
1

David W Chadwick is a Professor of
Information Systems Security at the

University of Salford. He has
published widely on the topics of
X.500, public key infrastructures
(PKIs) and X.509, and has been

running an Entrust PKI for research
purposes for five years. He is the
Bristish Standards Institution (BSI)

representative at X.509
standardisation meetings, and was

the international editor of X.518 in
1993. He is currently the author of
four Internet drafts concerning the

use of PKIs and Lightweight
Directory Access Protocol (LDAP).
He has participated in many EC
and UK security related research

projects including: ICE-TEL,
TrustHealth 2, ICE-CAR, GUIDeS,
Intelligent Computation of Trust,

and the Distributed Diabetic
Dietician. Professor Chadwick’s
current projects include: the

Privilege and Role Management
Infrastructure Standards Validation

(PERMIS) Project, the PKI Challenge,
certificate retrieval from OpenLDAP

and electronic prescriptions
processing.

a report by

Da v i d W C h a dw i c k

Professor of Information Systems Security, Information Systems Institute, University of Salford

I n t r o d u c t i o n t o X . 5 0 9 (2 0 0 1)

Edition four of X.5091 – published by the International
Telecommunication Union Telecommunication
sector (ITU-T) in 2001 – is the first edition to
standardise fully the certificates of a privilege
management infrastructure (PMI). Earlier versions of
X.509 have concentrated on standardising the
certificates of a public key infrastructure (PKI).2

A PMI is to authorisation what a PKI is to
authentication. Consequently, there are many
similar concepts in PKIs and PMIs. These are
summarised in Table 1. While public key certificates
are used to maintain a strong binding between a
user’s name and his or her public key, an attribute
certificate (AC) maintains a strong binding between
a user’s name and one or more privilege attributes.

In this respect, a public key certificate can be seen to be
a specialisation of a more general AC. The entity
that signs a public key certificate digitally is called a
Certification Authority (CA) and the entity that signs
an AC is called an Attribute Authority (AA). The root
of trust of a PKI is sometimes called the root CA,3

while the root of trust of the PMI is called the source
of authority (SOA). CAs may have subordinate CAs
that they trust and to which they delegate the powers
of authentication and certification. Similarly, SOAs
may delegate their powers of authorisation to
subordinate AAs. If a user needs to have his or her
signing key revoked, a CA will issue a certificate
revocation list. Similarly, if a user needs to have
authorisation permissions revoked, an AA will issue an
attribute certificate revocation list (ACRL).

Imp l emen t i n g A u t h o r i s a t i o n
S c h eme s w i t h X . 5 0 9

Various authorisation schemes have been devised
in the past. The most popular and well-known

model is the discretionary access control (DAC)
scheme. In the DAC scheme, users are given access
rights to resources.

Typically, in traditional systems, the access rights
are held as access control lists (ACLs) within each
target resource. In an X.509 PMI, the access rights
are held within the privilege attributes of ACs that
are issued to users. Each privilege attribute within
an AC will describe one or more of the user’s access
rights. A target resource will then read a user’s AC
to see if he or she is allowed to perform the action
that is being requested.

Another authorisation scheme, which is popular with
the military, is the mandatory access control (MAC)
scheme. In the MAC scheme, every target is given
a security label that includes a classification, and
every subject is given a clearance that includes a
classification list. The classification list specifies which
type of classified target the subject is allowed to
access. A typical hierarchical classification scheme
that is used by the military is unmarked, unclassified,
restricted, confidential, secret and top secret.

A typical security policy that is designed to stop
information leakage is ‘read-down and write-up’,
which specifies that a subject can read targets with a
lower classification than his or her clearance and can
write to targets with a higher classification. Under
this policy, a user with clearance of confidential
information who logs in as such could read from
unmarked or confidential targets and write to
confidential or top-secret targets. The same user
could also log in with a lower clearance level and
write to an unclassified target. X.509 supports MACs
by allowing subjects to be given a clearance AC. The
privilege attribute in the AC now holds the user’s
clearance. Targets can be configured securely with
their own security label and the security policy that
is to direct them.

An X .509 Ro le -based Pr iv i l ege Management In f ras t ruc ture

Reference LibraryReference Library

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

1. ITU-T Rec. X.509 (2001), ISO/IEC 9594-8, The Directory: Authentication Framework.
2. C Adams and S Lloyd (1999), Understanding Public-Key Infrastructure: Concepts, Standards, and Deployment

Considerations, Macmillan Technical Publishing.
3. Unfortunately, X.509 did not standardise the term root CA and so disparate meanings for the term have evolved. Fortunately,

this same mistake has not been made with PMIs.

