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ABSTRACT 
The tremendous new potential offered by distributed 
computing, inside and outside the home and business, also 
carries with it the necessity to exercise certain security 
safeguards.  As distributed, mobile, and executable 
content moves among devices, the opportunity for security 
breaches increases dramatically.  Also, as device-to-
device e-Commerce services become more automated 
[11], new types of security threats are emerging.  With 
these drastic changes in computing models comes a 
greater need for robust application security. 

For example, “executable content” is the idea of sending 
code to a remote compute engine to be executed.  In 
addition to flexibility and expressiveness, executable 
content brings new potential problems.  A program 
received from a remote source must be regarded as non-
trusted to some degree, and its access to certain resources 
must be restricted.  However, this new execution model is 
not bound by the limitations of the operating system 
because the runtime environment enforces the security 
policies based on the code’s origin.  Both the Java∗  
Runtime Environment (JRE) and .NET∗  Framework 
Common Language Runtime (CLR) security models have 
the following common security features: language type-
safety, bytecode verification, runtime type checking, name 
space separation via class loading, and fine-grained access 
control. 

This paper compares the JRE and the CLR evolutionary 
security mechanisms.  The paper also compares the two 
models to the Clark-Wilson security model, a formal, 
application-level model used to ensure the integrity of 
commercial data.  The Clark-Wilson model is a formal 
presentation of the security policy enforced by a system, 
and it is useful for testing a policy for completeness and 
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consistency.  It also helps describe what specific 
mechanisms are necessary to implement a security policy. 

Besides exploring the nature and scope of the sandbox-
based JRE and CLR security models and comparing them 
to the Clark-Wilson integrity model, this paper also 
provides some insight into the future of runtime security. 

INTRODUCTION 
The idea of using a sandbox to secure the threads running 
inside of that box is very similar to the idea of building a 
wall around a town to protect its inhabitants. 

The concept of building a thick wall for protection is as 
old as history itself.  Greek legend provides an interesting 
case of a thick wall that caused more destruction than 
protection: the Trojan Wall.  Let’s explore that security 
legend a bit further.  During the Trojan War, the Greeks 
asked Epeius, an excellent craftsman, to build a wooden 
horse, which he did with the aid of the goddess Athene.  
Inside the horse were placed a handpicked group of 
warriors.  Then the Greek fleet sailed away, leaving 
behind a warrior named Sinon, who pretended he had 
been left behind by accident.  He also pretended that the 
huge wooden horse was an offering to Athene and that, if 
taken into the city, would make the city invincible.  
Despite warnings from some quarters, the Trojans pulled 
down part of their battlements and hauled the wooden 
horse inside the city.  Lulled into a false sense of security, 
little watch was kept.  The Greek fleet returned furtively 
and Sinon released the warriors from inside the wooden 
horse.  Troy fell because the Trojans’ confidence in an 
impenetrable wall led them to overlook the security risk in 
their midst [1].  When programmers (or users) fail to 
check inside the Horse (a metaphor for malicious code) 
before they roll it within the computing device, like the 
Greek legend, the result is unpleasant.  

A Trojan Horse is an easily written security hack that has 
been used for years to breach traditional computer and 
network security barriers.  The first Trojan Horses were 
disguised as demos, freeware, and shareware.  The 
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unsuspecting victim would run the software from inside 
traditional security walls where the program could 
effectively attack.  Sometimes the program just displayed 
a witty joke, performed some harmless mischief, installed 
viruses or broke into password files.  Sometimes the 
Trojan Horse used security holes to break deeper into the 
computer.  In all of those cases, the Trojan Horse causes 
some damage, including loss of productivity and 
confidence in the security of our systems.  

Contrary to early claims, Trojan Horses and viruses are no 
strangers to runtime environments either [6].  In August of 
1998, a proof-of-concept virus called Strange Brew 
appeared.  While it did not carry a damaging payload, it 
did prove the concept that cross-platform Java∗  viruses 
and Trojan Horses could be written.  Strange Brew, 
however, affects only Java applications, not Java applets 
that typically run inside a Web browser. 

