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Abstract
Despite enthusiastic predictions in the trade press, an X.509-style PKI has so far failed to eventuate to any significant
degree. This paper looks at some of the reasons behind this, examining why a pure X.509-style PKI may never appear
outside a few closed, highly-controlled environments such as government agencies. On the other hand there are many
instances in which situation- and application-specific uses of certificates can be employed in a manner that avoids the
shortcomings of X.509’s one-size-(mis)fits-all approach. The paper examines a number of these situation-specific
approaches to working with certificates, and concludes with a collection of useful design rules to consider before
embarking on a PKI project.

1. Introduction
After some false starts, X.509 has slowly evolved into its current incarnation as an extremely flexible PKI model,
especially when its capabilities are being described by X.509 proponents. However, like other flexible objects such as
rubber screwdrivers and styrofoam broadswords, it sacrifices a little bit of utility in trying to be all things to all people.
Its main problem is that generic, all-purpose identity certificates issued by third-party CAs are not, in general, what the
marketplace is demanding. Instead, the marketplace has developed, and continues to develop, more economically
efficient, useful, and imaginative business models.

Unfortunately the original problem that X.509 certificates were designed to solve, access control to an X.500 directory,
is nothing like the problem or problems that need to be solved today. This creates a severe impedance mismatch
between real-world business demands and the traditional X.509 model, as real-world usage must be shoe-horned into
the X.509 model in order to work with certificates. An additional complication is the fact that the X.509 model, tied to
X.500/LDAP directories, hierarchical structures (with cross- and bridge-certification as proposed band-aids), offline
revocation, and assorted other design decisions stemming from its X.500 origins, is unsuited for real-world use
[1][2][3][4], which would instead typically use or require the use of standard business tools and methods such as
relational databases, a non-hierarchical organisation, and online validity/authorisation checking.

The solution to this problem (or solutions, since there are many possibilities) is to adapt the PKI design to the real
world rather than trying to constrain the real world to match the PKI. The problem-solving literature distinguishes
these two approaches as “strong” and “weak” methods, where strong methods are ones designed to solve a specific type 
of problem while weak methods are general-purpose, one-size-misfits-all ones:“A strong method, like a specific size of 
wrench, is designed to fit and do an optimal job on one kind of problem; a weak method, like a monkey wrench, is
designed to adjust to a multiplicity of problems, but solve none of them optimally” [5]. A related concept is that of
cognitive fit, matching the tools and techniques that are used to the task to be accomplished [6][7].

The remainder of this paper discusses some of the problems inherent in the weak approach used by the standard X.509
PKI model, and proposes a variety of alternative approaches that range from simple workarounds through to designing
the application to sidestep the problem entirely. Although it is sometimes claimed that many of these issues are known,
this knowledge exists mostly as folklore among PKI theoreticians. No PKI standard, no RFC, no vendor whitepaper
ever mentions these issues. To those not steeped in PKI lore (and folklore), they are virtually unknown. This paper
exists to correct this situation.

2. Background
The pre-history ofPKI goes back to Diffie and Hellman’s seminal paper on public-key cryptography [8], which
proposed a key directory called a Public File that users could consult to find other users’ public keys.  The Public File 
protected all communications with users by signing them, and would today be called a trusted directory. Realising
some of the shortcomings of this approach, which include the potential performance bottleneck, the fact that it presents
a very tempting target for attackers, and the fact that disabling access to the directory also disables users’ ability to 
communicate securely, Kohnfelder in 1978 proposed the concept of certificates [9]. These separate the signing and
lookup functions by allowing a CA to bind a name to a key through a digital signature and then store the resulting
certificate in a repository. Since the repository no longer needs to be trusted and can be replicated, made fault-tolerant,
and given various other desirable properties, this removes many of the problems associated with a trusted directory.
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2.1 X.509
Some years after Kohnfelder’s thesis was published, the use of certificates was incorporated into X.500, a global 
directory of named entities administered by monopoly telcos. The X.500 directory proposed a hierarchical database
model (at a time when the rest of the world had abandoned this approach for the more powerful relational model), with
the path through the directory being defined by a series of relative distinguished name (RDN) components that together
form a distinguished name (DN). At the end of the path is an entry that contains one or more attributes containing the
actual data. In order to protect access to the directory, various access-control mechanisms were proposed, ranging from
simple password-based measures (with or without hashing to protect the password) to the then relatively novel
approach of using digital signatures for access control. In the case of signature-based access control, it was envisaged
that each portion of the directory would have CAs attached to it that would create certificates for access control
purposes. An example of this configuration is shown in Figure 1.

RDN
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National CA

O=University of Auckland
Organisational CA

OU=Computer Science
Departmental CA

CN=end user

RDN

DN

Figure 1: X.500 directory and certificate model

The original X.509v1 certificate structure very clearly shows these origins. There is an issuer DN and a subject DN (to
place the certificate in the directory), a validity period, and a public key. There is no indication of whether the
certificate belongs to a CA or an end entity (since this information is implicit from the directory), what the key in the
certificate can be used for (there was only one use, directory authentication), what policy the certificate was issued
under (again, there was only one policy, for authentication), or any of the other information without which no current
certificate can be complete. This information was explicitly excluded from certificates because the only intended use
was for directory access control [10]. Although no real directories of this type were ever seriously deployed, PKI
designers and users have had to live with the legacy of this approach ever since.

One of the main conceptual problems of this approach was that it turned simple public keys into capabilities, tickets
that control access rights and that an end entity can use to demonstrate their access to an object. Capabilities have the
problem that they make access review (deciding who has access to what, since a capability can be easily passed on to
others) and revocation extremely tricky [11]. A standard (if clunky) way to address this issue is to change the name of
the object referred to in the capability in order to render it invalid. If selective revocation is requires, this can be
performed by using multiple alias names for an object, one per capability.

X.500 tried to address the revocation problem through certificate revocation lists (CRLs), a digital analogue of 1970’s-
era credit-card blacklists, which in turn were modelled after even earlier cheque blacklists. The standard was rather
vague as to how this was supposed to work, and left all the details up to the CA and/or directory. Other options that
were provided included simply replacing the revoked certificate with the new one, notifying the certificate owner “by 
some off-line procedure”, and various other approaches [12]. The issue of revocation of capabilities/certificates is in
fact so thorny that an entire section of this paper has been devoted to it.



