
NAI Labs Technical Report #00-010  

 

 
 

 
CONSTRAINTS AND APPROACHES 

FOR 
DISTRIBUTED SENSOR NETWORK SECURITY 

(FINAL)1 

 

September 1, 2000 

 

David W. Carman 

Peter S. Kruus 

Brian J. Matt 

 

 

{David_Carman, Peter_Kruus, Brian_Matt}@nai.com 

 

Cryptographic Technologies Group 

Trusted Information Systems, 

NAI Labs, The Security Research Division 

Network Associates, Inc. 

3060 Washington Road (Rt. 97) 

Glenwood, MD 21738-9745 

 

 

© Copyright Network Associates Inc., 2000. 

                                                      
1 Sponsored by the Defense Advanced Research Projects Agency (DARPA) under Air Force 
Research Laboratory (AFRL) Contract No. F30602-99-C-0185 and in fulfillment of CDRL A002. 



NAI Labs Technical Report #00-010  

Executive Summary 

Confidentiality, integrity, and authentication services are critical to preventing an adversary from 
compromising the security of a distributed sensor network.  Key management is likewise critical to 
establishing the keys necessary to provide this protection.  However, providing key management is 
difficult due to the ad hoc nature, intermittent connectivity, and resource limitations of the sensor 
network environment.  As part of the SensIT program, NAI Labs is addressing this problem by 
identifying and developing cryptographic protocols and mechanisms that efficiently provide key 
management security support services. 

This document describes our sensor network constraints and key management approaches research 
for FY 2000.   As a first step, NAI Labs has researched battlefield sensor and sensor network 
technology and the unique communications environment in which it will be deployed.  We have 
identified the requirements specific to our problem of providing key management for confidentiality 
and group-level authentication.  We have also identified constraints, particularly energy consumption, 
that render this problem difficult. 

NAI Labs has developed novel key management protocols specifically designed for the distributed 
sensor network environment, including Identity-Based Symmetric Keying and Rich Uncle.  We have 
analyzed both existing and NAI Labs-developed keying protocols for their suitability at satisfying 
identified requirements while overcoming battlefield energy constraints.  Our research has focused 
heavily on key management energy consumption, evaluating protocols based on total system, average 
sensor node, and individual sensor node energy consumption. 

We examined a number of secret-key-based protocols, determining some to be suitable for sensor 
networks but all of the protocols have flexibility limitations. Secret-key-based protocols are generally 
energy-efficient, using encryption and hashing algorithms that consume relatively little energy.  
Security of secret-key-based protocols is generally determined by the granularity of established keys, 
which vary widely for the protocols described herein.  During our examination of these protocols we 
noted that some of these protocols are not sufficiently flexible for use in battlefield sensor network, 
since they cannot efficiently handle unanticipated additions of sensor nodes to the network. Our 
Identity-Based Symmetric Keying protocol and the less efficient Symmetric Key Certificate Based 
Protocol are well suited for certain sensor networks, establishing granular keys while consuming 
relatively little energy.  

However, all of the secure secret-key-based protocols use special nodes that operate as Key 
Distribution Centers (or Translators). The sensor nodes communicate with these centers exchanging 
information as part of the key establishment process. Since these special nodes are expected to make 
up less than 1% of the sensor network’s node population, they can only support a very limited 
number of neighboring sensor nodes until the sensor network’s routing infrastructure is sufficiently well 
established. 

We analyzed public key-based key establishment protocols and determined their flexibility and 
scalability offer significant advantages in meeting distributed sensor network needs.  Public key-based 
protocols will establish keys between pairs and small groups of neighboring sensor nodes within the 
multi-hop-connected network.  The public key algorithms used in these protocols consume a great 
deal of computational and communications energy, however.  We show that group keying can reduce 
key management energy consumption among groups of singly-hop-connected nodes as small as six.  
If the sensor network has multicast communications capabilities, we can further reduce 
communications energy consumption by using group keying protocols such as Burmester-Desmedt.  
Alternatively, our public key-based Rich Uncle protocol can offload significant cryptographic 
computations, and thus energy consumption, from energy-limited sensor nodes to energy-endowed 
“super” nodes. 

2 



NAI Labs Technical Report #00-010  

Our examination of keying protocols has revealed that a single keying protocol will not be optimal 
for all sensor network topologies, densities, sizes, and scenarios.  Protocols such as Identity-Based 
Symmetric Keying and Rich Uncle have limited application until the network’s routing infrastructure has 
been sufficiently well established.  Individually other protocols such as the public-key group and 
pairwise keying protocols consume too much energy.  For significant sensor networks, a mix of public 
key-based protocols, including pairwise, group keying, and distribution keying, provide an energy-
efficiency superior to using just a single protocol. 

We have developed group determination algorithms and hybrid key management protocols to 
improve the energy efficiency of key management.  The group determination algorithms find the 
largest non-overlapping singly-hop-connected and star groups within a given sensor network field 
such as those shown in Figure 1.  A singly-hop-connected group is a collection of sensor nodes that 
can each transmit and receive to every other group member.  A star group is as a collection of sensor 
nodes that can each transmit and receive to a single “leader” node.  The hybrid key management 
protocols perform various group keying protocols using either singly-hop-connected or star groups, 
and pairwise keying protocols for any remaining sensor nodes in the field. 

 
Figure 1 - Pairwise and Group Connections, Communications Range = 40 Meters 

We have developed and analyzed a MATLAB-based simulation to assess the performance of our 
developed algorithms and protocols.  Our simulation is based on a routing determination protocol 
simulation developed by Dr. Diane Mills and Melissa Chevalier of Sanders, a Lockheed Martin 
Company.  The Group A sensor positions for the SensIT August ’00 experiment were used as a 
baseline for examining the performance of our algorithms and protocols.  Different communications 
ranges and different transmit power control methodologies were simulated for each of the different 
hybrid approaches. 

Our simulation-based analysis demonstrates that hybrid key management protocols provide 
significant advantages in performing key management.  Table 1 compares the average per node key 
management energy consumption for the pairwise-only baseline with three dual-protocol hybrid 
schemes when the radiated RF transmission power control is controllable on a per transmission 
basis.  For the majority of communications ranges, the dual-protocol hybrid schemes are significantly 
more energy-efficient, with the Pairwise-Simple Key Distribution Center (SKDC) hybrid being most 
efficient. 

3 



NAI Labs Technical Report #00-010  

 

Key Management Energy Consumption (Joules / node) Communications 
Range 

(meters) Pairwise Only Pairwise-GDH 
Hybrid 

Pairwise-BD 
Hybrid 

Pairwise-
SKDC Hybrid 

30 .55 .58 .42 .36 
35 .82 .87 .59 .52 
40 1.26 1.21 .79 .69 
45 1.73 1.62 1.05 .77 
50 2.28 1.95 1.30 .69 
60 4.42 3.39 2.28 .50 
70 6.63 4.78 3.32 .50 
80 9.67 6.11 4.29 .50 
90 13.42 6.53 5.33 .50 

Table 1 - Hybrid Keying Average Energy Consumption, Per Transmission Power Control 

As shown in Table 2, when the sensor node’s RF transmission power is not controllable, the 
Pairwise-BD hybrid is most energy-efficient at lower communications ranges, whereas the Pairwise-
SKDC hybrid is most energy-efficient at greater communications ranges.  However, the Pairwise-BD 
hybrid benefit only occurs when multicast transmission is available, thus demonstrating the 
importance of this capability to key management energy efficiency. 

 

Key Management Energy Consumption (Joules / node) Communications 
Range 

(meters) Pairwise Only Pairwise-GDH 
Hybrid 

Pairwise-BD 
Hybrid 

Pairwise-
SKDC Hybrid 

30 .67 .70 .46 .45 
35 1.14 1.15 .66 .71 
40 1.98 1.80 .93 1.05 
45 3.21 2.78 1.35 1.46 
50 4.95 3.98 1.80 1.44 
60 11.80 8.19 3.38 1.58 
70 23.27 14.84 5.76 2.77 
80 42.24 23.13 8.60 4.59 
90 70.80 28.96 10.65 7.24 

Table 2 - Hybrid Keying Average Energy Consumption, No Transmit Power Control 

Although our research has identified key management energy-efficiency improvements for a number 
of scenarios, further improvements are possible.  We have identified the following areas were 
additional research would enhance key management performance: 

• Development of an optimized group determination algorithm – The algorithm we are 
currently using is sub-optimal since it simply finds the largest group available, whereas a 
smaller group may provide a greater reduction in energy consumption depending on the 
relative positions of the group members.  Furthermore, the optimal amount of overlapping 
between groups has not been determined. 

• Finding GDH-optimized groups and optimizing member roles – Finding singly-hop-
connected groups is an overly restrictive simplified approach towards performing hybrid 
keying using a Group Diffie-Hellman protocol.  A stricter approach would not require all 

4 



NAI Labs Technical Report #00-010  

members to interconnect, but rather simply require the controllers to connect to all 
members and require all non-controlling nodes be connected to their protocol “next-door 
neighbors”.  Moreover, selection of member roles can be further optimized to minimize the 
communications energy by having protocol “next-door neighbors” to match with the actual 
physical “next-door neighbors”. 

• Multiple group keying protocols in a single hybrid protocol – Thus far, we have examined 
hybrid protocols that included a group keying protocol and a pairwise keying protocol.  We 
believe there are scenarios, especially with much larger sensor networks, where two or more 
different group keying protocols in addition to a pairwise keying protocol may provide a 
better hybrid protocol than just one group keying protocol alone. 

• Multi-hop keying – Although establishing keys via protocols that require multiple hops 
appears to be less energy efficient, we believe there may be scenarios in densely populated 
sensor networks where multi-hop keying may be effective. 

• Parasite keying – We have qualitatively identified scenarios where Parasite keying is 
advantageous, but have not yet shown these benefits quantitatively.  These benefits are best 
shown via simulation in the near-term, building upon our existing hybrid keying protocols. 

• Per-node group determination and role determination algorithms – As we transition from 
research and simulation to integration and demonstration, it is important we appropriately 
transform our algorithms as well.  Currently, our algorithms assume a degree of 
omnipotence regarding the locations of neighboring sensor nodes, the possible 
interconnections, the groups to be formed, and each node’s given group role.  Our 
algorithms must assume less to handle the asynchronous nature of self-assembling networks, 
including making determinations with limited information that may result in sub-optimal 
configurations. 