In January of 1999, the second known Java virus, called 
Java.BeanHive, was discovered.  This virus was designed 
to infect both Java applets as well as Java applications. 

The Java.BeanHive virus was, however, the first to exploit 
JRE’s access control mechanisms by asking the user to 
grant the virus permission for full file access. Because the 
virus was a seemingly innocuous Java applet, some users 
inadvertently granted it full permission, not knowing it 
was malicious code. 

In Java and .NET, the runtime environments provide 
security models that deal with access control to system 
resources.  The following sections describe the 
capabilities offered by those mechanisms. 

The .NET Framework also has had its share of security 
holes.  In June 2002, session highjacking, information-
leakage, and buffer overflow vulnerabilities were 
identified [12]. 

MOBILE CODE SECURITY: JAVA∗∗∗∗  AND 
THE .NET∗∗∗∗  ENVIRONMENTS 
“Mobile code” denotes program code that traverses a 
network and executes at a remote site.  The process of 
traversing can either be active as in the case of mobile 
agents which move around in a network at their own 
volition, or it can be passive, as in the case of user-
downloaded code such as applets. 

Both Java∗  and .NET∗  environments can be used as 
platforms for both types of code mobility, and in 

                                                           
∗  Other brands and names are the property of their 
respective owners. 

conjunction with the Internet, they open new possibilities 
for software development, software deployment, and 
computing architectures.  The downside is that they also 
open new security threats.  Downloaded code can include 
a virus or be a Trojan Horse and thus pervert the concept 
of code mobility over the Internet in a possibly dangerous 
way.  Any mobile code platform, including both Java and 
.NET, suffers from four basic categories of potential 
security threats [5]:  

• Leakage. This occurs when there are unauthorized 
attempts to obtain information belonging to or 
intended for someone else. 

• Tampering. Tampering is unauthorized changing or 
deleting of information. 

• Resource stealing. This occurs when there is 
unauthorized use of resources or facilities such as 
memory or disk space. 

• Antagonism. These are interactions that don’t result in 
a gain for the intruder but are, nonetheless, annoying 
for the attacked party. 

To deal with these threats, Java and. NET environments 
provide special runtimes that try to protect users from 
erroneous or malicious mobile code and try to ensure the 
security and privacy of the user’s system.   

They both provide fairly good levels of protection against 
leakage and tampering but resource stealing and 
antagonism cannot be fully prevented since it is still hard 
to automatically distinguish between legitimate and 
malicious actions. 

THE EVOLUTION OF THE JAVA∗∗∗∗  
RUNTIME ENVIRONMENT’S SECURITY 
MODEL  
In runtime environments, the security model is based on 
policy construction and enforcement.  A security policy 
consists of the rules that must be obeyed by a program, the 
mechanisms to enforce these rules and to detect when they 
are violated, and the actions that are taken when a security 
violation is detected. 

In Java∗ , a security policy is implemented by writing a 
subclass of the SecurityManager class and installing it as 
the system’s security manager. 

While the bottom three layers of Java’s security model are 
fixed and defined by the Java language specification [2], 
the Java Virtual Machine (JVM) specification [3], and the 
Java API specification [4], the runtime environment is 
implementation-dependent.  Although it is the only 
configurable part of the security model, this is, 
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nevertheless, sufficient for a wide range of different 
security policies to be implemented. 

The Java Sandbox Model 
Java security has undergone considerable evolution.  In 
the JDK 1.0 security model, any code run locally had full 
access to system resources while dynamically loaded code 
had access to system resources controlled by a security 
manager.  The default security manager sandbox provided 
minimal access to resources such as disk drives.  In order 
to support a different security model, a new security 
manager would have to be implemented.  The concept of 
trusted, dynamically loaded code was introduced in JDK 
1.1.  Any dynamically loaded code that was digitally 
signed by a trusted code provider could execute with the 
same permission as local code.  JDK 1.2 introduced an 
extensible access control model that applies to both local 
code and dynamically loaded code.  Fine-grained access 
to system resources can be specified in a policy file on the 
basis of the source of the code, the code provider, and the 
user of the code.  Unlike earlier versions of the JDK, this 
policy file allows the security model to be adjusted 
without writing a new security manager.  The security 
manager has standard access control checkpoints 
embedded in its code whose behavior is determined by the 
selection of permissions enabled in the policy file.  New 
permissions can be defined, but explicit checks must be 
added to the security manager or application code if the 
permissions apply to application resources rather than 
system resources. 