3

Cert CRL
Check

Signature

Check

Fetch Fetch

Figure 2: X.509 certificate usage model

The final form taken by the X.509 certificate usage model, in this case for general digital signature verification rather
than direct directory authentication, is shown in Figure 2. The relying party, wishing to verify a signature, fetches a
certificate from a repository, fetches the CRL from the same or another repository, checks the certificate against the
CRL, and finally checks the signature against the certificate. Originally the repository was intended to be the X.500
directory, in practice as applied today it’s anything from flat files, a relational database, Berkeley DB, and the Windows 
registry, through to a hardcoded local certificate or a certificate included with the data it authenticates. Occasionally, it
really is fetched from a directory.

2.2 Identity vs. Authorisation Certificates
In abstract terms, an X.509 certificate can be thought of as a signed n-tuple that asserts a predicate p(x1, x2, x3, … xn)
over the fields it contains. Unfortunately, there is no way to indicate exactly what that predicate is. Some examples of
required predicates might include has_read_access_to or can_withdraw_money_from, while the only real predicate that
an X.509 certificate can offer is the tautological is_an_X509_certificate [13].

SPKI certificates, in contrast, assert a user-defined predicate specified by the issuer of the certificate, so that the relying
party can make meaningful authorisation decisions based on the contents of the certificate [16][17]. These predicates
may be arbitrarily complex, going beyond the basic can_withdraw_money_from example given above to more
specialised forms such as can_withdraw_money_from_account_X_up_to_$Y_per_day, a predicate useful for handling
ATM withdrawals. In addition, SPKI contains the necessary mechanisms for automatically evaluating and processing
these authorisation decisions. The X.509 world, consisting purely of identity certificates, provides no equivalent for
this capability.

2.3 Problems with Identity Certificates
The abstract model given in section 2.1, while simple, hides a great many problems. The biggest of these is reflected in
the simple phrase “fetches a certificate from a repository”.  Since the concept of a global distributed directory (or even 
a less ambitious local directory) was never realised, there’s no clear idea where to fetch a certificate from, and if you 
have a certificate there’s no clear idea where to fetch its CRL from. This is a well-known PKI issue, and is termed the
“Which directory?” problem.  The solution that was adopted, and that works reasonably well in practice, was to include 
any certificates that might be needed wherever they might be needed. For example, an S/MIME signature usually
includes with it all the certificates needed to verify it, and an SSL server’s communication to the client usually includes 
with it the certificates needed to protect those communications. Obtaining a new certificate is handled either by out-of-
band means (for example mailing a user and asking for the certificate) or by a lazy update mechanism in which
applications keep copies of any certificates they may come across in case they’re useful in the future. This approach
nicely solves the certificate distribution problem, at the expense of moving the load across to an even harder problem,
the certificate revocation problem, which is covered in section 3.

Even if the user knows which directory to look in, there’s no way to determine which DN should be used to find a 
certificate, or which of a number of identical names you’re searching on belongs to the person whose key you’re 
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interested in. This is another standard PKI issue, the“Which John Smith?” problem.  As a result, the post-X.500 form
of X.509 which is in use today turns a key distribution problem into an equally intractable name distribution problem.
Although it’s possible to disambiguate names through ad hoc measures such as adding the last four digits of a user’s 
social security number to the DN (as was used in one project which found that there were people with the same first,
middle, and last name in the same OU), the result is a DN which is unique but useless for name lookups since no third
party will know how to construct it.  X.501’s name design criteria would have made things even more difficult by more 
or less disallowing name forms that were amenable to automated processing [14], but the issue was resolved in an
amicable manner by everyone ignoring the design criteria.

The naming problem has been solved in a similar manner both within the X.509 framework and outside it with other
certificate designs such as PGP and SPKI/SDSI. SDSI realised that globally unique names would never work except in
a few special cases, and that all that was needed was a name that was meaningful within a limited community [15]. For
example while the name “John Smith” is meaningless when the community is “USA”, it’s meaningful when the 
community is restricted to “People who are allowed to log on to this file server”.  SPKI then paired SDSI names with 
the concept of using the public key as an identifier to provide global uniqueness [16][17].

PGP solved the problem in a less rigorous, but equally effective, manner. Users were allowed to choose any kind of
identifier they wanted for certificates, which generally consisted of an email address and a user name to go with the
address. Since the email address was unique, and PGP was used mostly for email communications, this worked out
reasonably well. For identifying keys internally, PGP also used the public key.

Both PGP and SPKI in effect employ the same conceptual model, using a locally meaningful identifier within a specific
domain.  If PGP’s case the domain is implicitly set to “email addresses”, with SPKI it can be implied by the restricted 
community in which the certificate is used, for example to authenticate to a particular server. Other examples of such
schemes are credit card numbers, bank account numbers, and social security/tax identifiers that, although they may be
easily confused when presented without any disambiguating context, are meaningful in the particular domain of
application.

X.509, on the other hand, couldn’t adopt such a simple solution. Since X.509 was intended to be all things to all
people, taking a restricted application domain and creating an application-specific solution for it was out of the
question. On the other hand X.500 DNs fitted no real-world domain, and weren’t understood by the vast majority of
people using them. The result was that, except for a few carefully managed, centrally-controlled schemes, users
employed a de facto local naming scheme in which they crammed anything they felt like into the DN, so that it became
a (mostly) meaningless blob whose sole purpose was to uniquely identify a public key (the only generally meaningful
element might be, as with PGP, an email address or URL and a user name). As a somewhat extreme example of this,
the author recently encountered a collection of certificates that appeared to originate from Sweden because the
administrator who set up the system had copied a magic DN formula from something else that was (presumably)
located in Sweden. In the resulting certificates, only the common names and email addresses made any sense.

X.509v3 also added an alternative identifier, again based on the public key.

All three approaches, two by design and one by coincidence, therefore eventually found the same solution of using a
locally unique identifier such as an email address and user name within an (implicit or explicit) specific domain, and a
(probabilistically) globally unique blob derived from the public key. The identification issue was therefore mostly
resolved, leading to the next problem: Revocation.

