
Intel®

Technology
Journal

Managed Runtime Technologies

Volume 07 Issue 01 Published, February 19, 2003 ISSN 1535-766X

Runtime Environment
Security Models

A compiled version of all papers from this issue of the Intel Technology Journal can be found at:
http://developer.intel.com/technology/itj/index.htm

Paper5cover.qxd 1/31/03 9:10 AM Page 1

http://developer.intel.com/technology/itj/index.htm

Runtime Environment Security Models 60

Runtime Environment Security Models

Selim Aissi, Intel R&D, Intel Corporation

Index words: security models, runtime security, access control, sandbox, CLR security, ASP.NET
security, JRE security, Java security, runtime access control models

ABSTRACT
The tremendous new potential offered by distributed
computing, inside and outside the home and business, also
carries with it the necessity to exercise certain security
safeguards. As distributed, mobile, and executable
content moves among devices, the opportunity for security
breaches increases dramatically. Also, as device-to-
device e-Commerce services become more automated
[11], new types of security threats are emerging. With
these drastic changes in computing models comes a
greater need for robust application security.

For example, “executable content” is the idea of sending
code to a remote compute engine to be executed. In
addition to flexibility and expressiveness, executable
content brings new potential problems. A program
received from a remote source must be regarded as non-
trusted to some degree, and its access to certain resources
must be restricted. However, this new execution model is
not bound by the limitations of the operating system
because the runtime environment enforces the security
policies based on the code’s origin. Both the Java∗
Runtime Environment (JRE) and .NET∗ Framework
Common Language Runtime (CLR) security models have
the following common security features: language type-
safety, bytecode verification, runtime type checking, name
space separation via class loading, and fine-grained access
control.

This paper compares the JRE and the CLR evolutionary
security mechanisms. The paper also compares the two
models to the Clark-Wilson security model, a formal,
application-level model used to ensure the integrity of
commercial data. The Clark-Wilson model is a formal
presentation of the security policy enforced by a system,
and it is useful for testing a policy for completeness and

∗ Other brands and names are the property of their
respective owners.

consistency. It also helps describe what specific
mechanisms are necessary to implement a security policy.

Besides exploring the nature and scope of the sandbox-
based JRE and CLR security models and comparing them
to the Clark-Wilson integrity model, this paper also
provides some insight into the future of runtime security.

INTRODUCTION
The idea of using a sandbox to secure the threads running
inside of that box is very similar to the idea of building a
wall around a town to protect its inhabitants.

The concept of building a thick wall for protection is as
old as history itself. Greek legend provides an interesting
case of a thick wall that caused more destruction than
protection: the Trojan Wall. Let’s explore that security
legend a bit further. During the Trojan War, the Greeks
asked Epeius, an excellent craftsman, to build a wooden
horse, which he did with the aid of the goddess Athene.
Inside the horse were placed a handpicked group of
warriors. Then the Greek fleet sailed away, leaving
behind a warrior named Sinon, who pretended he had
been left behind by accident. He also pretended that the
huge wooden horse was an offering to Athene and that, if
taken into the city, would make the city invincible.
Despite warnings from some quarters, the Trojans pulled
down part of their battlements and hauled the wooden
horse inside the city. Lulled into a false sense of security,
little watch was kept. The Greek fleet returned furtively
and Sinon released the warriors from inside the wooden
horse. Troy fell because the Trojans’ confidence in an
impenetrable wall led them to overlook the security risk in
their midst [1]. When programmers (or users) fail to
check inside the Horse (a metaphor for malicious code)
before they roll it within the computing device, like the
Greek legend, the result is unpleasant.

A Trojan Horse is an easily written security hack that has
been used for years to breach traditional computer and
network security barriers. The first Trojan Horses were
disguised as demos, freeware, and shareware. The

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 61

unsuspecting victim would run the software from inside
traditional security walls where the program could
effectively attack. Sometimes the program just displayed
a witty joke, performed some harmless mischief, installed
viruses or broke into password files. Sometimes the
Trojan Horse used security holes to break deeper into the
computer. In all of those cases, the Trojan Horse causes
some damage, including loss of productivity and
confidence in the security of our systems.