JVM Security 
Four practical techniques for securing mobile code exist: 
the sandbox model, code signing, firewalls, and proof-
carrying code.  In order to secure mobile code, Java uses a 
hybrid approach, which combines sandboxes and code 
signatures.  The Java core classes act as a security shield 
and enforce the sandbox model by granting or forbidding 
access to resources, based on a security policy.  The rules 
specified in the security policy define the actions a piece 
of code is allowed to perform depending on the origin of 
the code and an optional signature.  Not all of Java's 
powerful security mechanisms are in place by default 
when launching the JVM.  While some basic checks are 
performed automatically, the more sophisticated concepts, 
including the sandbox model, have to be put into action 
explicitly. 

Before a class is loaded, the following steps occur.  First, 
the Verifier performs a set of security checks to guarantee 
properties such as the correct class file format, the correct 
parameter types, and binary compatibility.  Doing these 
checks before loading enhances both security and runtime 
performance.  They ensure the integrity of the Java 
runtime environment since no malformed class can be 

loaded that could cause a general system fault.  Having 
passed the Verifier, the class loader loads the bytecode 
representation of the class and checks optional signatures.  
Furthermore, the source (i.e., origin) of the class's code is 
constructed, which consists of the location from which the 
class was obtained and a set of certificates representing 
the signature. 

The source of the class code is the key input for the 
security policy construction for a given class.  In Java 2, 
the security policy is defined in terms of protection 
domains, which define what a piece of code with a given 
source is allowed to do.  Hence, a protection domain 
contains a code source with a set of associated 
permissions.  Given the code source of a class, the 
security policy is searched to determine the permissions of 
the class. 

Finally, the class is “defined,” meaning it is made publicly 
available and added to the class loader’s cache of classes.  
This is important to ensure class uniqueness. Java 
considers two classes equal if, and only if, they have the 
same name and were loaded by the same class loader. 

After these initial steps, the class can be used in the Java 
runtime environment.  However, every time the class tries 
to access a system resource, its permissions are checked 
by the security manager.  If the call to the security 
manager returns silently, the requesting caller has 
sufficient permissions to access the resource, and the 
execution continues.  If not, a security exception is raised 
and has to be handled by the caller or otherwise the JVM 
terminates. 

A key question is how the security manager decides 
whether access to a resource is granted.  Since Java 2, the 
security manager is mainly included for compatibility 
reasons and delegates nearly all of its tasks to the access 
controller.  The access controller uses a stack inspection 
algorithm and the security policy to decide how to 
proceed. 

The stack inspection algorithm is based on the call stack 
of the current method.  Since every class is assigned an 
appropriate set of permissions when it is loaded, the stack 
inspection algorithm can use this information to make its 
decision. 
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THE .NET∗∗∗∗  FRAMEWORK COMMON 
LANGUAGE RUNTIME SECURITY 
MODEL  
The Microsoft .NET∗  Framework offers code access 
security and role-based security to help address security 
concerns about mobile code, and to help determine what 
users are authorized to do.  Both code access security and 
role-based security are implemented using a common 
infrastructure supplied by the Common Language Runtime 
(CLR).  

Because they use the same model and infrastructure, code 
access security and role-based security share several 
underlying concepts described in the following sections. 