3. Revocation
As has already been mentioned earlier, certificate revocation is something that doesn’t really work, particularly when 
attempts are made to implement it in the manner envisaged in X.509 [18]. The main reason for this is that the use of
CRLs violates the cardinal rule of data-driven programming which is that once you have emitted a datum you can’t 
take it back [19]. Viewing the certificate issue/revocation cycle as a proper transaction-processing (TP)-style
transaction, the certificate issue becomes a PREPARE and the revocation a COMMIT, however this means that nothing
can be done with the certificate in between the two because this would destroy the atomicity and consistency properties
of the transaction (TP mechanisms provide a useful analytical model for examining certificate management operations,
and will be the subject of a future paper [20]). Allowing for other operations with the certificate before the transaction
has been committed results in non-deterministic behaviour, with the semantics of the certificate being reduced to a
situation described as “This certificate is good until the expiration date, unless you hear otherwise” [21] which is of
little value to relying parties. It is for this reason that digital signature laws such as the UNCITRAL Model Law on
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Electronic Signatures [22] don’t even touch these revocation-related issues. This problem is complicated by the
existence of two schools of thought on how revocation information should be reported, the accuracy school, which
holds that the indicated revocation time should be the time reported by the user (even if it leads to backdated
revocations), and the consistency school, which holds that the indicated revocation time should be the time of CRL
issue (even if it leads to losses due to delays in marking a certificate as revoked). Neither of these options are
particularly palatable.

3.1 Problems with CRLs
CRLs have a number of problems that make them difficult to work with and unreliable as a certificate status
propagation mechanism (at a recent conference that covered PKI implementation experiences, speakers for large
organisations such as Boeing and J.P.Morgan specifically singled out revocation as a major problem area [23][24]).
The general problem that needs to besolved, and the one that CRLs don’t really solve, is that critical applications 
(which usually mean ones where a lot of money is involved, but can be extended arbitrarily to cover whatever the
relying parties consider important enough) require prompt revocation from a CRL-centric world view, or require real-
time certificate status information from a more general world view. Attempting to do this with CRLs runs into a
number of problems.

The CRL concept is based on the credit-card blacklists that were usedin the 1970’s in which credit card companies 
would periodically print booklets of cancelled card numbers and distribute them to merchants. The merchants were
expected to check any cards they handled against the blacklist before accepting them. The same problems that affected
credit-card blacklists then are affecting CRLs today: the blacklists aren’t issued frequently enough to be effective 
against an attacker who has compromised a card or private key, they cost a lot to distribute, checking is time-
consuming, and they are easily rendered ineffective through a denial-of-service attack (to ensure that your card is never
blocked through a blacklist, make sure the blacklist is never delivered).

When a CA issues a CRL, it bundles up a blacklist of revoked certificates along with an issue date and a second date
indicating when the next blacklist will become available.  A relying party that doesn’t have a current CRL is expected 
to fetch the current one and use that to check the validity of the certificate. In practice this rarely occurs because users
and/or applications don’t know where to go for a CRL (the “Which directory” problem covered in section 2.3), or it
takes so long to fetch and check that users disable it (in one widely-used application enabling CRL checking resulted in
every operation that used a certificate being stalled for a minute while the application groped around for a CRL, after
which it timed out and processing continued as before), or they simply can’t be botheredand put things off until they
can’t do anything any more (assuming they even know the significance of a revoked certificate and don’t just interpret 
the failure to perform as an error in the application) [25]. Other applications treat all certificates from a CA as invalid
once the current CRL has expired, possibly a move to force users to fetch new CRLs rather than just ignoring the whole
issue, although in this case the problem was solved when users discovered that if they simply deleted the CRL their
application would “work” again.  In addition, most CRL-using applications will continue to use the current CRL (no
matter how out of date it is) until its expiry date, turning the revocation check into an empty ritual in which the same
obsolete information (the default Microsoft CRL interval, for example, is a full week) is consulted again and again to
determine a certificate’s “current” validity [26].

Moving beyond the user interface problems (which will inevitably affect any certificate status mechanism, no matter
how sophisticated), there are a number of practical issues with CRLs.  In order to guarantee timely status updates, it’s 
necessary to issue CRLs as frequently as possible, however the more often a CRL is issued the higher the load on the
server that holds the CRL, on the network over which it is transmitted, and (to a lesser extent) on the client that fetches
it. Issuing a CRL once a minute provides moderately timely revocation (although still not timely enough for cases such
as Federal Reserve loans where interest is calculated by the minute) at the expense of a massive amount of overhead as
each relying party downloads a new CRL once a minute. This also provides a wonderful opportunity for a denial of
service attack on the CA in which an attacker can prevent the CRL from being delivered to others by repeatedly asking
for it themselves.  On the other hand delaying the issuance to once an hour or once a day doesn’t provide for any kind 
of timely revocation.

Another problem encountered with CRLs is that there are no real mechanisms available for charging relying parties for
revocation checking. When a CA issues a certificate the user is charged a fee by the CA, with the amount being
charged depending on how much checking the CA does before it issues the certificate. On the other hand CAs are
expected to create and issue CRLs for free. Neither the user nor the CA are in a good position to know how often the
certificate will have to be validated, or by whom, or what degree of latency will be acceptable. This is not merely a
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non-incentive for CAs to pay much attention to CRLs but an active disincentive, since creating and distributing them
requires processing time, one or more servers, and significant amounts of network bandwidth (CRLs can become quite
large, and many clients can fetch these large CRLs). For PKIs sized at tens of thousands of users, multi-megabyte
CRLs are not uncommon, and the potential size of CRLs for hypothesised national CAs/PKIs is unpleasant to
contemplate. For example the Johnson and Johnson PKI, with 60,000 users, had a CRL over a megabyte in size after
its first year of operation [27], requiring that users fetch several million times more data than necessary for any
certificate check (the entire CRL had to be fetched to obtain the effect of a boolean valid/not valid flag). The problem
was“solved”in this instance by only issuing a CRL once a week and caching old copies of the CRL to turn it into the
ritual check described earlier, both being relatively common approaches whenever this problem raises its head. The
problem can also be addressed by protocols such as OCSP (see section 3.3), which allow for status queries to be signed
by relying parties, thus allowing the CA to bill them for the query.