Contrary to early claims, Trojan Horses and viruses are no
strangers to runtime environments either [6]. In August of
1998, a proof-of-concept virus called Strange Brew
appeared. While it did not carry a damaging payload, it
did prove the concept that cross-platform Java∗ viruses
and Trojan Horses could be written. Strange Brew,
however, affects only Java applications, not Java applets
that typically run inside a Web browser.

In January of 1999, the second known Java virus, called
Java.BeanHive, was discovered. This virus was designed
to infect both Java applets as well as Java applications.

The Java.BeanHive virus was, however, the first to exploit
JRE’s access control mechanisms by asking the user to
grant the virus permission for full file access. Because the
virus was a seemingly innocuous Java applet, some users
inadvertently granted it full permission, not knowing it
was malicious code.

In Java and .NET, the runtime environments provide
security models that deal with access control to system
resources. The following sections describe the
capabilities offered by those mechanisms.

The .NET Framework also has had its share of security
holes. In June 2002, session highjacking, information-
leakage, and buffer overflow vulnerabilities were
identified [12].

MOBILE CODE SECURITY: JAVA∗∗∗∗ AND
THE .NET∗∗∗∗ ENVIRONMENTS
“Mobile code” denotes program code that traverses a
network and executes at a remote site. The process of
traversing can either be active as in the case of mobile
agents which move around in a network at their own
volition, or it can be passive, as in the case of user-
downloaded code such as applets.

Both Java∗ and .NET∗ environments can be used as
platforms for both types of code mobility, and in

∗ Other brands and names are the property of their
respective owners.

conjunction with the Internet, they open new possibilities
for software development, software deployment, and
computing architectures. The downside is that they also
open new security threats. Downloaded code can include
a virus or be a Trojan Horse and thus pervert the concept
of code mobility over the Internet in a possibly dangerous
way. Any mobile code platform, including both Java and
.NET, suffers from four basic categories of potential
security threats [5]:

• Leakage. This occurs when there are unauthorized
attempts to obtain information belonging to or
intended for someone else.

• Tampering. Tampering is unauthorized changing or
deleting of information.

• Resource stealing. This occurs when there is
unauthorized use of resources or facilities such as
memory or disk space.

• Antagonism. These are interactions that don’t result in
a gain for the intruder but are, nonetheless, annoying
for the attacked party.

To deal with these threats, Java and. NET environments
provide special runtimes that try to protect users from
erroneous or malicious mobile code and try to ensure the
security and privacy of the user’s system.

They both provide fairly good levels of protection against
leakage and tampering but resource stealing and
antagonism cannot be fully prevented since it is still hard
to automatically distinguish between legitimate and
malicious actions.

THE EVOLUTION OF THE JAVA∗∗∗∗
RUNTIME ENVIRONMENT’S SECURITY
MODEL
In runtime environments, the security model is based on
policy construction and enforcement. A security policy
consists of the rules that must be obeyed by a program, the
mechanisms to enforce these rules and to detect when they
are violated, and the actions that are taken when a security
violation is detected.

In Java∗ , a security policy is implemented by writing a
subclass of the SecurityManager class and installing it as
the system’s security manager.

While the bottom three layers of Java’s security model are
fixed and defined by the Java language specification [2],
the Java Virtual Machine (JVM) specification [3], and the
Java API specification [4], the runtime environment is
implementation-dependent. Although it is the only
configurable part of the security model, this is,

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 62

nevertheless, sufficient for a wide range of different
security policies to be implemented.

The Java Sandbox Model
Java security has undergone considerable evolution. In
the JDK 1.0 security model, any code run locally had full
access to system resources while dynamically loaded code
had access to system resources controlled by a security
manager. The default security manager sandbox provided
minimal access to resources such as disk drives. In order
to support a different security model, a new security
manager would have to be implemented. The concept of
trusted, dynamically loaded code was introduced in JDK
1.1. Any dynamically loaded code that was digitally
signed by a trusted code provider could execute with the
same permission as local code. JDK 1.2 introduced an
extensible access control model that applies to both local
code and dynamically loaded code. Fine-grained access
to system resources can be specified in a policy file on the
basis of the source of the code, the code provider, and the
user of the code. Unlike earlier versions of the JDK, this
policy file allows the security model to be adjusted
without writing a new security manager. The security
manager has standard access control checkpoints
embedded in its code whose behavior is determined by the
selection of permissions enabled in the policy file. New
permissions can be defined, but explicit checks must be
added to the security manager or application code if the
permissions apply to application resources rather than
system resources.