• Integration of routing and keying protocols – Despite the additional complexity of 
integrating routing and key establishment protocols, there may be significant advantages in 
combining some aspects of these protocols.  For instance, some key establishment 
protection is necessary to protect routing determination protocols.  However, some multi-
hop key establishment protocols require routing to already be determined.  Integrating 
portions of both protocols together may provide energy reductions not possible with these 
functions separated.  

• Further protocol exploration – As we develop increasingly more sophisticated simulations 
and development demonstrations, new issues with the protocols will become important.  
Different communication channel models will have varying impact on the latency of 
different cryptographic protocols and on the ability of the network to run multiple protocols 
concurrently. The effect of sensor node dozing on different keying protocols must be 
examined and deficiencies addressed.  Asymmetric communication links between nodes 
seriously impact the use of certain key management protocols. Further development of 
amortization techniques and simulating / testing is needed in order to minimize energy 
consumption and latency.  

• Key management during post routing-establishment and network re-seeding phases – Once the 
routing infrastructure has been established sensor nodes can utilize (at a cost) remote resources. 
During network re-seeding (or during significant network disruptions) the network may 
consist of regions that for a moment completely lack routing, regions that have well 
established routing, and mixed regions with only partial, highly irregular routing in place. The 
chaotic nature (and potentially low latency tolerance) of such situations will be especially 
challenging to energy efficient key establishment. The joining of two sensor networks also 
presents similar challenges to key management. Both of these phases will require different 

5 



NAI Labs Technical Report #00-010  

key management protocol mixes than the mixes used during the pre-routing and routing 
establishment phases  

• Port simulation from MATLAB to ‘C’ – MATLAB is an excellent platform for simulation 
and research that can easily generate useful figures and graphics, but it is not easily integrated 
into a prototype development.  As we transition towards developing a security 
implementation to validate and progress our research, we should first take the intermediate 
step of porting our MATLAB-based algorithms to the ‘C’ programming language.  Not only 
will porting to ‘C’ allow us to more easily develop on prototype sensor nodes later, the 
improved performance of ‘C’ allows us to simulate larger sensor networks to determine how 
well our approaches scale. 

• Researching other security services – Key management is but one of the many security 
services that must be supported by the distributed sensor network.  Our research should 
additionally examine other security services, such as integrity, authentication, and non-
repudiation, to determine efficient and secure methods of providing these services. 

• Implementation of security services – Finally, we must validate our research via sensor 
prototype-based experiments.  The challenges of implementation and the many real world 
issues such as energy, latency, and network self-assembly provide an excellent environment 
for identifying the critical elements of the research.  In addition to the key management, a 
prototype implementation must include basic security services such as confidentiality, 
integrity, and authentication.  An independent red-team security analysis of our design and 
implementation will also provide great value to this security research. 

 

 

6 



NAI Labs Technical Report #00-010  

Contents 
Executive Summary .............................................................................................................................................2 
1 Introduction..................................................................................................................................................9 
2 Background .................................................................................................................................................11 

2.1 Sensor Node Technology .................................................................................................................11 
2.1.1 Sensor Node Hardware ............................................................................................................11 
2.1.2 Software ......................................................................................................................................15 

2.2 Sensor Network Missions.................................................................................................................16 
2.2.1 Perimeter Defense or Area Denial .........................................................................................16 
2.2.2 Remote Surveillance..................................................................................................................16 

2.3 Sensor Network Architecture ..........................................................................................................16 
2.3.1 Environment ..............................................................................................................................16 
2.3.2 Data Types..................................................................................................................................17 
2.3.3 Communications Architecture ................................................................................................17 

2.4 Concept of Operations .....................................................................................................................21 
2.4.1 Manufacture ...............................................................................................................................22 
2.4.2 Depot Storage ............................................................................................................................23 
2.4.3 Pre-Deployment ........................................................................................................................23 
2.4.4 Deployment................................................................................................................................23 
2.4.5 Mission Completion..................................................................................................................24 

2.5 Environment ......................................................................................................................................24 
3 Requirements ..............................................................................................................................................25 

3.1 Confidentiality ....................................................................................................................................25 
3.2 Authenticity ........................................................................................................................................25 
3.3 Integrity ...............................................................................................................................................25 
3.4 Freshness.............................................................................................................................................25 
3.5 Scalability.............................................................................................................................................26 
3.6 Availability...........................................................................................................................................26 
3.7 Accessibility ........................................................................................................................................27 
3.8 Self-Organization ...............................................................................................................................27 
3.9 Flexibility .............................................................................................................................................28 

4 Constraints ..................................................................................................................................................29 
4.1 Sensor Node Constraints..................................................................................................................29 

4.1.1 Battery Power/Energy..............................................................................................................29 
4.1.2 Rechargeability ...........................................................................................................................31 
4.1.3 Sleep Patterns .............................................................................................................................31 
4.1.4 Transmission Range ..................................................................................................................31 
4.1.5 Memory .......................................................................................................................................32 
4.1.6 Location Sensing........................................................................................................................32 
4.1.7 Tamper Protection ....................................................................................................................33 
4.1.8 Time.............................................................................................................................................33 
4.1.9 Unattended Operations ............................................................................................................33 

4.2 Networking Constraints....................................................................................................................34 
4.2.1 Ad hoc Networking ..................................................................................................................34 
4.2.2 Limited Pre-Configuration.......................................................................................................34 
4.2.3 Data Rate/Packet Size ..............................................................................................................34 
4.2.4 Channel error rate......................................................................................................................34 
4.2.5 Intermittent connectivity..........................................................................................................34 
4.2.6 Unreliable communications .....................................................................................................35 

7 



NAI Labs Technical Report #00-010  

4.2.7 Latency ........................................................................................................................................35 
4.2.8 Unicast vs. multicast..................................................................................................................35 
4.2.9 Unidirectional Communications .............................................................................................35 
4.2.10 Isolated subgroups ....................................................................................................................35 
4.2.11 Frequent Routing Changes ......................................................................................................36 
4.2.12 Population Density....................................................................................................................36 
4.2.13 Unknown Recipients.................................................................................................................36 

5 Keying Protocols........................................................................................................................................37 
5.1 Background.........................................................................................................................................37 

5.1.1 Key Establishment Steps..........................................................................................................37 
5.1.2 Basic Keying Techniques .........................................................................................................38 
5.1.3 Energy Consumption of Keying Primitives..........................................................................39 

5.2 Pre-deployed Keying .........................................................................................................................46 
5.2.1 Network-Wide Pre-deployed Keying .....................................................................................46 
5.2.2 Node-Specific Pre-deployed Keying ......................................................................................46 
5.2.3 J-Secure Pre-Deployed Keying................................................................................................48 

5.3 Arbitrated Protocols..........................................................................................................................49 
5.3.1 Traditional Key Distribution Center-Based Methods .........................................................50 
5.3.2 Symmetric Key Certificate-Based Keying..............................................................................57 
5.3.3 Identity-Based Symmetric Keying ..........................................................................................61 
5.3.4 Arbitrated Group Keying Protocols.......................................................................................65 
5.3.5 Energy Consumption Shifting Key Establishment Protocols............................................70 
5.3.6 Public Key Based Kerberos Protocols...................................................................................79 

5.4 Self-Enforcing Autonomous Keying Protocols............................................................................80 
5.4.1 Pairwise Asymmetric Keying...................................................................................................80 
5.4.2 Group Keying Protocols ..........................................................................................................83 
5.4.3 Attribute-Based Keying ............................................................................................................96 

5.5 Preliminary Techniques Comparison .............................................................................................97 
6 Network-wide Approaches.................................................................................................................... 102 

6.1 Sensor Network Simulation .......................................................................................................... 102 
6.2 Integrating Key Establishment with Network Self-Organization........................................... 103 
6.3 Group Determination .................................................................................................................... 104 
6.4 Hybrid Approaches ........................................................................................................................ 106 

6.4.1 Pairwise and Group Diffie-Hellman Hybrids.................................................................... 106 
6.4.2 Pairwise and Burmester-Desmedt Hybrids ........................................................................ 108 
6.4.3 Pairwise and Simple Key Distribution Center Hybrids.................................................... 109 
6.4.4 Comparison of Approaches.................................................................................................. 110 

6.5 Energy-Aware Approaches ........................................................................................................... 114 
6.5.1 Key Protocol Roles ................................................................................................................ 114 
6.5.2 Parasite Protocol..................................................................................................................... 115 
6.5.3 Time Varying Approaches .................................................................................................... 116 

6.6 Specialization ................................................................................................................................... 116 
7 Next Steps ................................................................................................................................................ 118 
References......................................................................................................................................................... 120 
Acronyms.......................................................................................................................................................... 125 
 

8 



NAI Labs Technical Report #00-010  

1 Introduction 

Distributed sensor networks (DSNs) will produce high-quality battlefield information using large 
numbers of physical sensors (e.g., acoustic, seismic, visual) communicating via ad hoc wireless 
networking.   Advances in microelectromechanical systems (MEMS) technology allow sensors to be 
re-programmable in the battlefield, self-localizing, and to support low-energy, wireless, multi-hop 
networking, while requiring only minimal pre-configuration.  To reliably support coordinated control, 
management, and reporting functions, sensor networks will be self-organizing with both 
decentralized control and autonomous sensor behavior, resulting in a sophisticated processing 
capability.   

Battlefield constraints create daunting engineering challenges for sensor designers.  Sensor packages 
will be small, lightweight, inexpensive, and low-power.  Distributed in irregular patterns across 
remote and often hostile environments, sensor nodes will autonomously aggregate into collaborative, 
peer-to-peer networks.  Sensor networks must be robust and survivable despite individual node 
failures and intermittent connectivity.  Support for lengthy mission lifetimes constrains battery 
consumption to miserly rates when not in an energy conserving dormancy.  High information 
assurance must be provided despite the use of unattended sensor packages with relatively weak 
resistance to tampering. 

Distributed sensor networks will be a mission critical component requiring commensurate 
communications security protection.  Warfighters must be assured that received sensor information 
is correct.  Deployed sensors must only accept legitimate queries, commands, and software updates.  
Sensor network communications must prevent disclosure and undetected modification of exchanged 
messages. 

Providing confidentiality and authentication is critical to preventing an adversary from compromising 
the security of a distributed sensor network.  However, providing key management for confidentiality 
and group-level authentication is difficult due to the ad hoc nature, intermittent connectivity, and 
resource limitations of the distributed sensor network environment.  This DARPA-sponsored 
research will address this problem by identifying and developing cryptographic protocols and 
mechanisms that efficiently provide key management security support services. 