An X .509 Ro le -based Pr iv i l ege Management In f ras t ruc ture

A more recent authorisation scheme is that of role-
based access controls (RBACs). In the simple
RBAC model, a number of roles are defined.
Typically, they represent organisational roles such as
secretary, manager, employee, etc. In the
authorisation policy, each role is given a set of
permissions, i.e. the ability to perform certain
actions on certain targets. Each user is then assigned
to one or more roles.

When accessing a target, a user presents his or her
role and the target reads the policy to see if this role
is allowed to perform this action. X.509 supports
simple RBAC by defining role-specification ACs
that hold the permissions granted to each role, and
role-assignment ACs that assign various roles to the
users. In the former case, the AC holder is the role,
and the privilege attributes are permissions that are
granted to the role. In the latter case, the AC holder
is the user, and the privilege attributes are the roles
that are assigned to the user.

The hierarchical RBAC model is a more sophisticated
version of the simple RBAC model. With this
model, the roles are organised hierarchically and the
senior roles inherit the privileges of the more junior
roles. Therefore, for example, there might be the
following hierarchy:

employee > programmer > manager > director.

If a privilege is given to an employee role, for
example, that the person can enter main buildings,
each of the superior roles can also enter the main
building, even though their role specification does
not state this explicitly. If a programmer is given
permission to enter the computer building, managers
and directors would also inherit this permission.

Hierarchical roles mean that role specifications are
more compact. X.509 supports hierarchical RBAC
by allowing both roles and privileges to be inserted
as attributes in a role-specification AC so that
the latter role inherits the privileges of the
encapsulated roles.

P r i v i l e g e a n d R o l e M an a g emen t
I n f r a s t r u c t u r e S t a n d a r d s V a l i d a t i o n
(P ERM I S) P r o j e c t

The European Commission (EC)-funded Privilege
and Role Management Infrastructure Standards
Validation (PERMIS) Project has been given the
challenge of building an X.509 role-based PMI that
can be used by different applications in three cities of
Europe. The project has members from Barcelona
(Spain), Bologna (Italy) and Salford (UK). All three
centres already have experience of running pilot
PKIs and it was therefore natural for them to want to
add a PMI capability in order to complete the strong
authentication and authorisation chain. The chosen
applications of the three cities are significantly different
in character, so it will be a good test of the generality
of the developed PMI if it can cater for each of them.

In the case of Bologna, the city wants to be able to
allow architects to download road-maps of the city, to
update the maps with their proposed plans and to
upload the new building plans and requests for
building licences to the city planning office’s server.
This should improve the efficiency of the current
system significantly as, currently, the plans and requests
are sent by post as paper documents to the city hall.

Barcelona is a major tourist and commercial centre
and has many car hire locations throughout the city
and at the airport. However, parking in Barcelona is
restricted considerably and many parking tickets are
issued frequently to hired cars. By the time that the
car hire companies receive the parking tickets, the
hirers have left the country.

The plan is to provide the car hire companies with
online access to the city’s parking ticket database so
that when cars are returned at the end of their hire
period, the company can check instantly to see if any
parking tickets have been issued for the car. The
company will be able to send the details of the driver
to the city, thereby transferring the fine to the
individual. Data protection legislation requires that a
car hire company can only access the tickets that are 2

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

Table 1: A Comparison of PKIs with PMIs

Concept PKI Entity PMI Entity

Certificate Public Key Certificate Attribute Certificate

Certificate issuer Certification Authority Attribute Authority

Certificate user Subject Holder

Certificate binding Subject’s name to public key Holder’s name to privilege

attribute(s)

Revocation Certificate revocation list (CRL) Attribute certificate revocation list

(ACRL)

Root of trust Root certification authority or Source of authority

trust anchor

Subordinate authority Subordinate certification authority Attribute authority

issued to its own cars and not to those of other car
hire companies and so authorisation needs to be
controlled strictly.

Finally, Salford intends to implement an electronic
tendering application. This will start when the city
places the request for proposal (RFP) documents on
its website, allowing them to be downloaded by
anyone. However, in some restricted tendering
instances, only companies that have been authorised
by Salford previously will be able to submit tenders.

In other cases, it may be a requirement that a
company has International Organization for
Standardization (ISO) 9000 or other certification in
order to submit a tender. Once the tenders have been
submitted, they must remain anonymous until the
winner has been chosen. The city tender officers
must not be given access to the electronic tender
store before the closing date of the RFP, and
tenderers must not be allowed to submit tenders after
the closing date of the RFP.

The challenge for the PERMIS Project is to build a
role-based X.509 privilege management infrastructure
that can cater for these different applications and, in so
doing, indicate that it will be useful to a much wider
range of applications.