JVM Security
Four practical techniques for securing mobile code exist:
the sandbox model, code signing, firewalls, and proof-
carrying code. In order to secure mobile code, Java uses a
hybrid approach, which combines sandboxes and code
signatures. The Java core classes act as a security shield
and enforce the sandbox model by granting or forbidding
access to resources, based on a security policy. The rules
specified in the security policy define the actions a piece
of code is allowed to perform depending on the origin of
the code and an optional signature. Not all of Java's
powerful security mechanisms are in place by default
when launching the JVM. While some basic checks are
performed automatically, the more sophisticated concepts,
including the sandbox model, have to be put into action
explicitly.

Before a class is loaded, the following steps occur. First,
the Verifier performs a set of security checks to guarantee
properties such as the correct class file format, the correct
parameter types, and binary compatibility. Doing these
checks before loading enhances both security and runtime
performance. They ensure the integrity of the Java
runtime environment since no malformed class can be

loaded that could cause a general system fault. Having
passed the Verifier, the class loader loads the bytecode
representation of the class and checks optional signatures.
Furthermore, the source (i.e., origin) of the class's code is
constructed, which consists of the location from which the
class was obtained and a set of certificates representing
the signature.

The source of the class code is the key input for the
security policy construction for a given class. In Java 2,
the security policy is defined in terms of protection
domains, which define what a piece of code with a given
source is allowed to do. Hence, a protection domain
contains a code source with a set of associated
permissions. Given the code source of a class, the
security policy is searched to determine the permissions of
the class.

Finally, the class is “defined,” meaning it is made publicly
available and added to the class loader’s cache of classes.
This is important to ensure class uniqueness. Java
considers two classes equal if, and only if, they have the
same name and were loaded by the same class loader.

After these initial steps, the class can be used in the Java
runtime environment. However, every time the class tries
to access a system resource, its permissions are checked
by the security manager. If the call to the security
manager returns silently, the requesting caller has
sufficient permissions to access the resource, and the
execution continues. If not, a security exception is raised
and has to be handled by the caller or otherwise the JVM
terminates.

A key question is how the security manager decides
whether access to a resource is granted. Since Java 2, the
security manager is mainly included for compatibility
reasons and delegates nearly all of its tasks to the access
controller. The access controller uses a stack inspection
algorithm and the security policy to decide how to
proceed.

The stack inspection algorithm is based on the call stack
of the current method. Since every class is assigned an
appropriate set of permissions when it is loaded, the stack
inspection algorithm can use this information to make its
decision.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 63

THE .NET∗∗∗∗ FRAMEWORK COMMON
LANGUAGE RUNTIME SECURITY
MODEL
The Microsoft .NET∗ Framework offers code access
security and role-based security to help address security
concerns about mobile code, and to help determine what
users are authorized to do. Both code access security and
role-based security are implemented using a common
infrastructure supplied by the Common Language Runtime
(CLR).

Because they use the same model and infrastructure, code
access security and role-based security share several
underlying concepts described in the following sections.

The CLR Code Access Security Model
Any application that targets the CLR must interact with
the runtime's security system. When an application
executes, it is automatically evaluated and given a set of
permissions by the runtime. Depending on the
permissions that the application receives, it can either run
properly or it will generate a security exception. The local
security settings on a particular computer ultimately
decide which permissions the code receives. Because
these settings can change from computer to computer, one
can never be sure that code will receive sufficient
permissions to run. This is in contrast to the world of
unmanaged development, in which one may not have to
worry about the code’s permission to run. CLR code
access security is based on the following four concepts:
writing type-safe code, using imperative and declarative
syntax, requesting permissions for the code, and using
secure class libraries.

In order to write type-safe code and to enable code to
benefit from code access security, a compiler that
generates verifiably type-safe code must be used.

Interaction with the runtime security system is performed
using imperative and declarative security calls.
Declarative calls are performed using attributes;
imperative calls are performed using new instances of
classes within your code. Some calls can only be
performed imperatively, while others can be performed
only declaratively. Some calls can be performed in either
manner.