The CLR Code Access Security Model 
Any application that targets the CLR must interact with 
the runtime's security system.  When an application 
executes, it is automatically evaluated and given a set of 
permissions by the runtime.  Depending on the 
permissions that the application receives, it can either run 
properly or it will generate a security exception.  The local 
security settings on a particular computer ultimately 
decide which permissions the code receives.  Because 
these settings can change from computer to computer, one 
can never be sure that code will receive sufficient 
permissions to run.  This is in contrast to the world of 
unmanaged development, in which one may not have to 
worry about the code’s permission to run.  CLR code 
access security is based on the following four concepts: 
writing type-safe code, using imperative and declarative 
syntax, requesting permissions for the code, and using 
secure class libraries. 

In order to write type-safe code and to enable code to 
benefit from code access security, a compiler that 
generates verifiably type-safe code must be used.   

Interaction with the runtime security system is performed 
using imperative and declarative security calls. 
Declarative calls are performed using attributes; 
imperative calls are performed using new instances of 
classes within your code.  Some calls can only be 
performed imperatively, while others can be performed 
only declaratively.  Some calls can be performed in either 
manner.  

Requests for permissions in the code are applied to the 
assembly scope, where the code informs the runtime about 
permissions that it either needs to run, or specifically does 
not want.  Security requests are evaluated by the runtime 
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when the code is loaded into memory.  The purpose of 
requests is only to inform the runtime about the 
permissions it requires in order to run. Requests do not 
influence the runtime to give the code more permissions 
than it “deserves.” 

The secure class libraries use code access security to 
specify the permissions they require in order to be 
accessed.  The developer must be aware of the 
permissions required to access any library that the code 
uses and make appropriate requests in the code [7].  

The CLR Role-Based Access Model 
Roles are often used in an application to enforce some 
policies.  Role-based security can be used when an 
application requires multiple approvals to complete an 
action.  

The .NET Framework’s role-based security supports 
authorization by making information about the principal, 
which is constructed from an associated identity, available 
to the current thread.  

A principal represents the identity and role of a user and 
acts on the user’s behalf.  Role-based security in the .NET 
Framework supports three kinds of principals: Generic 
Principals which represent users and roles that exist 
independent of Windows NT∗  and Windows 2000∗  users 
and roles, Windows Principals which represent Windows∗  
users and their roles (or groups), and Custom Principals 
which can be defined by an application in any way that is 
needed for that particular application.  

The identity, as well as the principal it helps to define, can 
be either based on a Windows account or be a custom 
identity unrelated to a Windows account.  The .NET 
Framework applications can make authorization decisions 
based on the principal’s identity or role membership, or 
both.  A role is a named set of principals that have the 
same privileges with respect to security.  A principal can 
be a member of one or more roles.  Hence, applications 
can use role membership to determine whether a principal 
is authorized to perform a requested action.  

To provide ease of use and consistency with code access 
security, .NET Framework role-based security provides 
PrincipalPermission objects that enable the common 
language runtime to perform authorization in a way that is 
similar to code access security checks.  The 
PrincipalPermission class represents the identity or role 
that the principal must match and is compatible with both 
declarative and imperative security checks.  You can also 
access a principal’s identity information directly and 
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perform role and identity checks in your code when 
needed [7].  

Comparison Between the JRE and CLR Security 
Models 
Figure 1 compares the Java∗  and .NET Framework 
architectures.  The JRE and CLR are viewed as middle 
layers between intermediate languages and the underlying 
operating systems.   
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Figure 1: CLR versus JRE 

In order to compare the two security approaches, the 
Clark-Wilson Security Model is used. 

The Clark-Wilson Security Model 
Integrity models [8] are used to describe what needs to be 
done to enforce information integrity policies.  There are 
three goals of integrity: to prevent unauthorized 
modifications, to maintain internal and external 
consistency, and to prevent authorized but improper 
modifications. 

To accomplish these goals, a collection of security 
services that embodies the properties needed for integrity 
as well as a framework for composing them is needed. 
The needed security properties for integrity include access 
control, auditing, and accountability.  

The Clark-Wilson [9] model is an integrity, application-
level model that attempts to ensure the integrity properties 
of commercial data, and it provides a framework for 
evaluating security in commercial application systems.  It 
was published in 1987 and updated in 1989 by David D. 
Clark and David R. Wilson [13]. 