T h e P ERM I S P r i v i l e g e M an a g emen t
I n f r a s t r u c t u r e (PM I) Imp l emen t a t i o n

There are three main components to the PMI
implementation – the authorisation policy, the
privilege allocator (PA) and the PMI application
programming interface (API).

A u t h o r i s a t i o n P o l i c y

The authorisation policy specifies who has what type
of access to which targets and under what conditions.
Domain-based policy authorisation is far preferable
than having separate ACLs configured into each
target. The latter is hard to manage, duplicates the
effort of the administrators – since the task has to be
repeated for each target – and is less secure – since it
is difficult to keep track of which access rights any
particular user has across the whole domain.

Policy-based authorisation, on the other hand,
allows the domain administrator – the SOA – to
specify the authorisation policy for the whole
domain, and all targets will then be controlled by
the same set of rules.

The PERMIS Project decided early on to use
the hierarchical RBAC model for specifying
authorisations. RBAC has the advantage of scalability
over DAC and can handle large numbers of users
easily as, typically, there are far fewer roles than users.

The PERMIS Project wanted to specify the
authorisation policy in a language that could be both
parsed easily by computers and read by the SOAs with
or without software tools. Various pre-existing policy
languages – for example, Ponder – were examined, but
none were found that were ideally suited. It was
decided that XML was a good candidate for a policy
specification language, since there are many tools avail-
able that support XML. It is fast becoming an industry
standard and raw XML can be read and understood by
the majority of technical people, as opposed to
ASN.1,5 for example, which uses a binary encoding.

First, a document type definition (DTD) was
specified for the X.500 PMI RBAC policy. The
DTD is a metalanguage that holds the rules for
creating the XML policies. The DTD comprises the
following components.

• SubjectPolicy – specifies the subject domains,
i.e. only users from a subject domain may be
authorised to access resources that are covered
by the policy.

• RoleHierarchyPolicy – specifies the different
roles and their hierarchical relationships to
each other.

• SOAPolicy – specifies which SOAs are trusted to
allocate roles.

• RoleAssignmentPolicy – specifies which roles may
be allocated to which subjects and by which SOAs,
whether delegation of roles may take place or not,
and for how long the roles may be assigned.

• TargetPolicy – specifies the target domains that
are covered by this policy.

• ActionPolicy – specifies the actions or methods
that are supported by the targets, along with the
parameters that should be passed along with each
action, for example, action ‘open’ with parameter
‘filename’.

• TargetAccessPolicy – specifies which roles have
permission to perform which actions and on which
targets and under what conditions. Conditions are

3

Reference LibraryReference Library

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

4. N Damianou, N Dulay, E Lupu and M Sloman, “The Ponder Policy Specification Language”, Proceedings of Policy
2001, Workshop on Policies for Distributed Systems and Networks, Bristol, UK, 29–31 January 2001, Springer-
Verlag LNCS, 1995, pp. 18–39.

5. Abstract Syntax Notation One (ASN.1) is the syntax in which X.509 certificates are specified.

An X .509 Ro le -based Pr iv i l ege Management In f ras t ruc ture

specified using Boolean logic and may contain
certain constraints. All of the actions that are not
specified in a target access policy are denied.

Table 2 shows a portion of the DTD that specifies the
rules for the role assignment policy, and below it is
an example for the Salford application.

The SOA creates the authorisation policy for the
domain using his or her preferred XML editing tool
and stores this in a local file to be used later by the PA.

P r i v i l e g e A l l o c a t o r

The PA is a tool that is used by the SOA or an AA
to allocate privileges to users. Since PERMIS is using
RBAC, the SOA uses the PA to allocate roles to
users in the form of role-assignment ACs. These will
be given to all users of the various applications in the
different cities.

In the case of Bologna, there are two roles – map
readers and architects. Map readers can download any
maps that are produced by the municipality, whereas
architects are allowed to download and upload maps
that are modified digitally. In the case
of Barcelona, there are also two roles defined –
generalised and authorised. Any citizen or business can
be allocated the generalised role. Anyone with the
generalised role has permission to read their own
pending car parking fines. Businesses that have signed
an agreement with the city council are given the
authorised role. Authorised roles can read their own
pending fines and also may modify the details of them,
for example, update the driver’s name and address.

Salford is different to the other sites in that, while it
will allocate two roles – that of tenderer and tender
officer – it will also rely on an external SOA – in this
case, the British Standards Institution (BSI) – to
allocate the role of ISO 9000 certified to users. In the
project, the plan is to set up a proxy BSI SOA to
allocate these roles as BSI is not a project partner.