Operating in a hostile environment exposes unattended sensors to a myriad of threats that require 
various forms of physical, communications, and cryptographic protection.  Our research focuses on 
only one security problem in this security space:  key management for confidentiality and group-level 
authentication in resource-limited distributed sensor networks.  This research addresses the problems 
of achieving sufficient “trust” among unattended sensor nodes to support key management, and 
efficiently performing cryptographic key computations for message privacy and authentication.  This 
research does not address physical protection of sensor node processing, efficient algorithms for 
performing data confidentiality and message authentication, or key management for other sensor 
node functions such as frequency hopping and spread spectrum communications and Global 
Positioning System (GPS) keying. 

NAI Labs is collaborating with other research programs examining sensor and sensor network 
technology.  In addition to DARPA’s SensIT program, the Army Research Laboratory’s (ARL) 
Advanced Telecommunications and Information Distribution Research Program (ATIRP) 
consortium and the Internet Engineering Task Force (IETF) Mobile Ad-Hoc Networking (MANET) 
working group are exploring sensor network solutions.  For ARL’s ATIRP consortium, NAI Labs is 
developing a communications security architecture that protects Army sensor networks under 
battlefield constraints.  The ARL-sponsored architecture is broad, examining a wide range of threats, 
attacks, vulnerabilities, requirements, constraints, and corresponding security services.  Conversely, 

9 



NAI Labs Technical Report #00-010  

our SensIT research is narrowly focused, examining the key management security support service in 
great depth.   

This document describes our sensor network constraints and key management approaches research 
for FY 2000.   The remainder of this document is organized as follows: 

• Section 2 provides background on distributed sensor networks. 

• Section 3 describes the security requirements applicable to the problem of establishing keys 
for confidentiality and group-level authentication. 

• Section 4 describes constraints that make this problem difficult. 

• Section 5 describes and analyzes protocols that can be used to establish keys between group 
of sensor nodes. 

• Section 6 examines network-wide approaches to optimizing energy consumption for various 
sensor network scenarios. 

• Section 7 describes additional areas of research that we have identified that could further 
enhance sensor network key management performance. 

 

10 



NAI Labs Technical Report #00-010  

2 Background 

2.1 Sensor Node Technology 

The sensor node is the basic component of the sensor network.  Nodes are designed for ease of 
deployment and to be low cost, compact, lightweight, and disposable.  Local and collaborative signal 
processing across the wireless network enhances sensor nodes primitive sensing functions (e.g., 
seismic, acoustic, magnetic).  The following sections describe features of these nodes that support the 
basic functions of a sensor node, including: event detection, event or target classification, target 
tracking, and event reporting.   

2.1.1 Sensor Node Hardware 

Sensor nodes provide the core sensing functions of the sensor network.  The sensor node hardware 
design and communications architecture are greatly influenced by their finite battery limitations.  
Sensor node designs by Sensoria Corporation [WINSNG00], Rockwell Collins [Agre99, Agre00b], 
and the Army Research Laboratory (ARL) [Falco00] reflect this design constraint through their use 
of low-power hardware and embedded processors.  This section describes capabilities and design 
characteristics of these sensor nodes.  

2.1.1.1 Hardware Design 

In order to simplify deployment and support ad hoc network formation, we assume that future 
sensor nodes will support a flexible hardware and software architecture allowing them to take on 
various roles in the network (e.g., gateway vs. sensing node) and support various sensor applications.   
The exact function of each sensor node may not be determined until deployment and may change 
over the course of its mission.  Flexibility is an important requirement in reducing the amount of 
equipment needed by soldiers in the field in order to deploy a sensor network and in supporting 
remote deployment techniques (e.g., airdrop).  In general, we assume that sensor nodes support the 
following functions or features [Mills00, Tassiulas00a, Tassiulas00b]: 

• Dynamically configurable to support a variety of network functions or roles (e.g., gateway, 
ordinary node); 

• Remotely re-programmable to support new functionality (e.g., new signal processing 
algorithms); 

• Support location determination mechanisms to define their exact or relative position (e.g., 
the Global Positioning System (GPS) or localizing functions such as the radio frequency 
Localizer by AEther Wire Location, Inc. [Aether95]); 

• Support low-energy networking to exchange data locally over a wireless multi-hop ad hoc 
network; 

• Support long-haul communications capabilities for exchanging data over long-haul radio 
circuits (i.e., when designated as a gateway node); and 

• Require only a minimal pre-configuration prior to deployment.   

Energy is the most constraining factor in sensor node design affecting all aspects of a sensor node 
design.  Microprocessor selection is one area where energy conservation is important.  There are 
numerous commercially available microprocessors designed for embedded low-power environments.  
These microprocessors are suitable for both commercial applications (e.g., cellular phones, PDAs) 

11 



NAI Labs Technical Report #00-010  

and sensor nodes with similar energy constraints.  Current embedded processors typically have power 
dissipations less than 500 mW (see Figure 2), operate with clock speeds of less than 200 MHz, and 
require voltage supplies in the range from 1.0 to 3.3 volts.  Energy constraints of embedded 
processors will be discussed more in Section 2.1.1.2 and Section 4.1.1.   

Since 1965, the prediction made by Gordon Moore from Intel that the microchip transistor density 
will double every 18 months has proven remarkably true [Wittman99].  According to Wang 
[Wang00b], the Semiconductor Industry Association forecasts that to keep up with Moore’s Law, 
portable-computing platforms will reduce voltages from today’s typical 1.5 V to 0.3 V in the year 
2014.  This will allow processing to improve while maintaining low-power consumption.  Current 
research in the communications circuits designed for sensor nodes have produced designs that 
consume power in the nanowatt range [Sarneke98].   

 
 

Power (mW)

MIPS R4000

SA-1110 “StrongARM”

Z-180

MC68328 “DragonBall”

MCF5204 “ColdFire”

MMC2000 “M-Core”

ARC 3 (simulation results) 

 

0 100 200 300 400 500 600 700

Figure 2 - Power Dissipation for Selected Embedded Processors 

There are several sensor nodes that have been recently demonstrated in sensor mission 
environments.  Both the Rockwell Science Center2 and Sensoria Corporation3 have a Wireless 
Integrated Network Sensor node suitable for low-energy sensor networks.  The Sensoria node uses a 
low-power pre-processor, the Zilog Z-180, and a low-power core processor, MIPS R4400, for 
performing signal processing functions.  The Rockwell node uses a low-power Intel StrongARM SA-

                                                      
2 http://wins.rsc.rockwell.com/ 
3 http://www.sensorweb.com/ 

12 



NAI Labs Technical Report #00-010  

1110 microprocessor.  Both the MIPS at 80 MHz and StrongARM at 133 MHz typically consume 
less than 300 mW when in the run mode.  The StrongARM consumes less than 1 mW in its sleep 
mode.   

2.1.1.2 Sensor Node Energy 

Perhaps the greatest limiting factor in a sensor node’s life expectancy is its battery capacity.  In 
general, we assume that sensor nodes have a limited battery capacity and therefore must take 
precaution to conserve their energy.  Energy conservation is applicable at the node level and at the 
network level.  For example, the routing decisions made by one node or a group of nodes can affect 
the energy levels nodes receiving their traffic.  Some energy conscious routing algorithms attempt to 
balance available energy throughout the network [Mills00, Tassiulas00a, Tassiulas00b].  We assume 
that once deployed, the sensor node battery cannot be recharged or replaced while in the field.  
However, at least one sensor node developer is investigating this possibility using solar arrays to add 
recharging capabilities.4  Nonetheless, this application may not be suitable for all types of sensor 
network missions (e.g., remote reconnaissance).   

Energy is the capacity to perform work and is related to the power consumed over time.  Within a 
microprocessor, power consumption is related to the frequency of the supplied clock and the voltage 
supply.  The approximate power consumed by an integrated circuit is a function of voltage (V), clock 
frequency (f), capacitance (C), and quiescent current [Kurkowski00]: 

P = V2 · f · C + Pstatic 

Pstatic is associated with the semiconductor’s physical characteristics, temperature, and its voltage and 
current supply.  The remaining part of the equation is dynamic and can be controlled by changes to 
the chips voltage supply and clock frequency.  A reduction of clock frequency alone will not reduce 
energy because the frequency is inversely proportional to time.  Therefore, a reduction in clock 
frequency without a reduction in voltage will provide no benefit.  The software will simply take 
longer to run and thus offset the power savings of having a slower clock.  A reduction in voltage may 
be possible when lowering the clock frequency because a slower clock may allow longer gate settling 
times resulting from the lower voltage [Lorch95, Lorch98].  However, a slower clock may mean that 
other components are powered for longer durations (e.g., RAM), negating any power savings of a 
slower processor clock.   

The actual amount of energy available by a sensor node’s battery is a function of temperature, the 
rate of dissipation, and the battery technology.  A battery’s potential capacity is measured in 
milliampere-hours (mAh) and is a function of the ambient temperature and the load on the battery.  
Capacity can also be represented as energy (Joules) that is the amount of power consumed over time.  
Table 3 shows some typical battery capacities. 

                                                      
4 Conversation with Jon Agre from Rockwell Science Center on 17 March 2000. 

13 



NAI Labs Technical Report #00-010  

 

Battery Model # Typical Capacity, 
Nominal Voltage 

Chemical 
Composition Energy Potential5 

CP8136Energizer 1200 mAh @ 3.6 V Ni-MH rechargeable 12.96 kJ @ 3.0 V 

MN1500Duracell AA 2850 mAh @ 1.5 V Alkaline 15.39 kJ @ 1.5 V 

MN2400Duracell AAA 1150 mAh @ 1.5 V Alkaline 6.21 kJ @ 1.5 V 

Table 3 - Battery Charge and Power 

As an example of battery energy capacities for possible sensor nodes, we reference the capacity 
available to the WINS NG by Sensoria.  The sensor node’s 7.2 volt battery pack supplies roughly 26 
kJ of energy6.  At a data rate of 10 kbps transmitting with an RF power of 10 mW and a radio 
subsystem dissipation of 210 mW, the transmission energy rate is 21 µJ/bit and will communicate 
approximately 900 meters7.  Shorter distances require less energy.  Similarly, the receive energy rate is 
14 µJ/bit for a radio subsystem dissipation of 140 mW.   