A more general form of the problem of who pays for revocation is the problem of who pays for general PKI operations.
For example in the SET PKI the issuing bank carries the cost (and associated risk) of handling certificate enrolment and
issue while the acquiring bank obtains all the benefits. While this could be mitigated to some extent by sharing the cost
across both banks, it was one of the many nails in SET’s coffin.  Another approach to the problem is to charge a per-
certificate-use transaction fee to cover the cost of running the PKI. In one project run by the US General Services
Administration, the cost ranged from 40¢ to $1.20 each time the certificate was used [1], a considerable disincentive for
the use of certificates. In Sweden, certificates issued to citizens are free, but a validity check costs€ 0.25, the price 
apparently inspired by the cost of a postage stamp [28]. This problem was foreseen as long ago as 1994 in a MITRE
study which estimated that most of the costs of running a PKI arose from the cost of managing revocation [29]. The
approach that is currently more generally used is to bury the per-transaction costs elsewhere, although how well this
will work when the PKI project leaves the pilot stage remains to be seen.

One approach that has been proposed to address this is to view the issue in terms of a quality-of-service (QoS) problem
in which users can pick and choose the PKI services and capabilities that they require based on the value and
constraints of their transactions [30]. With this approach, certificate users are allowed to tune their PKI requirements
based on parameters such as certificate freshness, time for validation, cost to validate, time to issue, and time to
revoke/invalidate, rather than having to use the normal take-it-or-leave-it approach in which a single solution (with the
QoS target being “whatever the X.509 standard says”) is expected to meet all needs.  This is one of the few proposals 
utilising the X.509 framework that approaches the problem as an exercise in meeting user requirements rather than of
forcing a fixed standard onto whatever the user wants to do.

3.2 Proposed Workarounds for CRL Shortcoming
A problem with CRLs with built-in lifetimes is that they all expire at the same time, so that every relying party will
fetch a new CRL at the same time, leading to huge peak loads whenever the current CRL expires. In effect CRLs
contain their own built-in distributed denial-of-service (DDOS) attack. One proposed solution to this problem is to
stagger CRL expiry times for different classes of certificates so that they don’t all expire at the same time, although 
scheduling the CRL times while still providing some form of timeliness guarantee is sure to prove a tricky exercise.
Another approach is to over-issue CRLs so that multiple overlapping CRLs exist at one time, with a relying party who
fetches a CRL at time n being fed a CRL that expires at time n + 5 and a relying party who fetches it at time n + 2 being
fed one that expires at time n + 7. Assuming that CRL fetching patterns follow a certain distribution, this has the
potential to lighten the peak loads on the server somewhat [31] at the expense of playing havoc with CRL semantics.

Yet another approach is to segment CRLs based on the perceived urgency of the revocation information, so that a CRL
with a reason code of “key compromise” would be issued more frequently than one with a reason code of “affiliation 
changed”.  This segmenting doesn’t reduce the request rate but can reduce the amount of data transferred so that it
takes less time to service an individual request. Segmenting CRLs has the side-effect that it introduces security
problems since an attacker who has performed a key compromise can use the compromised key to request that a
revocation for it be placed in a low-priority CRL, ensuring that the key is both regarded as safely revoked by the CA
but at the same time will still be valid until the next low-priority CRL is issued at the end of the day or week [32].
Solving this problem requires very careful protocol design and extensive amounts of checking and safeguards at every
step of the revocation process.

Yet another approach involves delta CRLs, which have one large long-term CRL augmented by a number of smaller,
short-term CRLs that modify the main CRL. There appears to be little real-world experience in the use of any of these
mechanisms, although discussions on PKI mailing lists indicate that attempts to implement them will prove to be an



7

interesting experience. Beyond this there exist even more approaches to the problem, tinkering with CRL mechanisms
is a popular pastime among PKI researchers.

One possible solution to this problem is used in SET, which takes advantage of the fact that certificates are tied to
credit cards to avoid the use of CRLs altogether. SET cardholder certificates (which are expected to be invalidated
relatively frequently) are revoked by revoking the card that they are tied to, merchant certificates (which would be
invalidated far lessfrequently) are revoked by removing them from the acquiring bank’s database, and acquirer 
payment gateway certificates (which would almost never be invalidated) are short-term certificates that can be quickly
replaced. This process takes advantages of existing mechanisms for invalidating certificates, or designs around the
problem so that revocation in the manner expected of other PKIs is never needed. A similar type of scheme that
designs around the problem is used in Account Authority Digital Signatures (AADS, ANSI X9.59), a simple extension
to existing account-based business infrastructures in which public keys are stored on a server that handles revocation by
removing the key. To determine whether a public key is valid, the relying party fetches it from the server [33][34][35].
The original (and most widely-used) ssh key management system works along similar lines, tying keys to Unix user
accounts [36][37].

SPKI takes a slightly different approach by implicitly making validation part of the certificate-processing operation.
SPKI prefers revalidation, representing a positive statement about a certificate’s validity, to CRLs, which represent a 
negative statement, since positive assertions are much more tractable than negative ones (consider, for example, the
relative difficulties of proving “Aliens exist” vs. “Aliens don’t exist”).  This transforms the X.509 assertion “This 
certificate is good until the expiration date, unless you hear otherwise” into “This certificate is good until this time”.  
The time interval in this case is far less than the traditional year granted to X.509 certificates (or 20 years for major CA
certificates [38]), but is instead based on a risk analysis of potential losses due to excessively long certificate validity
periods. In order to avoid clock skew problems (which is virtually guaranteed in Windows machines, which can be out
by minutes, hours, days, or even years in extreme cases [39]), SPKI also allows for one-time revalidations which
guarantee that the certificate is valid for a single transaction (other applications of this concept are covered in section
5.1).

A concept that has been proposed for avoiding revocation is to use extremely short-lived certificates [21][40]. This is
explicitly addressed in SPKI, and can be implemented in X.509 by fiddling with certificate validity periods. Apart
from requiring precisely synchronised clocks for all principals, it doesn’t quite avoid the revocation problem since 
there’s still a need for some form of revocation/prevention of revalidation if a private key is compromised [41].

Another approach that can be taken to avoid revocation is to try to address the problem in an application-specific
manner. Consider the case in which authority-to-individual communications such as for tax filing purposes need to be
secured. The obvious solution is to use S/MIME or PGP-secured email. A much simpler solution is to use an SSL web
server with appropriate access control measures.  “Revocation” is handled by disabling access for the user and is
therefore instantaneous (there’s no CRL propagation delay), consistently applied (you don’t have to worry whether the 
client software will check for revocation or not), and effectively administered (from the server containing the data, not
an external CA).  Other issues such as the “Which directory” and “Which John Smith” problem also disappear, since 
everyone knows who the tax department is and the tax department knows who its “users” are via the domain-specific
ID described in section 2.3.