Once the role-assignment ACs have been created by
the PA, they are stored in a Lightweight Directory
Access Protocol (LDAP) directory. Since ACs are
signed digitally by the AA who issued them, they
are tamper-resistant and, therefore, there is no
modification risk from allowing them to be stored in
an LDAP directory that is accessible publicly. This
also means that authorities who issue digital ACs can
store them locally but give global access to them.
This may be particularly useful in the case of ISO
9000 certificates, for example.

Anyone wishing to know if an organisation has ISO
9000 certification will access the BSI LDAP directory
and retrieve the organisation’s X.509 AC. The
ACRLs of revoked certificates, if any, will also be
stored here. Therefore, in general, there is little
advantage to distributing the ACs to their holders,
since a relying party will still need to access the
issuing authority’s LDAP directory to retrieve the
latest ACRL.

Another function of the PA is to create an
authorisation policy that is signed digitally as a
policy AC. The policy AC is a standard X.509 AC
with the following special characteristics – the
holder and issuer name are the same, i.e. that of the
SOA, the attribute type is pmiXMLPolicy and the
attribute value is the XML policy created as
mentioned previously. The PA prompts the SOA
for the name of the policy file and then it copies
the contents into the attribute value. After the
SOA has signed the policy AC, the PA stores it in
the SOA’s entry in the LDAP directory.

T h e P M I A p p l i c a t i o n P r o g r a m m i n g

I n t e r f a c e (A P I)

A standard authorisation API has already been
defined by the Open Group. It is called the AZN
API6 and is specified in the C language. It is based
on the ISO 10181-3 access control framework7 and
specifies the interface between the access control
enforcement function (AEF) and the access control
decision function (ADF) (see Figure 1).

4

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

Figure 1: The PERMIS API Architecture

6. The Open Group, Authorization (AZN) API, January 2000, ISBN 1-85912-266-3.
7. ITU-T Rec X.812 (1995), ISO/IEC 10181-3:1996, Security Frameworks for Open Systems: Access

Control Framework.

PERMIS has drawn on this work and made the
following changes to it. First, it has specified the
PERMIS API in Java™ rather than in C and, second,
it has simplified the AZN API significantly by
assuming that the target and the AEF are either co-
located or can communicate with each other across a
trusted local area network (LAN). It has also been
assumed that only a single authorisation service will
be available and that the API does not need to
support the export of authorisation tokens as ACs are
already in an exportable format.

Figure 1 shows the PERMIS API architecture. A user
accesses resources via an application gateway. The
AEF authenticates the user and then asks the ADF
if the user is allowed to perform the required action
on the particular target resource. The ADF accesses
one or more LDAP directories to retrieve the
authorisation policy and the role ACs for the user,
and bases its decision on these.

The PERMIS API comprises four simple calls –
‘initialise’, ‘get creds’, ‘decision’ and ‘shutdown’. The
functionality of the calls is as follows. Initialise is
called to tell the ADF to read in the policy AC. The
AEF passes the name of the trusted SOA and a list
of LDAP Uniform Resource Identifiers (URIs)
from where the ADF can retrieve the policy AC
and, subsequently, role ACs. Initialise is called
immediately when the AEF starts up. After initialise
has completed successfully, the ADF will have read
in the XML policy that will control all of the future
decisions that it makes.

When a user initiates a call to the target, the AEF
authenticates the user and then passes the LDAP
distinguished name (DN) of the user to the ADF
through a call to get creds.

In the three cities, the user will be authenticating in
different ways. In Salford, the user will be sending a
Secure/Multipurpose Internet Mail Extension
(S/MIME) e-mail message to the AEF. In Barcelona
and Bologna, the user will be opening a secure
socket layer (SSL) connection. In both cases, the
user will be signing the opening message digitally
and verification of the signature will yield the user’s
DN. The ADF uses this DN to retrieve all of the
role ACs of the user from the list of LDAP URIs
that are passed at initialisation time. The role ACs
are validated against the policy, for example, to
check that the DN is within a valid subject domain
and to check that the ACs are within the validity
time of the policy, etc. Invalid role ACs are
discarded, while the roles from the valid ACs are
extracted and kept for the user.

Once the user has been authenticated successfully, he
or she will attempt to perform certain actions on the
target. At each attempt, the AEF passes the target
name and the attempted action, along with its
parameters to the ADF via a call to decision.
Decision checks whether the action is allowed for
the roles that the user has, taking into account all of
the conditions that are specified in the target access
policy. If the action is allowed, decision returns
‘true’; if it is not allowed, it returns ‘false’. The user
may attempt an arbitrary number of actions on
different targets and a decision is called for each one.