Requests for permissions in the code are applied to the
assembly scope, where the code informs the runtime about
permissions that it either needs to run, or specifically does
not want. Security requests are evaluated by the runtime

∗ Other brands and names are the property of their
respective owners.

when the code is loaded into memory. The purpose of
requests is only to inform the runtime about the
permissions it requires in order to run. Requests do not
influence the runtime to give the code more permissions
than it “deserves.”

The secure class libraries use code access security to
specify the permissions they require in order to be
accessed. The developer must be aware of the
permissions required to access any library that the code
uses and make appropriate requests in the code [7].

The CLR Role-Based Access Model
Roles are often used in an application to enforce some
policies. Role-based security can be used when an
application requires multiple approvals to complete an
action.

The .NET Framework’s role-based security supports
authorization by making information about the principal,
which is constructed from an associated identity, available
to the current thread.

A principal represents the identity and role of a user and
acts on the user’s behalf. Role-based security in the .NET
Framework supports three kinds of principals: Generic
Principals which represent users and roles that exist
independent of Windows NT∗ and Windows 2000∗ users
and roles, Windows Principals which represent Windows∗
users and their roles (or groups), and Custom Principals
which can be defined by an application in any way that is
needed for that particular application.

The identity, as well as the principal it helps to define, can
be either based on a Windows account or be a custom
identity unrelated to a Windows account. The .NET
Framework applications can make authorization decisions
based on the principal’s identity or role membership, or
both. A role is a named set of principals that have the
same privileges with respect to security. A principal can
be a member of one or more roles. Hence, applications
can use role membership to determine whether a principal
is authorized to perform a requested action.

To provide ease of use and consistency with code access
security, .NET Framework role-based security provides
PrincipalPermission objects that enable the common
language runtime to perform authorization in a way that is
similar to code access security checks. The
PrincipalPermission class represents the identity or role
that the principal must match and is compatible with both
declarative and imperative security checks. You can also
access a principal’s identity information directly and

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 64

perform role and identity checks in your code when
needed [7].

Comparison Between the JRE and CLR Security
Models
Figure 1 compares the Java∗ and .NET Framework
architectures. The JRE and CLR are viewed as middle
layers between intermediate languages and the underlying
operating systems.

Code Type
Safety

Windows OS MacOS

Microsoft Intermediate Language
(MSIL)

Runtime ServicesRuntime Services

CLR JRE

Runtime Services Runtime Services

Code Type
Safety

Garbage
Collector Security SecurityGarbage Collector

Windows
OS LinuxUnix

J# C# VB.NET Managed
C++

Byte Codes

Java

Figure 1: CLR versus JRE

In order to compare the two security approaches, the
Clark-Wilson Security Model is used.

The Clark-Wilson Security Model
Integrity models [8] are used to describe what needs to be
done to enforce information integrity policies. There are
three goals of integrity: to prevent unauthorized
modifications, to maintain internal and external
consistency, and to prevent authorized but improper
modifications.

To accomplish these goals, a collection of security
services that embodies the properties needed for integrity
as well as a framework for composing them is needed.
The needed security properties for integrity include access
control, auditing, and accountability.

The Clark-Wilson [9] model is an integrity, application-
level model that attempts to ensure the integrity properties
of commercial data, and it provides a framework for
evaluating security in commercial application systems. It
was published in 1987 and updated in 1989 by David D.
Clark and David R. Wilson [13].

The Clark-Wilson model is based on analyses of security
models actually applied within businesses. These security
models aim at ensuring the integrity of resources rather
than simply controlling access to them. They depend on
controlling state transformations, and upon maintaining
separation of duties between users of the system.

Clark and Wilson partitioned all data in a system into two
types of data items for which integrity must be ensured:
Constrained Data Items (CDIs) and Unconstrained Data
Items (UDIs). The CDIs are objects that the integrity
model is applied to, and the UDIs are objects that are not
covered by the integrity policy (e.g., information typed by
the user on the keyboard). Two procedures are then
applied to these data items for protection. The first
procedure, namely the Integrity Verification Procedure
(IVP), verifies that the data items are in a valid state (i.e.,
they are what the users or owners believe them to be
because they have not been changed). The second
procedure is the Transformation Procedure (TP), which
changes the data items from one valid state to another. If
only a transformation procedure is able to change data
items, the integrity of the data is maintained. Integrity
enforcement systems usually require that all
transformation procedures be logged, to provide an audit
trail of data item changes.