In order to conserve energy, embedded processors typically have low-power modes that slow or halt 
the processor clock and place the device in a state that consumes less power.  Newman and Hong 
[Newman98] examined the power consumption of the Palm III in various modes with its processor, 
the Motorola DragonBall (e.g., sleep, doze, run).  In sleep mode the unit appears off, with many 
peripherals in an energy-conserving low power mode.  An interrupt from a physical button or the 
real-time clock will wake the system.  In its doze mode, the processor is halted but some peripherals 
including its display are powered.  The recovery from the doze mode is faster than the sleep mode.  
In the run mode, the device is fully powered and the processor is executing instructions.  A true 
energy savings for the Palm Pilot can be gained by returning the processor to the sleep or doze mode 
that uses less power [Newman98].  In a bursty communications or processing environment, faster 
and more efficient software allows the device to return to this state faster.  The energy saved by 
reducing the scalable clock frequency of the device is negligible without a corresponding voltage 
reduction and in some cases is offset by unreliable performance caused by a slower clock frequency. 

In order to conserve power, we assume the majority of a sensor’s lifetime is spent in a low power 
doze or sleep mode.  In some cases, the sensor node may only be placed in a run mode upon event 
detection or to route traffic from a neighboring node.  The time in the power consuming run mode 
should be minimized to conserve energy.  An energy reduction or loss by an individual sensor node 
will affect the energy balance in the sensor network requiring routing tables to be resynchronized to 
avoid the weak sensor node and avoid potential isolation problems in the network. 

2.1.1.3 Sensor Node Mobility 

We assume unattended ground sensors have no mobility.  Once deployed, the sensor nodes will not 
be physically moved.  However, in some mission environments, sensor nodes may be replaced if the 
battery supplies are low or the nodes are damaged.  For remote reconnaissance missions, hand 
replacement is not possible.  Instead, nodes are added to the network using random “seeding” 

                                                      
5 Actual available energy is a function of voltage, temperature, and discharge rate.  The alkaline potential is 
based on 21° C (i.e., operating range –20° C to 54° C).  Ni-MH based on a C/5 discharge to 0.9 volts per 
cell. 
6 Provided by William Kaiser of Sensoria Corporation. 
7 For a 1-kilobit data payload over a BPSK surface-to-surface link with a Free Space Rayleigh channel 
propagation law of 1/R4 and with an error rate of 10-6. 

14 



NAI Labs Technical Report #00-010  

methods.  In both cases, the makeup of the network changes over time as nodes are added or deleted 
from the network.    

2.1.1.4 Sensing Capabilities 

We assume that sensors may contain any number of sensing capabilities including seismic, acoustic, 
magnetic, infrared, radar, and video.  Although the sensing of events is done in real-time, the 
reporting of events may not.  Reports may be fused with reports from other sensor nodes.  Sensor 
nodes may deliver video in real time and require suitable quality of service (QoS) to support its 
delivery.  

2.1.1.5 Tamper Detection and Protection 

Tamper detection refers to technologies that actively or passively detect tampering of the physical 
device by an adversary.  There are several physical layers to a tamper attack starting first with removal 
of the sensor node’s cover.  Once the internal hardware is exposed, an attacker may alter a node’s 
hardware or software or attempt to extract sensitive information from the sensor node memory.  
After power is removed from a memory device (i.e., RAM), remnants of past data may still exist 
[Anderson97].  In the sensor network environment, this may pose a security risk to sensor nodes 
when their batteries become exhausted.  Without battery power, a sensor node may not be able to 
actively provide tamper protection.    

Tamper protection may consist of both passive and active components and be applied to the physical 
or electrical design.  Active technologies detect the act of tampering and perform some 
countermeasure such as zeroizing memory.  Passive technologies deter or delay an adversary from 
extracting sensitive data from the sensor node.  Because of the low cost and disposable design of 
sensor nodes, we assume that their tamper capabilities will be limited.   

2.1.2 Software 

We assume that sensor nodes will employ an embedded operating system to manage and support its 
applications for providing real-time performance.  Although the sensor applications running on the 
node may be custom, the underlying operating system may be an embedded commercial-off-the-shelf 
(COTS) operating system.  For example, the Sensoria WINS NG uses the Microsoft Windows CE 
operating system found in commercial PDAs.  We assume that the operating system will be 
trustworthy but not a “trusted” operating system as defined by the National Computer Security 
Center (NCSC).  As defined in Department of Defense Trusted Computer System Evaluation Criteria 
[DoD85], we assume the operating system will have the lowest possible rating of Class D Minimal 
Protection.  

Additionally, in order to support the implementation of any security requirements, we assume that 
the embedded operating system is not bypassable, and properly implements the documented 
interfaces.  Furthermore, the implementation must provide assurance that it does not allow any 
unintended execution paths or access.  We do not assume any specific security functionality from the 
operating system.  In order to assure that the operating is properly implemented, evaluation 
methodologies such as the Common Criteria for Information Security Evaluation [Common99] may be 
employed.   

In support of a flexible design, we assume that sensor nodes support remote reconfiguration and 
reprogramming to incorporate flexibility into their design.  We also assume that sensor nodes may 
support the use of mobile software.  A possible use of mobile software to perform vulnerability 
assessments is described in [Barrett98, Dumas99]. 

15 



NAI Labs Technical Report #00-010  

2.2 Sensor Network Missions  

The primary mission of the sensor network is to detect and report events occurring within range of 
the sensor network.  The sensor nodes in the network generally have crude sensing functions (e.g., 
seismic, magnetic).  Through the cooperation of other nodes in the sensor network, a more reliable 
sensing function is possible.  Using their sensing capabilities, individual sensor nodes can detect 
events such as movement of dismounted troops, movement of armored vehicles, detection of 
chemical occurrences, etc.  Once an event is detected, the detecting sensor node may report the 
event directly to a remote command and control (C2) application or collaborate with other sensor in 
the network to more reliably identify and track a target.  Some basic missions of sensor networks 
include border monitoring or perimeter defense, and remote reconnaissance or surveillance. 

In these mission scenarios, we assume that detected events (e.g., troop movement) will be reported 
to a C2 application.  The location of the application can be local (e.g., a dismounted soldier in the 
sensor field) or remote (e.g., a centralized command and control center).  Reports may be delivered 
immediately upon event detection or cached for later delivery.  Delivery may be upheld to prevent 
detection (i.e., LPD) or to fuse with other reports from neighboring sensors.   

2.2.1 Perimeter Defense or Area Denial 

Sensor nodes can be deployed in a network to detect and report the movement of targets across a 
defended border or perimeter.  In this scenario, sensors may be hand placed in a one-dimensional 
fashion (e.g., along a fence line) to detect and report perimeter violations.  The network will typically 
be static with few additions or deletions over its lifespan.  Although the sensor may be located in 
close proximity to friendly troops, the nodes may be unattended for long periods of time. 

In a Military Operations on Urbanized Terrain (MOUT) operation, dismounted soldiers place 
sensors within sections of a building as those sections are “cleared” similar to a perimeter defense 
mission.  The network topology will change as the perimeter advances and more nodes are added to 
the network.  

2.2.2 Remote Surveillance 

In remote surveillance missions, sensor nodes may be deployed in remote areas behind enemy lines.  
A two-dimensional sensor field is formed with randomly placed nodes.  Mills [Mills00] assumes a 
typical placement of 100 meters (actual deployment techniques have not been developed).  The 
collection of sensor nodes within the sensor field can be used to remotely monitor targets passing 
through the sensor field.  We assume that the sensors can be programmed to report back to a C2 
application either when an event happens or cache or fuse reports for later delivery.  In addition, the 
sensors will accept commands from the C2 application (e.g., sleep, change report interval).  The 
returned reports could be used for intelligence gathering or to direct assets against a detected enemy.  
The sensors will be unattended for long periods of time, possibly until their batteries are depleted.   

2.3 Sensor Network Architecture 

This section discusses details of the sensor network architecture including its environment (Section 
2.3.1), the types of data exchanged (Section 2.3.2), and its communications architecture (Section 
2.3.3).   

2.3.1 Environment 

The sensor network environment can be physically demanding on sensor nodes.  The nature of the 
unattended sensor network missions place the nodes in areas where they are subject to physical 

16 



NAI Labs Technical Report #00-010  

destruction, theft, and exposed to extreme temperature conditions.  The communications 
environment may also be difficult due to interference and fading due to ground placement and 
foliage [Wang00a]. 

The population density of sensor nodes in the network may vary depending upon the application 
(e.g., boundary defense, surveillance), the communications capabilities of the sensor nodes, and the 
environment (e.g., desert, rain forest).   For example, a one-dimensional boundary application may 
require sensor nodes be placed every 100 meters in a line.  The same application may require a closer 
placement in a denser terrain that limits signal propagation.  A two-dimensional surveillance 
application requires a different population density.  In general, we assume relatively short spacing to 
provide low-probability of interception (LPI).  In all scenarios, we assume that once deployed sensor 
nodes have no mobility.  This implies that the network is somewhat static.  However, although nodes 
are not mobile, the topology of the network may change as nodes are added or deleted from the 
network.  Nodes may be added to replace nodes that have lost power or were destroyed.   

2.3.2 Data Types 

Within the sensor network, the amount and type of data exchanged is greatly influenced by the 
battery and energy constraints of the sensor nodes.  As noted by Kaiser and Pottie [Kaiser00], the 
energy required to transmit a bit can be much greater than the cost to internally process a bit.  For 
this reason, raw data will typically be processed locally and the results exchanged within the network 
with fewer transmitted bits and less energy consumed.  The data exchanged within the sensor 
network may include raw sensor data, sensor node event reports destined for a remote command 
center or dismounted soldier in the field, or sensor commands and controls. 

In order to conserve energy, raw sensor data is not usually forwarded within the network but 
processed locally into event reports that may include target classification and direction information.  
As reports propagate through the sensor network, intermediary nodes may fuse their reports with 
those from other neighbor nodes to assist in the classification of targets and the tracking of targets.  
Data fusion helps to reduce the total amount of bits of data routed within the network.  Nodes in 
gateway locations within the network may perform data fusion functions for other local sensor 
nodes.  However, we assume for some sensor applications raw real-time data such as voice or video 
may be exchanged without significant local processing.   

Sensor reports are eventually forwarded to a C2 application.  The C2 application may be remote (i.e., 
accessible via long-haul communications links) or local (e.g., a dismounted soldier in the field).  
Commands issued from the C2 application may include request for sensing reports or commands 
requesting the sensor perform some function or revert to a certain processing state (e.g., asleep, 
awake).  Commands may target a particular sensor node or a group of sensor nodes.  We assume that 
groups may be defined based on physical location, by sensor function, or some other sensor node 
specific criteria (e.g., by a cluster group as defined in [Wang00a]). 