In order to restrict the user from keeping the
connection open for an infinite amount of time, for
example, until after his or her ACs have expired, the
PERMIS API supports the concept of a session time
out. On the call to ‘get creds’, the AEF can specify
how long the session may stay open before the
credentials should be refreshed. If the session times
out, ‘decision’ will throw an exception, telling the
AEF to either close the user’s connection or call ‘get
creds’ again.

Shutdown can be called by the AEF at any time. Its
purpose is to terminate the ADF and cause the
current policy to be discarded. This could happen
when the application is shut down gracefully or
if the SOA wants to impose a new authorisation
policy on the domain dynamically. The AEF can
follow the call to shutdown with a call to initialise
and this will cause the ADF to read in the latest
authorisation policy and be ready to make access
control decisions again.

P r o g r e s s t o D a t e

Version two of the PERMIS X.500 PMI RBAC
policy DTD has been published and version one of
the PA tool has been released to the PERMIS Project
participants. Version 0.2 of the PERMIS PMI API
has also been released to the PERMIS Project
participants, and public releases will be made available
after the signing of an appropriate licence agreement.

The generality of the PERMIS API has already
proven its worth. The author is the leader of
another research project at Salford that is designing an
electronic prescription processing system and has
found that the PERMIS API can be incorporated
easily into the electronic dispensing application. With
a suitable policy, the ADF is able to make decisions
about whether a doctor or a pharmacist is allowed to
issue a prescription and whether a patient is entitled
to free prescriptions. It is expected that many more
applications will use the API in due course. ■

5

Reference LibraryReference Library

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

An X .509 Ro le -based Pr iv i l ege Management In f ras t ruc ture

6

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

<!ELEMENT RoleAssignmentPolicy (RoleAssignment)+ >
<!ELEMENT RoleAssignment (SubjectDomain,Role,Delegate,SOA,Validity) >

<!ELEMENT SubjectDomain EMPTY>
<!ATTLIST SubjectDomain ID IDREF #REQUIRED>

<!ELEMENT Role EMPTY >
<!ATTLIST Role Type IDREF #IMPLIED

Value IDREF #IMPLIED >

<!ELEMENT SOA EMPTY>
<!ATTLIST SOA ID IDREF #REQUIRED>

<!ELEMENT Validity (Absolute?, Maximum?, Minimum?) >
<!ELEMENT Absolute EMPTY>
<!ATTLIST Absolute Start CDATA #IMPLIED

End CDATA #IMPLIED >
<!ELEMENT Maximum EMPTY>
<!ATTLIST Maximum Time CDATA #IMPLIED >
<!ELEMENT Minimum EMPTY>
<!ATTLIST Minimum Time CDATA #IMPLIED >

<!ELEMENT Delegate EMPTY >
<!ATTLIST Delegate Depth CDATA #IMPLIED >

<RoleAssignmentPolicy>
<RoleAssignment>

<!-- Role assignment for tender officers.
They must be employees of Salford City Council. Valid only from close of tender.
Delegation not permitted -->

<SubjectDomain ID=“Employees”/>
<Role Type=“permisRole” Value=”TenderOfficer”/>
<Delegate Depth=“0”/>
<SOA ID=“Salford”/>
<Validity>
<Absolute Start=“2001-09-21T17:00:00”/>

</Validity>
</RoleAssignment>
<RoleAssignment>

<!-- Role assignment for tenderers.
They must be dotcom or co.uk companies. Valid only until close of tender.
Delegation not permitted -->

<SubjectDomain ID=“Companies”/>
<Role Type=“permisRole” Value=”Tenderer”/>
<Delegate Depth=“0”/>
<SOA ID=“Salford”/>
<Validity>
<Absolute End=“2001-09-21T17:00:00”/>

</Validity>
</RoleAssignment>
<RoleAssignment>

<!-- Role assignment for companies who are ISO 9000 Certified.
They must be dotcom or co.uk companies. Valid only for a maximum of one year as companies have
to be re-accredited annually. Certificates are issued by BSI.

Table 2: The Role Assignment Policy DTD and an Example of Salford’s Role Assignment Policy

7

Reference LibraryReference Library

B U S I N E S S B R I E F I N G : G L O B A L I N F O S E C U R I T Y 2 0 0 2

Delegation not permitted -->
<SubjectDomain ID=“Companies”/>
<Role Type=“ISOCertified” Value=“ISO9000”/>
<Delegate Depth=“0”/>
<SOA ID=“BSI”/>
<Validity>
<Maximum Time=“+01”/>

</Validity>
</RoleAssignment>

</RoleAssignmentPolicy>