In runtime environments, CDIs and UDIs can be mapped
to fields of components (e.g., assemblies). TPs can be
mapped to Java methods or .NET assemblies. An
assembly is a collection of types and resources that is built
to work together and form a logical unit of functionality.

A principal in this context is an authenticated Java or
.NET principal where the authentication has been
achieved using either the Java Cryptographic Extension
(JCE) or Microsoft’s Cryptographic API (CAPI∗).

DISCUSSION
Resource Integrity
The basic concepts of access control in the JRE and CLR
security models do not meet Clark-Wilson’s requirement
of resource integrity. Both environments require each
controlled operation to be re-coded to include a
permission check. This is not appropriate for a
component that is delivered in binary form. Both the CLR
and JRE also require determination of which operations
update the state of an object so that only those operations
that maintain the integrity of the system are allowed. This
approach is error prone. A better approach would be to
intercept all state accesses and allow only those made
from operations that maintain integrity while blocking all
others.

Execution-Time Checking
The .NET∗ Framework holds an advantage in the area of
execution-time checking. .NET’s application domains are

∗ Other brands and names are the property of their
respective owners.

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 65

less permeable than Java’s, i.e., NET code verification is
stronger by default for local applications. Because a JVM
verifies only remotely loaded code by default, one can run
a Java∗ program locally without any security manager at
all [10].

Data Protection
Neither environment offers a significant advantage in
source code and data protection. Each platform has its
strengths and weaknesses in this area. .NET’s
cryptography relies on the developer properly configuring
the CAPI because it's so closely tied to Windows∗ .
However, the variety of plug-ins and components
available for Java makes it a more flexible environment.

The Java Cryptographic Extension (JCE) is a mechanism
that allows suppliers of cryptography to integrate their
libraries in a standard way with Java applications. The
API is fairly flexible, allowing detailed control of the
cryptographic process. However, that flexibility can lead
to excessive complexity and can make the API difficult to
use.

Communication Security
Developers using the .NET Framework may need to use
Microsoft’s Internet Information Server (IIS∗) for
communication protection. This strong dependency on a
Web Server, such as IIS, to provide runtime security
services, could restrict CLR’s communication security.

Code-Access Security
The code-based security mechanisms for Java and .NET
are very similar. The Windows connection gives the new
platform a richer set of permissions and evidences than
Java does. Java is more stripped down due to its platform
independence; however, Java’s code-based access control
is very mature and offers several configurable policy
levels. .NET provides hierarchical code groups and
allows for targeted code checks.

User Authentication
The .NET Framework offers good authentication out of
the box. It implements authentication through
authentication “providers,” such as forms, Passport, and
IIS. .NET’s close ties to IIS can hinder its flexibility.

Java code is easier to modify and the Java Authentication
and Authorization Service (JAAS) is available for
developers to modify and then plug in. JAAS also
provides several levels of customization, making Java’s

∗ Other brands and names are the property of their
respective owners.

authentication and role-based access control stronger than
.NET’s.

Both platforms, however, lack a mechanism for advanced
user-based access control, such as permission delegation.
For more complex role-based access control projects,
users have to build their own layer of security for
determining user-based access control.

Auditing and Tracking
Neither platform offers much support for secure
authentication and tracking. Although JDK 1.4 introduces
a logging package, it offers no secure facilities. .NET
offers a managed wrapper around Windows EventLog, but
that’s as far as its auditing features go. Consequently,
.NET applications are restricted to the functionality and
limitations of EventLog.

Neither .NET nor Java provides acceptable support for
auditing and tracking transactions. With .NET,
developers can use the Windows mechanisms, but they
need to go outside the .NET Framework to get them.
Even when .NET and Java add logging packages, it is not
clear how secure that mechanism would be.