SSL itself already provides an example of revocation being handled in an application-specific manner. Using the
X.509 CRL reason codes as usage cases, “key compromise” is unlikely to be useful unless the attacker helpfully
informs the server administrator that they’ve stolen their key, “affiliation changed” is handled by obtaining a new 
certificate for the changed server URL (this is in effect the capability-revocation approach described in section 2.1,
although it becomes somewhat impractical when the subject is a person), “superseded” is handled in the same way, and 
“cessation of operation” is handled by shutting down the server.  In none of these cases is revocation of much use. It is
for this reason that the whole SSL certificate management process has been referred to as “certificate manufacturing” 
rather than PKI [42], since the only real infrastructure component present is the one that, once a year, exchanges the
client’s credit card number for a collection of bits.

3.3 Online Revocation Authorities
A recent solution that has been proposed for the revocation checking problem is the Online Certificate Status Protocol
(OCSP) [43]. The OCSP model provides a responder that can be queried online and that relies on CRLs or other,
unspecified certificate management mechanisms to provide revocation information about a certificate. The model for
OCSP usage is shown in Figure 3. Compare this with the CRL-based model of Figure 2, in which obtaining up-to-date
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certificate status information could entail downloading a CRL with thousands of entries every few minutes, delta CRLs
and other kludges notwithstanding. This represents an extraordinarily inefficient means of disseminating revocation
information, since it’s necessary for a relying party to repeatedly fetch a huge number of totally irrelevant entries in 
order to obtain status information for the one certificate that they care about, at the same time placing a heavy load on
the CA that sources the CRLs [44]. In DNS terms, this operation is like doing a full zone transfer for each address
lookup operation.

Cert

OCSP
Responder

Signature

Fetch

Check

Validate

Figure 3: Certificate usage model with OCSP responder

In effect the OCSP responder functions as a special-purpose CRL creation mechanism, which solves many of the
problems inherent in monolithic CRLs by creating a one-off, fresh, single-entry CRL in response to a query. This
property also comes with a cost, however. Instead of being able to prepare a CRL as a background, offline operation,
the CA must now perform a certificate lookup/check and OCSP pseudo-CRL creation operation for each query
(although alternative, somewhat more lightweight approaches have also been proposed [45]). In order to make OCSP
economically feasible, it’s necessary for the CA to charge for each revocation check in order to cover their costs.  This 
is provided for in OCSP by signing requests to identify the sender for billing purposes, an approach used in the Identrus
PKI.

This leads to an immediate split in revocation checking mechanisms based not on abstract technical concepts but on
real-world, economic terms. It also illustrates a special case in which CRLs are, despite all of their shortcomings,
valuable. This occurs when a revocation check is, quite literally, worthless. For example consider signed executables
such as ActiveX controls. A vendor buys a (relatively) cheap code-signing certificate from a commercial CA and signs
all the software they like, which is distributed over as many machines as they can get it to. With an installed base of
some hundreds of millions of Windows machines, all containing hundreds of ActiveX controls, the costs involved in
providing any sort of useful online revocation checking service for code-signing certificates would be astronomical.
Low-assurance email certificates are another example where serious revocation handling isn’t financially feasible.

As a result, there is a strong financial incentive for CAs to do as little as possible in terms of handling revocations for
these certificates beyond paying lip service in the form of an infrequently-issued CRL located at some semi-
documented location. In scenarios such as this, CRLs are perfect. Another special-case potential use for CRLs is as a
form of zone transfer from one repository to another when a large number of certificates need to be revoked at once, for
example due to a company division closing down. A final special-case situation in which CRLs are useful is when
there exists some statutory or contractual obligation to use them, so that a relying party needs to be able to claim CRL
use for due diligence purposes or to avoid liability in case of a dispute.

3.4 Problems with OCSP
Although OCSP has many advantages over CRLs, its major shortcoming is that instead of providing a simple yes/no
response to a validity query, it instead uses multiple, non-orthogonal certificate status values because it can’t providea
truly definitive answer.  The possible responses to a query are “not-revoked” (confusingly labelled “good” in the OCSP 
specification), “revoked”, and “unknown”, where “not revoked” doesn’t necessarily mean “OK” and “unknown” could 
mean anything from “this certificate was never issued” to “it was issued but I couldn’t find a CRL for it”.  This leads to 
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the peculiar situation of a mechanism labelled an online certificate status protocol that, if asked “Is this a valid 
certificate” and fed a freshly-issuedcertificated can’t say yes, and if fed an Excel spreadsheet or an MPEG of a cat, 
can’t say no.  Contrast this with another online status protocol in use for the last decade or so, credit card authorisation, 
for which the returned status information is a straightforward “Authorised” or “Declined” (with an optional side order 
of reasons as to why it was declined).

This vagueness is at least partially the fault of the original CRL-based certificate status mechanism since a CRL can
only provide a negative result, so that the fact that a certificate is not present in a CRL doesn’t mean that it was ever 
issued or is still valid.  For some OCSP implementations the “I couldn’t find a CRL” response may be reported as “not 
revoked/good”, or will be interpreted as “good” by relying parties since it’s not the same as “revoked” which is 
assumed to be “not good” (opinions on the exact semantics of the various responses vary somewhat among 
implementers).

The fundamental problem with blacklist-based approaches such as CRLs and OCSP is that they ask entirely the wrong
question— “Has this been revoked?” — when in fact what’s required is an answer to the question “Is this currently 
valid?”.  This problem is not something that can be easily fixed, because that’s the only question that a blacklist is
capable of answering. SPKI, in contrast, gets it right with its use of a certificate revalidation process.

A related problem (which affects CRLs more than OCSP itself) is that, as with their 1970s credit-card-blacklist cousins,
they represent an inherently offline operation in an almost completely online world. Credit card vendors realised this
when they went to full online verification of each transaction in the 1980s. As with online credit-card checks, a
response to a query abouta certificate only needs to return a simple boolean value, “The certificate is valid right now” 
or “The certificate is not valid right now” (along with reasons for why it’s not valid, there may be other, more complex 
additional requirements that are covered elsewhere [46]). Unfortunately, OCSP is incapable of doing this.

