 Debugging and systematic error detection

Computational Thinking 7



Scalable Game Design and the 
Development of a Checklist for Getting 
Computation Thinking into Public Schools

Alexander Repenning, David Webb, Andri Ioannidou

Computational Thinking 8



Summary

 Introduction: The Scalable Game Design 
Initiative

 Computational Thinking Checklist

 Discussion

Computational Thinking 9



“motivational concerns need to be 
addressed at the middle school level”

Computational Thinking 10



Computational Thinking Tools

1. has low threshold: a student can produce a working game 
quickly.

2. has high ceiling: a student can make a real game that is 
playable and exhibits sophisticated behavior, e.g., complex AI.

3. scaffolds Flow: the curriculum provides stepping stones with 
managed skills and challenges to accompany the tool.

4. enables transfer: tool + curriculum must work for both game 
design and subsequent computational science applications as 
well as support transfer between them.

5. supports equity: game design activities should be accessible 
and motivational across gender and ethnicity boundaries.

6. systemic and sustainable: the combination of the tool and 
curriculum can be used by all teachers to teach all students 
(e.g. support teacher training, standards alignment etc).

Computational Thinking 11