Managed and Unmanaged Code
While the .NET Framework provides a solid security
model through managed code in the CLR, the ability to
run unmanaged code confers the ability to bypass CLR
security through direct calls to the underlying operating
system APIs. Also, in Java, signed and trusted code has
unrestricted access to system resources. Java’s calls to
native code through the Java Native Interfaces (JNIs)
confer the ability to bypass JRE’s security. Similarly,
running unmanaged code in the CLR can be used to
bypass the .NET Framework security.

FUTURE OF RUNTIME SECURITY
The real test for runtime security facilities will be their
deployment in large distributed systems. In their current
models, the overall system security depends on perfect
functioning of the application, the language, the virtual
machines, and the underlying operating systems. It also
depends on the interaction of those elements. Therefore,
this kind of system security becomes very complicated
and unstable if the system is very large. The experience of
Java security has shown that most of the security problems
reported come from defects in the implementation of the
security mechanism and from malicious applets that use
vulnerabilities in the applications that use the virtual
machine.

The ability to encrypt communication and provide digital
signatures is only part of enabling secure applications,
trusted communication, and proof-of-identity. There is

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 66

still the issue of where and how the keys are generated and
stored. Not only do the keys have to be exchanged over
secure links, they have to be generated and then managed
in a secure way. Hardware-based secure storage can play
a major role in securing the generation and safekeeping of
keys.

Security hardware may also provide more reliable
random-number-generation, time-stamping, and auditing
capabilities, which are crucial for cryptographic and
signature functions.

Both Java∗ and the .NET∗ Framework include
cryptographic capabilities based on software libraries.
However, performing the encryption on hardware is
inherently more secure than leaving it to the software.
Furthermore, hardware-based cryptography, signatures,
and key storage capabilities can provide a common
security infrastructure for both Java and .NET, which can
make the development of secure runtime applications
much easier than having to develop code to invoke the
Java or .NET cryptographic extensions.

CONCLUSION
Both Java’s∗ JRE and .NET’s∗ CLR do not meet Clark-
Wilson’s requirements of resource integrity. However,
they both provide quite comprehensive security services,
though each has a different focus.

Java’s authentication and authorization services are fairly
flexible. Although its use is not mandated, authentication
and authorization functionality can be provided by the
JAAS. .NET’s authentication and authorization services,
however, are provided through the Windows∗ operating
system or identification stores (e.g., Passport∗).

Both environments use similar concepts for handling user
and code access to resources, with permissions being
critical to both. The concept of roles is used to associate
permissions with principals in both environments.

Common hardware-based cryptographic and key-
management capabilities can drastically enhance the
security of the runtime environment. However, getting the
industry to agree on a common hardware architecture for
mobile and non-mobile security will be a challenge for the
next few years.

ACKNOWLEDGMENTS
The author extends his thanks to the reviewers who
provided invaluable feedback. Special thanks to Gene
Forte, Srinivasan Krishnamurthy, Joel Munter, Gururaj

∗ Other brands and names are the property of their
respective owners.

Nagendra, Murthi Nanja, and Carlos Rozas for their
careful review of this paper. My gratitude is also
extended to Norbert Mikula for generating many of the
thoughts in the paper.

REFERENCES
[1] Seton-Williams, M.V., Greek Legends and Stories,.

Barnes & Noble, Inc., New York, New York, pp. 103-
111.

[2] Joy, B., Steele, G., Gosling, J., and Brasha, G., Java
Language Specification,. Book News, Inc., Portland,
Oregon.

[3] Lindholm, T. and Yellin, F., The Java Virtual
Machine Specification, Addison-Wesley, New York,
New York.

[4] Gong, L., Inside Java(TM) 2 Platform Security:
Architecture, API Design, and Implementation,. Sun
Microsystems Press, Santa Clara, California.

[5] Goulouris, G., Dollimore, J., and Kindberg, T,.
Distributed Systems – concepts and design,
International Computer Science Series, Addison-
Wesley, Massachusetts and London, pp. 477-516.

[6] Schweitzer, D., Securing the Network from Malicious
Code: A Complete Guide to Defending Against
Viruses, Worms, and Trojans, John Wiley & Sons,
New York, New York.

[7] LaMacchia, B.A., Lange, S., Lyons, M., Martin, R.,
and Price, K., .NET Framework Security, Addison-
Wesley, Massachusetts and London, New York, New
York, pp. 43-79.