2.3.3 Communications Architecture 

The distributed sensor network is an ad hoc wireless network where the membership and roles of 
sensor nodes is generally not known until the deployment of the network.  Sensor nodes may be 
deleted permanently from the network when their available energy falls below acceptable limits or 
temporarily when they return to a sleep state.  Once deployed, the network is self-organizing, 
developing a routing topology that provides strong connectivity throughout the network (i.e., a path 
exists between every node) [Mills00,Tassiulas00a,Tassiulas00b].  This process will inherently remove 
isolated nodes from the network.  In order to maintain the energy balance within the network, re-
organization is required throughout the life of the network as nodes are deleted and added to the 
network.  This creates a fault tolerant network design where the loss of a fraction of the nodes causes 
a graceful degradation in network performance.   

17 



NAI Labs Technical Report #00-010  

We assume that the sensor network will support a layered protocol stack similar to that shown in 
Figure 3.  The physical layer provides a wireless link between neighboring sensor nodes (see Section 
2.3.3.1) while the network layer allow for routing and delivery of data throughout the network (see 
Section 2.3.3.2).  We assume that some applications may require reliable delivery services from a 
transport layer (see Section 2.3.3.3).  Various sensor applications are supported at the application 
layer (see Section 2.3.3.4).   

 
 

Application

Transport 

Network 

Physical 

• Medium Access 
Control (MAC) 

• LPI, LPD 

• Reliability 
• Connection oriented 

services 

• Distributed Low-
Energy Routing 

• Target Identification 
• Target Tracking  
• Data Fusion 

Data Link 

 

Figure 3 - Sensor Network Communications Layers 

2.3.3.1 Physical Layer 

The physical layer defines the mechanisms for medium access control (MAC) for the wireless sensor 
network.  There are various physical layer MAC protocols that may be used for sensor routing.   In 
general, for distributed sensor networks, distributed control is preferred over centralized control for 
survivability reasons (e.g., base-station) [Tayong00].    

We assume that nodes have variable control over their radiant RF energy allowing them to 
dynamically control the range of their communications and provide a lower probability of 
interception (LPI).  Typically, this range is less than 100 meters, with gateway nodes having additional 
communications capabilities and power to support long haul communications to reach a remote 
command center (e.g., more than 1 mile).   

We assume that the sensor network is a low-bandwidth network with a typical packet size of 30 bytes 
and a transmission rate of no more than 1 packet per second [Mills00].  Both the Rockwell and 
Sensoria8 nodes support data rates over 10 kbps with the Rockwell node supporting a rate of 100 
kbps [Agre99].  

2.3.3.2 Network Routing Layer 

The sensor network utilizes a multi-hop bursty packet based network routing protocol to deliver data 
throughout the network.  The finite energy of the network is the primary design constraint in 
developing a low-energy routing algorithm that balances energy throughout the network.  Over time, 
nodes that are a focal point for network traffic will lose energy more quickly than those nodes at the 
edges of the network.  For this reason, we assume that routing protocols like those clustering 

                                                      
8 Provided by William Kaiser of Sensoria Corporation. 

18 



NAI Labs Technical Report #00-010  

protocols described by Mills [Mills00] and Wang, et. al. [Wang00] will periodically re-organize 
themselves to balance energy dissipations in the network and extend the overall life of the network   

Self-organization is required at time of deployment to initialize routing tables without the assistance 
of a human administrator.  Later, re-organization is also necessary because of the ad hoc nature of 
the network – sensor nodes may be added and deleted from the network over its lifetime.  For 
example, in a MOUT application, nodes may be added as the defensive perimeter expands.  Nodes 
may be deleted as their energy levels fall below acceptable levels or if they are physically destroyed.  
In order to maintain strong network connectivity in these conditions, periodic re-organization is 
necessary.  The re-organization will change the topology of the network, possibly changing the 
neighboring nodes that were known and trusted by a sensor node.   

As a multi-hop network, packets are transferred from node to node until they reach their final 
destination.  Intermediary nodes make routing decisions based on their routing tables that are 
constructed based on link costs that consider the energy to transmit and receive.  Intermediary access 
requires visibility to the packet header field, implying that portions of the header may not be 
encrypted at the network layer.  Intermediate access also makes it possible to perform data fusion at 
the network layer in order to reduce the number of bits transmitted to the next link.  For example, a 
node could combine data packets or delete redundant information (e.g., commands) sent to a group 
of nodes. 

In order to construct the necessary routing information, each sensor node must determine its 
neighbor nodes and then make a determination of which it will route traffic to.  The decision on how 
to do this energy efficiently is dependent on the routing algorithm.  Cluster routing algorithms like 
those described by Mills [Mills00] and Wang, et. al. [Wang00a] discuss a concept of clusters of nodes 
centered on a cluster head (see Figure 4).  Typically, a cluster will consist of fewer than 10 nodes with 
the entire network consisting of fewer than 1000 nodes randomly spaced roughly 100 meters apart.9  
Local nodes communicate with the network through their cluster heads.  Nodes lying between 
clusters serve as gateways between the clusters.  Some gateways may also support long-haul 
communications to a remote C2 application.   

 

                                                      
9 Conversation with Dr. Diane Mills of Lockheed Sanders on 17 February 2000. 

19 



NAI Labs Technical Report #00-010  

 

 
 

Sensor Node 

Remote C2 
Application  

Wireless 
Route 

Dismounted 
Soldier

2

Long-Haul 
RF Circuit 

Cluster Head 

SENSOR FIELD  
Figure 4 - Cluster Algorithm-based Routing 

2.3.3.3 Transport Layer 

The transport layer protocols can provide reliability and session control for sensor node applications.  
The majority of sensor network communications are bursty, packet-oriented communications that do 
not require the reliability of the transport layer.  We generally assume that all sensor node 
communications are unreliable. 

Using real-time multi-media applications over the sensor network may require the ordering and 
reliability mechanisms of transport layer protocols.  Real-time communications may include the 
relaying of audio or video back to a C2 application from a sensor node.  For this type of data, 
resource reservation functions are important in maintaining a level of service between the sender and 
receiver [Ephremides00]. 

2.3.3.4 Application Layer and Data Fusion 

As we noted earlier in Section 2.1.1.2, depending on the sensor node hardware, it is generally more 
efficient to perform local processing on sensor data rather than transmit the raw data to a centralized 
point for processing.  Sensor nodes will contain signal-processing algorithms specific to their 
functionality (e.g., acoustic, seismic) to perform local target identification and perform collaborative 
target tracking.  Tracking information received from a group of sensors may be processed by an 
intermediate fusing node (see Figure 5).  The intermediate node may send the resulting report 
through the network for additional fusing or delivery to a C2 application.   

 

20 



NAI Labs Technical Report #00-010  

 

Reporting 
Node 

C2 Application 

Wireless 
Route 

Intermediate Nodes

Data Fusion 
Node 

 

Figure 5 - Data Fusion within a Sensor Network 

2.4 Concept of Operations 

During its lifespan, a sensor node may go through a series of stages starting with its manufacture and 
eventually leading to its deployment in a sensor network.  The following sections describe a generic 
concept of operations that may be applied to sensors nodes and sensor networks.  We assume that a 
typical operational scenario may include the following steps (see Figure 6), each described in the 
following sections: manufacture of sensor nodes, temporary storage of sensors at a depot, 
initialization of sensors for deployment, deployment of sensor nodes, mission operations, and 
mission completion. 

21 



NAI Labs Technical Report #00-010  

MANUFACTURE

PRE-
DEPLOYMENT

DEPLOYMENT 

MISSION 

DEPOT 
STORAGE

MISSION 
COMPLETION

 
Figure 3Figure 4Figure 5 

Figure 6 - Sample Concept of Operations for Sensor Networking 

2.4.1 Manufacture 

During the manufacturing process, sensor node hardware is assembled and core software is loaded 
(e.g., operating system, communications drivers).  We assume that the sensor node architecture is 
flexible, allowing for the addition of various sensors and supporting software (e.g., target 
classification algorithms) during the pre-deployment stage.  However, some basic functions may be 
loaded during manufacture.  Other initialization information may also be loaded during manufacture 
including cryptographic algorithms and key material.   

The following assumptions about the manufacturing process may affect the security of the sensor 
nodes and network: 

• Sensors will be manufactured in large quantities at low cost; 

• Access control to the manufactured sensors and sensor parts may not be tightly controlled. 

• Sensors nodes may be susceptible to theft during manufacture; 

• The development process may not have tight access control mechanisms allowing 
unauthorized hardware or software modifications; and 

• Software bugs may be introduced due to human error during the development process.  
These bugs could put the sensor node in an undetermined state making it susceptible to 
compromise.   

• Portions of the manufacturing process may occur outside the United States. 

22 



NAI Labs Technical Report #00-010  

Following their manufacture, sensor nodes may be forwarded to a depot prior to distribution to the 
field.  Due to the relatively large quantities of sensor nodes that may be manufactured, we assume 
that the manufacturing process will not be tightly controlled.  Army depot facilities like Tobyhanna 
Army Depot have secure facilities for the manufacture and refurbishing of COMSEC equipment.  
However, this additional security adds to the cost of each sensor and is contrary to the goal of 
inexpensive and disposable.  We assume that the low-cost disposable nature of the technology 
discourages use of relatively high-cost secure manufacturing facilities.   

2.4.2 Depot Storage 

Following manufacturing process, the sensor nodes may be stored in a depot for extended periods of 
time awaiting deployment.  The depot may also serve as a point for repairing damaged nodes or 
refurbishing outdated nodes.  During this time, we assume that access to the sensor nodes is not 
tightly controlled.  A lack of access control may make nodes susceptible to theft and allow 
unauthorized modifications of hardware or software (i.e., tampering).   

2.4.3 Pre-Deployment 

In order for sensor nodes to be deployed within a sensor network, it may be necessary to initialize or 
pre-configure the nodes.  We note that it is a goal to limit the amount of pre-configuration in order 
to facilitate deployment.  However, we believe some amount of pre-configuration will always be 
necessary to distinguish legitimate sensor nodes.  Depending on the mission, the pre-deployment 
stage may take place at the depot or in the field by the deploying soldiers.  Pre-configuration may 
include the following changes to the sensor node: 

• Assigning of sensing roles and capabilities (e.g., acoustic, seismic); 

• Assigning of network roles (e.g., gateway vs. normal node functions); 

• Loading of software (e.g., target analysis algorithms); and 

• Loading of cryptographic initialization information. 