In an attempt to break free of this restriction, proposed protocols such as the Simple Certificate Validation Protocol
(SCVP) [47] have appeared that make use of a server that either acts as a dumb repository or as a full certificate chain
validation system in which the relying party submits a collection of certificates and optional ancillary information such
as policy information, and the server indicates whether the chain can be verified up to a trusted root. This service
seems to be aimed mostly at thin clients who can’t perform any path validation themselves, although there is some 
debate among proponents as to its merits relative to approaches like OCSP. A more stealthy approach is taken in the
Data Validation and Certification Server Protocols (DVCS) [48], which provide as part of the protocol a facility more
or less identical to SCVP but that has escaped controversy by presenting itself as a third-party data validation
mechanism rather than a certificate status protocol.

Alongside the warring OCSP and SCVP camps and DVCS stealth approach, a number of other certificate status
protocols have appeared and disappeared over time, including the Integrated CA Services Protocol (ICAP) [49], the
Real-Time Certificate Status Protocol (RCSP) [50], the Web-based Certificate Access Protocol (WebCAP) [51], Peter’s 
Active Revocation Protocol (PARP) [52], the Open CRL Distribution Process (OpenCDP) [53], the Directory
Supported Certificate Status Options (DCS) [54], and many, many others (the protocol debate has been likened to
religious sects arguing over differences in dogma [55]). Since the author believes in freedom of religion, this paper
doesn’t contain any comments on particular protocols, except to notethat there are enough to choose from to suit
anyone’s tastes.

4. Certificate Chains
Once we go beyond single certificates, things become even trickier than what was presented above. The initial problem
we encounter with multiple certificates is that of constructing a path from a leaf certificate to a trusted top-level CA
and validation of certificate chains once the path has been built. This can become almost intractable in the presence of
cross-certification in which CAs in disjoint hierarchies cross-certify each other, since there can be multiple certificate
paths leading from a given leaf certificate, all with different semantics. Certificate paths can now contain loops, and in
extreme cases the semantics of a certificate can change across different iterations of the loop [56] (whether certificate
paths are Turing-complete is an open problem). Cross-certification turns the hierarchy of trust into the spaghetti of
doubt, with multiple certificate paths possible from leaf to roots, as shown in Figure 4. Unfortunately the use of cross-
certificates is currently being advocated as a means of tying together disparate PKI projects. An alternative, bridge
CAs (also known as overseer CAs when they were initially developed for the Automotive Network Exchange (ANX)
program), avoids this problem to some degree by adding a single super-root that bridges two or more root CAs.
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In addition to this explicit cross-certification, most current PKI software employs a form of implicit cross-certification
in which all root CAs are equally trusted, which is equivalent to unbounded cross-certification among all CAs. This
means that, for example, any certificate can be trivially replaced by a masquerader’s certificate from another CA, since 
both CAs are equally trusted [57]. Correcting this problem is extremely difficult: Netscape 6 contains just under a
hundred built-in root CAs requiring around 600 mouse clicks to disable, and MSIE 6 contains over a hundred built-in
certificates that require around 700 mouse clicks to disable. Many of these CAs are completely unknown, follow
dubious practices such as using 512-bit root keys or keys with 40-year lifetimes, appear moribund, or have had their
CA keys on-sold to various third parties when the original owners went out of business [58]. With the implicit
universal cross-certification that exists in this environment, the security of any certificate is reduced to that of the least
trustworthy CA, who can issue a bogus certificate to usurp the legitimate one, at the same level of trust.

Figure 4: Certificate hierarchy (left) with cross-certification (right)

Going beyond the basic issue of path construction, the revocation checking problem also experiences a huge increase in
complexity, jumping from a single lookup and check to being proportional to the square of the depth of the issuance
hierarchy [59]. This is illustrated in Figure 5, which depicts a hierarchy of depth 3. In order to verify a certificate, the
relying party needs to fetch the certificate for its issuing CA and its CRL. In order to verify the CRL it needs the
certificate of the revocation authority (RA), which in turn has its own certificates and CRLs. Checking a simple
certificate via the mechanisms envisaged in X.509 thus results in an exponential growth in complexity, with many
certificate/CRL fetches and signature checks being necessary to verify a single certificate (in practice the growth isn’t 
fully exponential, since the number of authorities drops as we get closer to the root). In the original X.509 design with
a single hierarchy and everything tied to a directory this wasn’t a problem, but with current approaches it requires 
alternative solutions such as revocation and validation authorities of the kind discussed further on.

Cert

CA CertCRL

CA CertRA CertCRL CRL

Figure 5: CRL-based revocation checking for a chain of length 3

The solution to this problem, again provided by OCSP, is to use an access concentrator or gateway that takes an entire
chain and farms the revocation checking out to one or more OCSP responders and/or CRL-based implementations. The
relying party communicates with a single gateway that does all the work of revocation checking, as shown in Figure 6.
This is the approach used by Identrus, who use gateways called transaction coordinators (TCs) to provide real-time
certificate status information (along with many other things) to its members. Although the diagram depicts an OCSP
gateway talking to a number of OCSP responders, the actual implementation could take any of a number of forms, for
example in the Identrus case the TC could in turn talk to further TCs that front for responders. Since the relying party
sees only the OCSP gateway, they’re not concerned about how the actual checking is done.  Another advantage of the 
gateway approach, at least in the Identrus case, is that it makes billing easier. Since Identrus charge for each
transaction, which comes with certain guarantees that are absent with general commercial CAs, users want to submit an
entire collection of certificates at once, and be charged once, rather than being charged individually for each certificate.
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Figure 6: Offloading the revocation checking process

Working with certificate chains also leads to an extreme case of the “Which directory” problem, in which it’s not just 
necessary to locate a single directory but requires locating multiple directories (and locations in directories) for the
different CA/RA certificates and CRLs. Some attempts have been made to work around this by encoding location
URLs in certificates, but this information is usually not present and when it is present is frequently wrong [60]. The
problem is made even worse in the presence of cross-certificates, since it’s now necessary to locate all certificates on 
all possible paths.  This problem is, in general, intractable since it’s not possible to determine whether further paths
exist based on certificates in as-yet undiscovered repositories.