The Clark-Wilson model is based on analyses of security 
models actually applied within businesses.  These security 
models aim at ensuring the integrity of resources rather 
than simply controlling access to them.  They depend on 
controlling state transformations, and upon maintaining 
separation of duties between users of the system.   

Clark and Wilson partitioned all data in a system into two 
types of data items for which integrity must be ensured: 
Constrained Data Items (CDIs) and Unconstrained Data 
Items (UDIs).  The CDIs are objects that the integrity 
model is applied to, and the UDIs are objects that are not 
covered by the integrity policy (e.g., information typed by 
the user on the keyboard).  Two procedures are then 
applied to these data items for protection.  The first 
procedure, namely the Integrity Verification Procedure 
(IVP), verifies that the data items are in a valid state (i.e., 
they are what the users or owners believe them to be 
because they have not been changed). The second 
procedure is the Transformation Procedure (TP), which 
changes the data items from one valid state to another.  If 
only a transformation procedure is able to change data 
items, the integrity of the data is maintained. Integrity 
enforcement systems usually require that all 
transformation procedures be logged, to provide an audit 
trail of data item changes. 

In runtime environments, CDIs and UDIs can be mapped 
to fields of components (e.g., assemblies).  TPs can be 
mapped to Java methods or .NET assemblies.  An 
assembly is a collection of types and resources that is built 
to work together and form a logical unit of functionality.  

A principal in this context is an authenticated Java or 
.NET principal where the authentication has been 
achieved using either the Java Cryptographic Extension 
(JCE) or Microsoft’s Cryptographic API (CAPI∗ ). 

DISCUSSION 
Resource Integrity 
The basic concepts of access control in the JRE and CLR 
security models do not meet Clark-Wilson’s requirement 
of resource integrity.  Both environments require each 
controlled operation to be re-coded to include a 
permission check.  This is not appropriate for a 
component that is delivered in binary form.  Both the CLR 
and JRE also require determination of which operations 
update the state of an object so that only those operations 
that maintain the integrity of the system are allowed.  This 
approach is error prone.  A better approach would be to 
intercept all state accesses and allow only those made 
from operations that maintain integrity while blocking all 
others. 

Execution-Time Checking 
The .NET∗  Framework holds an advantage in the area of 
execution-time checking.  .NET’s application domains are 
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less permeable than Java’s, i.e., NET code verification is 
stronger by default for local applications.  Because a JVM 
verifies only remotely loaded code by default, one can run 
a Java∗  program locally without any security manager at 
all [10]. 

Data Protection 
Neither environment offers a significant advantage in 
source code and data protection.  Each platform has its 
strengths and weaknesses in this area. .NET’s 
cryptography relies on the developer properly configuring 
the CAPI because it's so closely tied to Windows∗ . 
However, the variety of plug-ins and components 
available for Java makes it a more flexible environment.  

The Java Cryptographic Extension (JCE) is a mechanism 
that allows suppliers of cryptography to integrate their 
libraries in a standard way with Java applications.  The 
API is fairly flexible, allowing detailed control of the 
cryptographic process.  However, that flexibility can lead 
to excessive complexity and can make the API difficult to 
use. 

Communication Security 
Developers using the .NET Framework may need to use 
Microsoft’s Internet Information Server (IIS∗ ) for 
communication protection.  This strong dependency on a 
Web Server, such as IIS, to provide runtime security 
services, could restrict CLR’s communication security.  

Code-Access Security 
The code-based security mechanisms for Java and .NET 
are very similar.  The Windows connection gives the new 
platform a richer set of permissions and evidences than 
Java does.  Java is more stripped down due to its platform 
independence; however, Java’s code-based access control 
is very mature and offers several configurable policy 
levels.  .NET provides hierarchical code groups and 
allows for targeted code checks.  

User Authentication 
The .NET Framework offers good authentication out of 
the box.  It implements authentication through 
authentication “providers,” such as forms, Passport, and 
IIS.  .NET’s close ties to IIS can hinder its flexibility.  