Depending on the security mechanisms employed by a sensor node, the loading of cryptographic 
information during pre-deployment may increase the classification of the node.  Depending on the 
classification, the node may require additional physical protection while in storage.  Various 
mechanisms may be used to reduce the classification and thus the need for physical protection.  
Cryptographic techniques such as key splitting or key sharing can reduce the classification of the key 
material.  Tamper protection and detection mechanisms may also be used (e.g., tamper seals).     

2.4.4 Deployment 

Once the sensors are physically deployed, the sensor network will attempt to fulfill its sensing 
mission by exchanging data between sensor nodes, command centers, and other systems. 

2.4.4.1 Self-Organization 

In order to support the requirements for random and remote placement of sensor nodes, sensors 
must be able to self-organize themselves without outside assistance.  Each sensor must be able to 
identify neighbors, and identify efficient routes to other sensor nodes and/or a gateway. 

2.4.4.2 Re-Organization 

Because of the ad hoc nature of sensor networks, the sensor network topology may change over the 
sensor mission lifetime due to the addition, replacement, or deletion of sensor nodes.  Therefore, it 

23 



NAI Labs Technical Report #00-010  

may be necessary to change the routing configuration of the network in order to maintain an energy 
efficient system in order to maintain a balance of energy throughout the network. 

2.4.5 Mission Completion 

A mission may complete either because the reason for deploying the sensors no longer exists or 
because the sensor nodes have died.  Sensor node death can be the result of physical destruction, 
isolation, or depletion of battery energy.  In any case, sensor nodes left behind on the battlefield 
could be refurbished and/or modified by an adversary and used to attack other operational sensor 
networks. 

2.5 Environment 

The sensor network environment can be physically demanding on sensor nodes.  The nature of the 
unattended sensor network missions place the nodes in areas where they are subject to physical 
destruction, theft, and exposed to extreme temperature conditions.  The communications 
environment may also be difficult due to interference and fading due to ground placement and 
foliage [Wang00a]. 

The population density of sensor nodes in the network may vary depending upon the application 
(e.g., boundary defense, surveillance), communications capabilities of the sensor nodes, and 
environment (e.g., desert, rain forest).   For example, a one-dimensional boundary application may 
require sensor nodes be placed every 100 meters to form a line.  The same application may require a 
closer placement in a denser terrain that limits signal propagation.  A two-dimensional surveillance 
application requires a different population density.  In general, we assume relatively short spacing, 
inherently facilitating low-probability of interception (LPI) due to use of low-power communications.  
In all scenarios, we assume that once deployed sensor nodes have no mobility.  This implies that the 
network is somewhat static.  However, although nodes are not mobile, the topology of the network 
may change as nodes are added or deleted from the network.  Nodes may be added to replace nodes 
that have lost power or were destroyed.   

24 



NAI Labs Technical Report #00-010  

3 Requirements 

The key establishment protocols and approaches for distributed sensor networks must satisfy several 
security and functional requirements.  The keying protocol must establish a shared key (or keys) that 
can be used by two or more sensor nodes to provide confidentiality and group-level authentication of 
application data.  The protocol must establish a key between all sensor nodes that must exchange 
application data securely, which usually means establishing keys between all one-hop neighbors 
within the sensor network.  A single key may protect data over a large portion of the network, or just 
a pair of nodes, with commensurate security ramifications.  The following sections detail additional 
key management requirements. 

3.1 Confidentiality 

The shared key established by the key management protocol, and its contributing key material, must 
be protected from disclosure to authorized parties.  Similarly, public sensor information, such as 
sensor identities and public keys, should also be encrypted to protect against traffic analysis.  
Confidentiality should be provided by keys with as small a scope as possible (i.e. fine key granularity) 
to discourage a single break from compromising a large portion of the sensor network.  That is, 
establishing unique keys between every pair of communicating sensor nodes is preferable, in a 
security sense, to using a single network-wide key. 

3.2 Authenticity 

At a minimum the access to the shared key should be limited to only those parties identified in the 
protocol, (e.g. implicit key authentication, or data origin authentication of the shared key).  Stronger 
levels of authenticity (e.g. explicit key authentication) are provided by some key establishment 
protocols.  However, most DSN scenarios do not require the extra “assurance”, and can verify key 
delivery by using a system / application protocol.. 

3.3 Integrity 

The shared key must not be modified by, its probability distribution (i.e., range of possible values) 
influenced by, or otherwise a function of the actions of outsiders of the protocol.  In other words, an 
adversary should not be able influence the value of the shared key. 

3.4 Freshness 

A key establishment process ideally should guarantee its participants that each shared key (session 
key) is fresh (i.e. has not been reused by one of the participants). This guarantee should include a 
guarantee that a key used in one cryptographic association has not been used in another association.  

Key establishment provides one of two forms of freshness guarantee. The weaker form is provided 
by key transport where one or more of the participant must depend on some other participant to 
correctly follow the protocol for the shared key to be fresh. The stronger form, key agreement, 
allows each correctly operating participant to prove to itself that the shared key is fresh. Typically 
shared keys need to be changed over time (i.e. rekeyed) for a number of reasons: 

• Amount of data – The amount of data encrypted under a cryptographic algorithm with key of a 
given size may be limited by the security policy of the DSN.  Similarly the number of uses of the 
key may be limited by the security policy.  Such policies typically exist to limit the amount of 
information related to a specific key available to an adversary for cryptanalysis and to limit the 
exposure in the case of the compromise of a single key. 

25 



NAI Labs Technical Report #00-010  

• Time - The length of time that a key may be used from when it was first used or created may be 
limited by the policy of the system.  Such policies typically exist to limit the amount of time 
available to the adversary for cryptanalysis and to limit the exposure in the case of the 
compromise of a single key. 

• Suspected compromise – A key (long term or session key) may be compromised during pre-
deployment or operational phases of a DSN. Key establishment processes may provide two 
security services that reduce the impact of such compromises.  These services are: 

• Perfect forward secrecy – The compromise of long term keys does not compromise past 
session keys, only future session keys are at risk, also known as break back protection.  

• Known-key attack protection – The compromise of past session keys does not allow an 
adversary to corrupt future session keys. 

• Membership changes – DSN nodes will fail over time for a number of reasons, including node 
death due to energy depletion.  Those nodes that have a pairwise association with the failed node 
should destroy the corresponding session keys. Groups that include the failed node should 
replace their group session keys so that if an adversary later compromises the dead node, group 
traffic will not be compromised.  Nodes that detect that they are dying should delete all stored 
keys. Group session keys should also be changed when a new node is added to a group so that if 
the new node has been taken over by an adversary past group traffic will be protected. 

3.5 Scalability  

DSNs have on the order of 10 to 10,000 nodes, of which at most a small number (< 10) of these 
nodes are energy rich super nodes or gateway nodes.  Large DSNs cannot utilize a keying scheme 
that has poor scaling properties (either in terms of energy cost or latency) for establishing and 
maintaining a key for the DSN as a whole or for some large subset of nodes.   

Most group keying schemes have some cost related parameter (number of encryption operations, 
number of bits received) that grows rapidly with increasing group size. For lightly used groups,10 or 
groups where the members often modify messages rather than just forwarding them, it is more 
efficient to use multiple smaller subgroups (with different group keys), and simply re-encrypt 
messages when they are forwarded from one subgroup to another.  This approach is especially 
attractive when transmission energy costs are more important than computational costs, as in the 
case of the WINS nodes. The re-encrypting cost can be reduced for long messages (assuming key 
initialization and switching can be done efficiently) by using key enveloping / encapsulation 
techniques.  Such techniques encrypt the message with a single key, K1, and then re-encrypt that key 
with another key, K2.  Thus, only K1 would have to be re-encrypted and not the much larger 
message. 

3.6 Availability 

Key management services must ensure that confidentiality and group-level authentication services are 
available to authorized parties when needed, protecting against active attacks that attempt to 
interrupt service within the network.  To ensure the availability of message protection, the sensor 
network should protect its resources (i.e., sensor nodes) from the unnecessary processing of key 
management messages in order to minimize energy consumption and extend the life of the network.  
Key management functions should not limit the availability of the network and not create single 

                                                      
10 Group whose members send few messages (or total number of bits) that require the use of the 
group’s key over the group’s (or individual group key’s) lifetime. 

26 



NAI Labs Technical Report #00-010  

points of failure such as a centralized key management node for all network-wide security.  The 
following should be observed:   

• The sensor network should protect its resources (i.e., sensor nodes) from unnecessary 
processing in order to minimize energy consumption; 

• Security mechanisms within the network should not adversely restrict the availability of 
sensor data or inhibit the sensor network from performing its mission; 

• Security mechanisms should not present a “single point of failure” within the network (e.g., 
should not have a single centralized key management node); and 

• Security mechanisms should minimize latency in forwarding data and establishing data 
protection services (i.e., establishing and supporting key material among sensor nodes). 

The requirement of security not interfering with the operations of the network is important in 
maintaining the availability of the network.  If for some reason the sensor nodes are not 
cryptographically synchronized where all sensor nodes have the proper key material for 
communication, the availability of the network could suffer.  In mission critical scenarios, failure to 
establish keys between communicating sensor nodes cannot be tolerated.  Therefore, the sensor 
network must be able to establish keying relationships in all scenarios, even if a temporary reduction 
in security is necessary to do so. 

3.7 Accessibility 

End-to-end confidentiality of sensor data should not be performed since it prevents sensor data 
fusion by intermediate nodes from taking place.  An effective technique to extend sensor network 
lifetime is to limit the amount of data sent back to reporting nodes.  Limiting communicated data 
reduces communications energy consumption.  To maintain a commensurate amount of information 
while limiting communicated data, some processing of the raw data to discard extraneous or 
duplicative reports is necessary.  This processing requires that intermediate sensor nodes along the 
multi-hop communications path between the sensing node and the final destination have access to 
the protected data to perform data fusion processing.  End-to-end confidentiality of sensor data 
should not be performed. 

To provide intermediate node accessibility, a key management scheme must establish keying 
relationships, either directly or transitively, with all potential intermediate nodes between all potential 
sensing nodes and all potential destination nodes.  Direct keying relationships between all potential 
sensing, intermediate, and destination nodes may be accomplished by having a single network-wide 
key for all nodes.  Transitive keying relationships allow intermediate nodes along the multi-hop 
communications path to decrypt and verify received data via one key, and use another key to re-
encrypt and authenticate data to be forwarded.  Instead of creating a single network-wide key, 
transitive relationships allow much smaller groups to establish keying relationships. 