A proposed solution to this problem has been the use of path construction servers (PCS), a type of smart repository that
offloads the chain building process from the end user [61][62]. While effective in theory, it simply offloads all of the
problems to the PCS server, while adding the problem of communicating certificate selection criteria (acceptable
policies, CAs, certificate types, path lengths, and so on) from the client to the server.  This situation doesn’t occur when 
the chain building is performed at the client, and requires a means of specifying complex constraints for use when
building the chain (this is currently an unsolved problem). The main benefit of a PCS server is fast response time,
since it can function like a web crawler and cache as much information as possible for use with future queries.

Extending this even further is the concept of a path validation server (PVS), which offloads the validation process as
well as the path construction process [61]. This extends the problems of PCS a step further, since even more constraint
information must be communicated to the server. Both of these approaches, which effectively implement PKI-crawler
analogues to standard web-crawlers, also suffer from the usual “Which directory” problem.  Finally, even more so than 
OCSP, the charges incurred by this type of operation are likely to be substantial.

5. Closing the Circle
Gordon Bell once observedthat the most reliable components of a system are those that aren’t there.  Based on this 
principle, if we could remove the need to perform revocation checking (at least in the X.509 sense), we could solve a
significant portion of the PKI problem.

One way to address this is through the use of a PKI community (also known as a community of interest or COI), a
restricted group of participants that agrees to play by certain rules.  In this way it’s possible to quantify risk reliably 
enough to make meaningful warranties to relying parties, either by requiring that all participants follow certain rules or
by executive fiat/government decree. In contrast in an open environment in which a certificate represents general-
purpose ID, the issuing CA is exposed to virtually unlimited liability unless they specifically disavow liability for their
certificates, as many public CAs indeed do. Disavowing responsibility for identity in identity certificates seems
somewhat ironic.

Since whoever accepts the risk can dictate the technology which is used, the PKI models used in these closed
communities can differ radically from the traditional X.509 design. Communities are likely to be small (relative to the
size of the entire Internet) and tied together by a common interest or policy requirements. The automated clearing
house (ACH) network is an example of such a community which is tied together by both a very stringent set of
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operating requirements and the operating rules of the ACH system. Other communities are systems such as Swift and
Bolero, in which the members sign up to the rules of the community and are then obliged contractually to stand behind
signatures made with their private keys. Further communities are built implicitly when a group of users work towards a
common goal, for example the European 3-Domain SET initiative came about when several European banks and credit
card vendors realised that the complexity and high cost of a distributed PKI was best addressed by creating a centrally-
controlled and administered system [63]. Various other COI mechanisms are also being studied [64]. These
communities manage risk by only admitting members who can afford to carry it, and by extension who have the means
to manage it.

One final (unwritten) benefit of operating within a closed community is that, by signing up to a fixed, hardcoded set of
rules that everyone agrees to play by, it’s possible to avoid the ongoing feature creep inherent in PKI technology in 
which an endless flow of standards drafts and proposals results in a constant scramble by implementers and users to
catch up. At some point the feature set can be frozen, everyone agrees to work within the given framework, and the
PKI can be realised.

5.1 Bypassing Revocation Checking
Within a community, the problem of revocation can be addressed by collapsing the certificate-fetch-and-validation
process even further than provided for through OCSP.  Observe that what we’re doing with both CRLs and OCSP is 
first fetching a certificate, and then immediately fetching revocation (or validity) information for the same certificate.
Instead of first performing a query for a certificate and then immediately performing a second query to determine
whether the certificate we just fetched was any good or not, we can combine the two into a single fetch of a known-
good certificate from a server (or servers) known by the community. This process is shown in Figure 7. Although this
now requires a trusted server, this is no different to OCSP, which also requires a trusted server to eventually perform
the same function, but in a more roundabout manner. Note that this differs from the PCS concept in that it relies on a
server operating within the rules of a community to provide “good” certificates to relying parties, while a PCS server
attempts to construct a known-good path through an arbitrarily-complex PKI-crawling process.

Cert Server

Cert

Signature

Fetch

Check

Figure 7: Avoiding revocation checking

This goes back to the original 1970s concept of public-key distribution in which keys were to be held in public
directories or key distribution centres (KDCs) that handed out only known-good keys in response to queries [65]. A
similar concept has been hypothesised for use in a general-purpose (rather than closed-community) PKI in the form of a
trusted X.500 directory that stores known-good certificates for reference by relying parties (assuming they can figure
out whether they’re supposed to be looking for a certificate or userCertificate or cACertificate or crossCertificatePair or
whatever other tag the directory might store certificates under). This approach, which relies on the existence of a
reliable, scalable distributed X.500-style directory system appears to exist only in theory (at least one attempt at
creating this type of trusted directory has been made in Germany, but the result is reportedly neither scalable nor
reliable).

The process of turning two queries into one can be optimised even further. If bandwidth is a concern then instead of
always fetching a certificate we can submit a hash of the certificate.  If it’s still valid the server returns a simple 
acknowledgement, if not it returns the replacement certificate or an indication that nothing is available. This concept is
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similar to that of undeniable attestations [66], with the main difference being that the undeniable attestation scheme
uses cryptographic mechanisms such as authenticated search trees whereas the approach given here relies on the use of
established mechanisms such as security policies and auditing agreed upon by the members of the community and/or
that have been determined sufficient to carry evidentiary weight in court. For example the US has a rule of evidence
called the Business Records exception that allows records “kept in the course of a regularly conducted business
activity” to be treated as evidence rather than mere hearsay like other computer-generated data [67],that comes with a
large amount of legal precedent attached to it.  It’s probably preferable to rely on this typeof mechanism than to
become the test case for PKI.

5.2 Bypassing Certificates
In practice we can go even further than simply collapsing two queries into one.  Since all we’re really interested in is 
the public key, we can request only a copy of the appropriate key needed to perform an operation such as verifying a
signature. This returns us to the original Public File approach of Diffie and Hellman. In fact this exact technique is
already in use today by almost all certificate-using applications, which submit a request for a public key to some form
of certificate store (for example a disk file, database, or the Windows registry) and obtain in response a key that, as far
as the system knows (or cares) is associated with the given entity. Making the key lookup a remote (rather than local)
query simply removes the administrative burden to a centralised location, allowing key management to be performed
from a central location rather than being done in an ad hoc manner (or not at all) by end users. However, the
advantages of centralised control and administration need to be balanced against drawbacks such as the fact that the
authority that manages the operation can build fairly complete profiles of user activities based on certificate verification
operations. Privacy issues, which are occasionally a concern but never appear to be a consideration in PKI design
except for token measures by a few European CAs that allow the use of registered pseudonyms, are covered elsewhere
[68].