Java code is easier to modify and the Java Authentication 
and Authorization Service (JAAS) is available for 
developers to modify and then plug in.  JAAS also 
provides several levels of customization, making Java’s 
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authentication and role-based access control stronger than 
.NET’s.  

Both platforms, however, lack a mechanism for advanced 
user-based access control, such as permission delegation.  
For more complex role-based access control projects, 
users have to build their own layer of security for 
determining user-based access control. 

Auditing and Tracking 
Neither platform offers much support for secure 
authentication and tracking.  Although JDK 1.4 introduces 
a logging package, it offers no secure facilities.  .NET 
offers a managed wrapper around Windows EventLog, but 
that’s as far as its auditing features go.  Consequently, 
.NET applications are restricted to the functionality and 
limitations of EventLog.  

Neither .NET nor Java provides acceptable support for 
auditing and tracking transactions.  With .NET, 
developers can use the Windows mechanisms, but they 
need to go outside the .NET Framework to get them.  
Even when .NET and Java add logging packages, it is not 
clear how secure that mechanism would be.  

Managed and Unmanaged Code 
While the .NET Framework provides a solid security 
model through managed code in the CLR, the ability to 
run unmanaged code confers the ability to bypass CLR 
security through direct calls to the underlying operating 
system APIs.  Also, in Java, signed and trusted code has 
unrestricted access to system resources.  Java’s calls to 
native code through the Java Native Interfaces (JNIs) 
confer the ability to bypass JRE’s security.  Similarly, 
running unmanaged code in the CLR can be used to 
bypass the .NET Framework security. 

FUTURE OF RUNTIME SECURITY 
The real test for runtime security facilities will be their 
deployment in large distributed systems.  In their current 
models, the overall system security depends on perfect 
functioning of the application, the language, the virtual 
machines, and the underlying operating systems.  It also 
depends on the interaction of those elements.  Therefore, 
this kind of system security becomes very complicated 
and unstable if the system is very large.  The experience of 
Java security has shown that most of the security problems 
reported come from defects in the implementation of the 
security mechanism and from malicious applets that use 
vulnerabilities in the applications that use the virtual 
machine. 

The ability to encrypt communication and provide digital 
signatures is only part of enabling secure applications, 
trusted communication, and proof-of-identity.  There is 
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still the issue of where and how the keys are generated and 
stored.  Not only do the keys have to be exchanged over 
secure links, they have to be generated and then managed 
in a secure way.  Hardware-based secure storage can play 
a major role in securing the generation and safekeeping of 
keys. 

Security hardware may also provide more reliable 
random-number-generation, time-stamping, and auditing 
capabilities, which are crucial for cryptographic and 
signature functions. 

Both Java∗  and the .NET∗  Framework include 
cryptographic capabilities based on software libraries.  
However, performing the encryption on hardware is 
inherently more secure than leaving it to the software.  
Furthermore, hardware-based cryptography, signatures, 
and key storage capabilities can provide a common 
security infrastructure for both Java and .NET, which can 
make the development of secure runtime applications 
much easier than having to develop code to invoke the 
Java or .NET cryptographic extensions. 

CONCLUSION 
Both Java’s∗  JRE and .NET’s∗  CLR do not meet Clark-
Wilson’s requirements of resource integrity.  However, 
they both provide quite comprehensive security services, 
though each has a different focus. 

Java’s authentication and authorization services are fairly 
flexible.  Although its use is not mandated, authentication 
and authorization functionality can be provided by the 
JAAS.  .NET’s authentication and authorization services, 
however, are provided through the Windows∗  operating 
system or identification stores (e.g., Passport∗ ). 

Both environments use similar concepts for handling user 
and code access to resources, with permissions being 
critical to both.  The concept of roles is used to associate 
permissions with principals in both environments. 

Common hardware-based cryptographic and key-
management capabilities can drastically enhance the 
security of the runtime environment.  However, getting the 
industry to agree on a common hardware architecture for 
mobile and non-mobile security will be a challenge for the 
next few years. 
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