3.8 Self-Organization 

As distributed sensor networks must be self-organize their routing, they must also self-organize their 
key management.  It often will not be known prior to deployment where, within the anticipated 
territory in which the DSN will operate, a particular node will be located. The immediate neighboring 
nodes of any DSN node will not be known in advance in most circumstances, and in general the 
number of neighbors, the distances or power required to send a messages with a particular error rate 
from one node to another will not be known in advance.  The location of and distance (physical and 
number of hops) to the gateway or other special nodes will also not be known a-priori.  As a 
consequence, the DSN nodes must be able to select the appropriate keying mechanism for the 
situation. The nodes may also have to augment the group keying protocols with other protocols, 

27 



NAI Labs Technical Report #00-010  

such as a protocol for electing a (revolving) group leader or a protocol ordering the nodes that make 
up the group in order to take advantage of efficiencies of certain group keying mechanisms. 

Sensor nodes

Groups
Current routes

Figure 7 - Establishing Keys Between Small Groups vs. the Entire Sensor Network 

The self-(re)organizing capability of DSNs must also be able to deal with nodes failing (or losing 
contact) during deployment or at other times during the lifetime of the network.  These failures may 
be caused by energy exhaustion, adversary actions (e.g. jamming, artillery barrages, and capture) or 
through natural causes. If such events require re-keying the affected group keys, then DSN key 
management (including the key schemes used) must able to handle these events efficiently.  Since 
DSNs self–organize, initially no route will be known between nodes of the network, and even after 
the routes are initially established they will change due to factors such as changing node energy 
reserves and the noisiness of communication links that construct the routes.  The keying scheme for 
the DSN must efficiently provide the necessary level of confidentiality and authentication to allow 
the DSN to operate correctly in such an environment. 

3.9 Flexibility  

Sensor networks will be used in dynamic battlefield scenarios where environmental conditions, 
threat, and mission may change rapidly.  Changing mission goals may require sensors to be removed 
from or added to an established sensor node.  Furthermore, two or more sensor networks may be 
fused into one, or a single network may be split in two.  Key establishment protocols must be flexible 
enough to provide keying for all potential scenarios a sensor network may encounter.  Protocols that 
require knowledge of what other nodes will be co-deployed are discouraged, whereas protocols with 
minimal preconceptions are encouraged. 

28 



NAI Labs Technical Report #00-010  

4 Constraints 

Having defined requirements for key management, this section focuses on identifying constraints of 
the distributed sensor network that may affect the implementation of key management mechanisms.  
We classify constraints as either sensor node constraints (Section 4.1) or networking constraints 
(Section 4.2).    

4.1 Sensor Node Constraints  

The capabilities and constraints of sensor node hardware will influence the type of security 
mechanisms that can be hosted on a sensor node platform.  We assume that most sensor nodes are 
inexpensive, limited-capability, generic sensor nodes.  However, there will exist small numbers of 
greater-capability, energy-endowed gateway nodes that provide either local bridging between sub-
networks or clusters or between networks using long-haul circuits. 

4.1.1 Battery Power/Energy 

Energy is perhaps the greatest constraint to sensor node capabilities.  We assume that once sensor 
nodes are deployed in a sensor network, they cannot be recharged.  Therefore, the battery charge 
taken with them to the field must be conserved to extend the life of the individual sensor node and 
the entire sensor network.  Various mechanisms within the network architecture, including the sensor 
node hardware, take this limitation into account.  When considering implementing a cryptographic 
function or protocol within a sensor node, the impact on the sensor node’s available energy must be 
considered.   

When applying security within a sensor node, we are interested in the impact that security has on the 
lifespan of a sensor (i.e., it’s battery life).  The extra power consumed by sensor nodes due to security 
is related to the processing required for security functions (e.g., encryption, decryption, signing data, 
verifying signatures), the energy required to transmit the security related data or overhead (e.g., 
initialization vectors needed for encryption/decryption), and the energy required to store security 
parameters in a secure manner (e.g., cryptographic key storage).  Since the amount of additional 
energy consumed for protecting each message is relatively small, the greatest consumer of energy in 
the security realm is key establishment. 

4.1.1.1 Computational Energy Consumption 

The amount of computational energy consumed by a security function on a given microprocessor is 
primarily determined by the processor power consumption, the processor clock frequency, and the 
number of clocks needed by the processor to compute the security function.  The cryptographic 
algorithm and the efficiency of the software implementation determine the number of clocks 
necessary to perform the security function.  For cryptographic processing, we assume that energy 
consumption cannot be significantly reduced via a reduction in clock frequency, since a 
corresponding reduction in voltage would be required, a capability not widely available in today’s 
embedded processors. 

Public key cryptographic algorithms such as RSA are computationally intensive, executing thousands 
or even millions of multiplication instructions to perform a single security operation.  Thus, a 
microprocessor’s public key algorithm efficiency is primarily determined by the number of clocks 
required to perform a multiply instruction.  Table 4 shows the wide variance of energy consumption 
for representative embedded microprocessors in computing a basic public key algorithm building 
block - a multiply function with a 128-bit result. 

 

29 



NAI Labs Technical Report #00-010  

Processor 
Power 

Consump
-tion 
(mW) 

Clock 
Freq. 
(MHz) 

Native 
Mult. 

Result 

# clocks 
to 

compute 
128-bit 
result 

Time 
required 

(µs) 

Energy 
consume

d (nJ) 

MIPS R4000 230 80 128 40 0.50 115.0 
SA-1110 "StrongARM" 240 133 64 60 0.45 108.0 
Z-180 300 10 32 912 91 27000.0 
MC68328 "DragonBall" 52 16 32 1920 120. 6200.0 
MCF5204 "ColdFire" 625 33 32 304 9.2 5800.0 
MMC2001"M-Core" 81 33 32 416 12.6 1020.0 
ARC 3 11 2 40 32 168 4.2 8.4 

Table 4 - Computation Time and Energy Consumption for 128-bit Multiply Result 

We used the following assumptions to compute the results of Table 4: 

• the power consumption values used were taken from the maximum power consumption 
values for each processor when available, to reflect the fact that the processor usually 
consumes its maximum power when performing multiplier core operations, and 

• the estimate of the number of clocks to compute the 128-bit multiply result includes 
estimates of the number of clocks to add the result to an accumulator, update the loop 
counters, and perform other house-keeping such as incrementing and/or decrementing 
memory pointers. 

Symmetric encryption/decryption algorithms and hashing functions consume much less 
computational energy than public key algorithms.  Our estimates of computational energy 
consumption for AES symmetric encryption and SHA-1 hashing algorithms are shown in Table 5. 

 
Processor AES12 Encrypt/Decrypt 

Energy per bit (mJ/bit) 
SHA-1 Hash 

Energy per bit (mJ/bit) 
MIPS R4000 0.000009 0.0000072 
MC68328 "DragonBall" 0.000101 0.0000410 

Table 5 - AES and SHA-1 Computational Energy Consumption Estimates 

To lend perspective on the computational energy consumption rates of Table 5, we note that 
Sensoria’s WINS NG RF subsystem, when transmitting at 10 kbps with 10mW of power, consumes 
a whopping 0.021 mJ/bit.   Thus, the transmission energy consumption rate is over three orders of 
magnitude greater than the energy consumption rates for encryption and hashing.  Similarly, the 
receive subsystem consumes 0.014 mJ/bit when receiving at the 10 kbps rate. 

4.1.1.2 Communications Energy Consumption 

In addition to consuming energy through computational processing, security functions also consume 
energy due to the communication of information between sensor nodes.  Communications energy 
consumption attributable to security includes: 

• exchange of key management information, including encrypted keys, certificates, and nonces; 
and 

                                                      
11 Simulation results. 
12 Performance estimated from an average of the Rijndael and Twofish AES finalists. 

30 



NAI Labs Technical Report #00-010  

• per-message additions, including initialization vectors (IVs), encryption padding, 
authentication tags, and signatures. 

Exchange of key management information varies widely depending on the key management 
algorithms, protocols, and the number of participating nodes.  Key management algorithms based on 
symmetric or elliptic curve cryptography require the exchange of fewer bits than RSA, thus 
consuming less power.  Group keying protocols that take advantage of multicast conserve transmit 
energy consumption.  Reducing the number of keying relationships to only local neighbors reduces 
the amount of information exchanged, and thus the amount of communications energy consumed. 

The communications energy consumption costs of per-message additions are dependent on the 
number of messages are exchanged.  Due to both the computational and communication overhead 
of per-message additions, we expect messages to be comprised of several small-sized packets. 

4.1.2 Rechargeability 

We assume that once sensor nodes are deployed in a sensor network, they cannot be recharged.  
Therefore, the battery charge taken with them to the field must be conserved to extend the life of the 
individual sensor node and the network.  Security functions must minimize energy consumption in 
order to extend sensor network life.   

4.1.3 Sleep Patterns 

In order to conserve energy, we assume that sensor nodes spend a majority of their operational time 
in low-power sleep modes and only awake when required to processes an event (e.g., a tank detected).  
For this reason, a node’s availability within the sensor network may be limited.  This includes its 
availability to receive cryptographic key updates.  In mobile computing environments, PDA devices 
like the Palm Pilot have low-power modes that are used to conserve energy [Newman98].  
Embedded microprocessors like the Motorola’s DragonBall used in the wireless Palm Pilot VII have 
low-power modes that conserve energy.   

The result of these sleep patterns is potential unavailability of a node to receive data.  In particular, 
we are concerned about receiving security related commands (e.g., zeroize) and key material.  In 
order to maintain cryptographic synchronization throughout the sensor network, it is essential that all 
nodes use the proper cryptographic material when communicating.  Failure to maintain or update to 
the correct keys could isolate a sensor node from communications with the rest of the network.   

4.1.4 Transmission Range 

The communications range of sensor nodes is limited in order to conserve energy.  Sensor nodes 
from Sensoria and Rockwell Collins have variable transmission power from 10 mW to 100 mW 
allowing the nodes to restrict their transmission range as necessary [Agre00b].  Reducing the 
transmission power saves sensor node energy and provides a lower probability of detection.  The 
actual range achieved from a given transmission signal strength is dependent on various 
environmental factors.  We assume that locally sensor nodes have a transmission range of 
approximately 100 meters [Mills00].  Long-haul communications capabilities of greater than 1 km are 
available gateway nodes.  In order to support ad hoc networking, we assume that the assignment of 
gateway nodes is determined at deployment and can be supported by any node in the network.  
Gateway nodes may contact relay points that transmit the signal even further (e.g., over a satellite 
link). 