There is one final step that can be taken which collapses the query-then-validate process into a single step.  If we’re 
going to trust a server to provide us with a known-good key, we may as well ask it to perform the validation for us as
well, as shown in Figure 8. In this case we submit a signature to the server, and it indicates whether the signature is
valid or not. This is analogous to the online credit-card-processing model mentioned previously, where if it’s necessary 
to perform an online revocation/validity check anyway then the relying party may as well perform the entire transaction
online.

Validation
Server

Signature

Check

Figure 8: Avoiding certificates altogether

This is similar to another very early certificate model proposed by Davies and Price in the late 1970s in which a CA (or
more specifically its predecessors at the time, arbitrators and key registries) provided a dispute resolution mechanism to
relying parties by issuing an interactive certificate attesting to the validity of a key in the context of a particular
transaction [69].  SPKI’s one-time revalidations are another example of this idea. There are already trends back
towards this type of model for use with banking and similar settlement-oriented transactions.

A related concept is embodied in the Security Assertion Markup Language (SAML), which provides an XML-based
mechanism for describing authorisation mechanisms and authentication events [70][71], or Internet2’s Shibboleth 
[72][73], however these still rely on an (unspecified) external PKI in order to function (although Shibboleth also
provides for the use of Kerberos and similar mechanisms). SPKI finally completes the circle by combining the
authorisation specification system with a built-in, special-purpose PKI which is designed to both avoid the problems of
the traditional X.509 PKI and provide a direct authorisation management system rather than stopping short at
identification and leaving the mapping from identity to authorisation as an exercise for the user.
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6. PKI Design Recommendations
The various PKI issues covered in the preceding sections can now be condensed into a set of recommendations for
working with certificates.

6.1 Identity
Choose a combination of locally meaningful (within a particular domain) and globally unique identity information such
as a user name, email address, account or employee number, or similar value and a value derived from the public key
(section 2.3). Attempts to do anything meaningful with DNs are more or less doomed to failure.  “Locally meaningful” 
doesn’t necessarily mean meaningful to humans, for example if you have an authorisation mechanism keyed off an 
account number then this is the logical choice for use as a local identifier.  On the other hand if you’re able to work
with objects that are pure tickets, there’s no need to bother with identity at all.

6.2 Revocation
If at all possible, design your PKI so that certificate revocation is never directly required. Revocation is an extremely
difficult problem, and avoiding the issue entirely is the easiest way to handle it. SET, AADS, ssh, and SSL are
examples of this approach (section 3.2).

If it isn’t possible to avoid revocation entirely by designing around it, consider the use of a PKI mechanism that allows
certificate freshness guarantees, avoiding the need for explicit certificate revocation. A repository that returns only
known-good certificates is an example of this approach (section 5.1).

If it isn’t possible to avoid explicit revocation, use an online status query mechanism. The best form of mechanism is a
direct indication of whether a certificate is valid or not (section 3.4), a slightly less useful one is one that provides a
CRL-style response. OCSP is an example of this approach (section 3.3).

For cases where revocation information is of little or no value, use CRLs. Revocation of code-signing and low-
assurance email certificates are examples of this approach (section 3.3).

6.3 Application-Specific PKIs
Certificates and PKI types that have been specifically designed to address a particular problem are much easier to work
with than a one-size-(mis)fits-all PKI design. For example SPKI certificates bind a public key to an authorisation to
perform a particular action (as opposed to X.509, which binds a key to an often meaningless identity that must then be
mapped, via some unspecified means, to an authorisation). SPKI is therefore ideal for situations where the goal is to
authorise or give permission for a particular action, or grant a capability. X.509 has an equivalent in the form of
attribute certificates, but deployment of these is essentially nonexistent and there is no real-world experience in using
them, although an earlier attempt at something similar using modified X.509 certificates indicates that they will be
extremely problematic [74].  SET is another example of an authorisation certificate, although it’s disguised as an X.509
identity certificate.

Similarly, PGP has been designed to handle the problem of secure email communication, and employs a laissez-faire
key management model that imposes few restrictions on users. PGP has its own PKI, the web of trust, although it’s 
uncertain how effective this is in the real world [75]. The main PKI-related problem solved by PGP is that of key
distribution, for which PGP employs a collection of cooperating, web-based key servers (although other interfaces are
available), and direct distribution of keys via email or personal contact.

In many situations no PKI of any kind is necessary, PKI vendor claims to the contrary. This is particularly true when
two (or more) parties have some form of established relationship. For example a simple technique for authenticating
public keys used for voice encryption is to have one side read out a hash of the public key to the other side over the
encrypted link (with optional embellishments such as “Read it backwards in a John Cleese accent”) [76]. A MITM
attack on this technique would require breaking into the call in real-time and imitating the voice of the caller.
Similarly, ssh generally avoids any dependence on a PKI by having the user manually copy the required public key(s)
to wherethey’re needed, an approach which is feasible for ssh’s application domain.  AADS takes advantage of 
existing business relationships to tie public keys to accounts.

In some cases even PKI-less public-key encryption may not be necessary. Section 5.2 mentions bypassing certificates
to perform a direct online signature check, however if it’s not faster or easier to ask Citibank to confirm that a particular 
certificate is still valid than it is to ask Citibank to directly authorize a transaction, then it makes sense to perform the
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transaction directly. This has the added benefit that it can be processed using existing transaction-handling
mechanisms, a model that has shown itself to be fairly successful to date.

Finally, if you’re required to use X.509 because of external constraints, remember that there’s nothing that requires you 
to use it as anything more than a (somewhat complex) bit-bagging scheme. If you have a means of distributing and
managing certificates that isn’t covered in a formal standard but that fulfils its intended function, go ahead and use it
(and publish a paper telling everyone else how you did it, we need more successful PKI implementation experience
reports). This gives you the benefits of broad X.509 toolkit and crypto token support from vendors while allowing you
to choose a PKI model that works.
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