[8] Summers, C. R., Computer Security: Threats and
Safeguards, McGraw Hill, New York, page 142.

[9] Anderson, R., Security Engineering: A Guide to
Building Dependable Distribution Systems, Wiley
Computer Publishing, New York, pp. 188.

[10] Kunene, G., Software Engineers Put .NET and
Enterprise Java Security to the Test,.
http://archive.devx.com/enterprise/articles/dotnetvsjav
a/GK0202-1.asp.

[11] Aissi, S., Pallavi, M, and Krishnamurthy, S.,
“Ebusiness Process Modeling: the Next Big Step,”
IEEE Computer, May 2002.

[12] Adams, L., ASP.NET security holes, ZDNet,
Australia, June 2002,
http://www.zdnet.com.au/builder/architect/sdi/story/0,
2000035062,20266124,00.htm

[13] Clark, D. D. and Wilson, D.R.,“A comparison of
commercial and military computer security policies,”

http://archive.devx.com/enterprise/articles/dotnetvsjava/GK0202-1.asp
http://archive.devx.com/enterprise/articles/dotnetvsjava/GK0202-1.asp
http://www.zdnet.com.au/builder/architect/sdi/story/0,2000035062,20266124,00.htm
http://www.zdnet.com.au/builder/architect/sdi/story/0,2000035062,20266124,00.htm

Intel Technology Journal, Vol. 7, Issue 1, 2003

Runtime Environment Security Models 67

IEEE Symposium on Security and Privacy, pp. 184-
194, Oakland, CA, 1987.

AUTHOR’S BIOGRAPHY
Selim Aissi has been involved in the development of
secure, safety-critical systems in the R&D sector, and in
military, automotive, and wireless appliances for over
twelve years. Before joining Intel in 1999, he worked at
the University of Michigan, General Dynamics’ M1A2
Abrams Battlefield Tank Division, General Motors’
Embedded Controller Excellence Center, and Applied
Dynamics International. At Intel, he played several
management and senior architecture roles, and he is
currently a Senior Security Architect at Intel’s Research &
Development group. Selim served on the review board of
several publications and conferences. He currently serves
on ACM’s CCS’03, SAM’03, NCISSE’03, and IC’03
conference boards. He holds a Ph.D. degree in Aerospace
Engineering from the University of Michigan and is a
member of the IEEE, ACM, and ISSA. His e-mail is
selim.aissi@intel.com.

Copyright © Intel Corporation 2003. This publication
was downloaded from http://developer.intel.com/.

Legal notices at
http://www.intel.com/sites/corporate/tradmarx.htm.

mailto:selim.aissi@intel.com
http://developer.intel.com/
http://www.intel.com/sites/corporate/tradmarx.htm

Copyright © 2002, Intel Corporation. All rights reserved.
Intel is a trademark or registered trademark of Intel Corporation or its subsidiaries in the United States and other countries.
For a complete listing of trademark information vistit: www.intel.com/sites/corporate/tradmarx.htm

For further information visit:

developer.intel.com/technology/itj/index.htm

Paper5cover.qxd 1/31/03 9:10 AM Page 2

http://developer.intel.com/technology/itj/index.htm
http://www.intel.com/sites/corporate/tradmarx.htm

	A
	ABSTRACT
	INTRODUCTION
	MOBILE CODE SECURITY: JAVA(AND THE .NET(ENVIRONMENTS
	THE EVOLUTION OF THE JAVA(RUNTIME ENVIRONMENT’S SECURITY MODEL
	The Java Sandbox Model
	JVM Security

	THE .NET(FRAMEWORK COMMON LANGUAGE RUNTIME SECURITY MODEL
	The CLR Code Access Security Model
	The CLR Role-Based Access Model
	Comparison Between the JRE and CLR Security Models
	The Clark-Wilson Security Model

	DISCUSSION
	Resource Integrity
	Execution-Time Checking
	Data Protection
	Communication Security
	Code-Access Security
	User Authentication
	Auditing and Tracking
	Managed and Unmanaged Code

	FUTURE OF RUNTIME SECURITY
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR’S BIOGRAPHY