31 



NAI Labs Technical Report #00-010  

4.1.5 Memory  

Sensor processors require different types of memory to perform various processing functions.  ROM 
or EPROM is needed for storing the general purpose programming such as an embedded operation 
system, security functions, and basic networking capability.  RAM is needed for storing application 
programs, sensor data, and intermediate computations.  Programmable memory such as EEPROM 
and FLASH are needed for storing downloaded application code, data between sleep periods. 

4.1.5.1 Program Storage and Working Memory 

The amount of program storage available for storing security functionality, such as security 
mechanism implementations, is unlikely to be a constraining factor on security design.  Even the 
most sophisticated cryptographic algorithms can be represented in the tens of kilobytes of memory, 
whereas the amount of program storage available in ROM, EPROM, or other nonvolatile memory is 
likely to be in the hundreds of kilobytes or megabytes. 

Likewise, the amount of working memory available for security functionality is unlikely to be a 
constraining factor.  Most symmetric encryption and hashing functions can be executed in less than 
one kilobyte of RAM.  Even the more memory-consuming public key functions can be executed in 
just a few kilobytes of RAM. 

To lend perspective, the WINS NG Processor assembly used in the DARPA SensIT program’s 
demonstration contains 8 Megabytes of ROM and 4 Megabytes of RAM.  Although the supported 
Windows CE operating system would consume a generous portion of both the ROM and RAM, it is 
likely sufficient program storage and working memory would remain to support the relatively meager 
memory requirements any conceivable security functionality might have.  Although cost 
considerations will likely reduce the amount of memory in production processors as compared to 
processors used in demonstrations, the declining cost of memory over time indicates larger memories 
will soon be available at lower costs anyway. 

4.1.5.2 Programmable Storage for Security Information 

Key management functions often require some form of programmable memory to store long-term 
symmetric, public, or private keys.  Depending on the concept of operations, security architecture, 
and memory technology, programming may take place during manufacture, during pre-deployment, 
or even when deployed on the battlefield.  For example, a security design might specify programming 
the trusted public key of a mission commander into all mission sensor packages prior to deployment.  
Such a design would be an effective way of having sensors verify the legitimacy of mission 
commands, while not loading the public key during manufacture, which can be more costly in case of 
a private key compromise. 

Supporting programmable memory in some embedded processor configurations may be difficult 
and/or costly.  Cost considerations encourage integration of processor, memory, and other circuitry 
onto as few chips as possible, preferably a single application-specific integrated chip (ASIC).  That is, 
the embedded processor, RAM, and programmed ROM, will likely be on a single chip in a 
production sensor package.  However, few fabrication facilities are able to additionally provide 
programmable memory, such as EEPROM and FLASH, on these ASICs.  Although memory 
technologies and costs have improved rapidly over time, security designers should remain cognizant 
of the impact of requiring programmable memory in sensor processors. 

4.1.6 Location Sensing 

The sensor network environment may not be supportive of satellite location determination 
technologies like GPS.  GPS may not be well suited for environments that shield its signals (e.g., 

32 



NAI Labs Technical Report #00-010  

dense foliage, inside a building).  Other technologies such as the Localizer developed by AEther Wire 
Location, Inc. enables sensor nodes to determine relative positioning to other sensor nodes 
[Aether95].  Localization could be tied together with a single node’s absolute GPS positioning to 
provide absolute positioning for sensor nodes.  However, we assume that positioning, absolute or 
relative, is not available in all situations.   

Assuming positioning information is unique (i.e., no two sensors share the same location), a sensor 
node’s position can be used for authentication purposes.  Position information can also be used to 
route targeted to targeted geographical areas [Imielinski98].  Geographic routing may be useful in 
targeting security related commands (e.g., zeroize, rekey) to areas suspect of compromise.   

4.1.7 Tamper Protection 

Because of their targeted low cost, we assume that tamper protection for sensor nodes is limited.  
Tamper protection falls into two categories: active and passive.  Active tamper protection can involve 
the hardware circuits within the sensor node to protect sensitive data.  Passive mechanisms include 
those that do not require energy and include technologies that protect a circuit or provide detection 
(e.g., protective coatings, tamper seals).  Because these mechanisms may require extra circuitry that 
can add cost to a node and consume valuable energy, we assume that active mechanisms will not be 
typically found in sensor nodes.  Instead, we assume that passive techniques are more indicative of 
sensor node technology. 

Tamper protection techniques cannot protect against all attacks.  Thus, when designing the sensor 
network security architecture, we must assume that one or more sensor nodes within the network 
may be compromised.  Due to the lack of tamper protection available to sensor nodes, we assume 
that a sufficiently capable adversary can extract compromising cryptographic information from a 
sensor node.  Tamper detection technologies can provide indication that tampering has occurred but 
have limited value in long-term unattended operations.  They can prove useful in detecting tampering 
prior to deployment (i.e., while in storage) and post deployment.    

Since sensor network missions are typically unattended, the potential for tamper attacks is significant.  
For this reason, military Type I cryptographic hardware may not be well suited to the sensor network 
environment.  Type I hardware may contain classified algorithms that may not be suitable for 
disposable sensor node technology due to the high risk of compromise.  Strong commercial open-
source cryptographic algorithms may be acceptable replacements but have yet to be generally 
approved within the Department of Defense (DoD) to protect classified information.   However, 
National Security Agency (NSA) has made the details of the Skipjack and Key Exchange Algorithm 
(KEA) algorithms public despite their continued use protecting classified information. 

4.1.8 Time 

Time within the sensor network is required for synchronization of events.  Time synchronization 
messages issued from a time source must be resistant to modification attacks in order to maintain 
network synchronization of events.  For example, sensor node event reports can be time critical.  An 
alteration of their time stamps may change the significant of the report.  GPS offers a non-spoofable 
time source.  If GPS is not available, other methods can be used to maintain time within the network.  
This includes accurate local clocks or network time protocols that synchronize time across a network. 

4.1.9 Unattended Operations 

Depending on the mission of sensor network, the sensor nodes may be unattended for long periods 
of time.  For example, remote reconnaissance missions behind enemy lines may not have any 
physical contact with friendly forces once deployed.  Although they may be managed remotely, we 
assume that in general sensor nodes are not in physical contact with ground troops once deployed.  

33 



NAI Labs Technical Report #00-010  

This makes it impossible for physical detection of tampering (i.e., through tamper seals) and physical 
maintenance (e.g., battery replacement).  Other maintenance functions are possible (e.g., software 
updates, key updates) but must be done remotely.  The amount of time that a sensor is left 
unattended increases the likelihood that an adversary has compromised its key material.   

4.2 Networking Constraints 

This section discusses constraints specific to distributed sensor networking.  Distributed sensor 
networks have unique limitations not encountered in more typical wired LAN environments.   

4.2.1 Ad hoc Networking 

Sensor networks are ad hoc in nature with the composition of the network determined at the time of 
deployment.  During the sensor node mission, the composition of the network and its routing 
topology may change.  This constraint limits ability to pre-configure sensor nodes for specific 
purposes.  Sensor nodes should be able to support various roles in the network to ensure the 
reliability of the network.   

4.2.2 Limited Pre-Configuration 

The nature of ad hoc networking requires limited pre-configuration in order to support a flexible and 
easily deployable network.  This constraint limits the amount and type of cryptographic material that 
should be necessary to deploy a secure sensor network. 

4.2.3 Data Rate/Packet Size 

Both the data rate and packet size affect the overall sensor node energy consumption.  We assume 
that packet sizes within the sensor network are relatively small, potentially as small as 30 bytes with 
header [Mills00].  We also assume that the data rates are relatively low, less than 1 kbit/second.   

The packet size determines the percentage of overhead in a given message.  The message header can 
be a larger percentage of message overhead if the message spans packets.  Cryptographic services 
should adhere to packet size restrictions in order to limit the amount of overhead and thus reducing 
the transmission energy penalty associated with transmitting the extra bits.  The low data rate must 
also be considered when implementing cryptographic services in order to minimize latency 
throughout the network. 

4.2.4 Channel error rate 

We assume that low-layer communications protocols will offer error detection and correction 
services.  Errors that propagate into the layers where confidentiality, integrity, or authentication 
services are applied will affect their verification and authentication processes preventing any 
application data from being exchanged.  In particular, in some modes cryptographic modes of 
encryption and decryption, the effects of errors vary depending on the use of feedback or chaining 
with previous results (e.g., Cipher-Feedback (CFB) mode).  

4.2.5 Intermittent connectivity 

Intermittent connectivity within the sensor network may arise from channel fading and the sleep 
patterns of nodes.  We assume that channel fading may be time-dependent and a function of the 
weather and other battlefield conditions.  The sleep patterns of nodes may change over time due to 
available power and event detection.   

34 



NAI Labs Technical Report #00-010  

The limited availability of sensor nodes may influence the mechanisms used to reliably distribute 
security critical messages including cryptographic keying messages and other remote keying messages 
(e.g., zeroize, CRLs).  Because it is a requirement to reliably distribute these types of messages, the 
reliability mechanisms most overcome intermittent connectivity limitations.  Otherwise, 
cryptographic synchronization issues may result and possible isolate sensor nodes from the network.   

4.2.6 Unreliable communications 

We assume that the packet-based routing of the sensor network is connectionless and thus inherently 
unreliable.  Packets may get damaged due to channel errors or dropped at highly congested nodes.  
The result is lost or missing packets.  Higher network protocols must be introduced to add reliability.  
Connection oriented transport protocols such as TCP may be added.  Reliability is required for the 
distribution of key material and security critical commands.   

4.2.7 Latency 

The multi-hop routing of the sensor network may introduce delay within the network as packets 
traverse the network.  Congestion and node processing can be a factor to the amount of latency in 
the network.  We assume that latency is minimal, however it may pose synchronization issues if time 
is a critical component to security services (e.g., authentication).   

For critical event reports and cryptographic key distribution, latency should be kept to a minimum in 
order to insure the timeliness of the data.  The acceptance of old event reports could produce 
unreliable fused reports.  The acceptance of old cryptographic keys could create cryptographic 
synchronization problems in the network that isolate sensor nodes from communicating securely 
with other network nodes.   

4.2.8 Unicast vs. multicast 

Although many communications and routing protocols assume that only unicast communications are 
used, we more broadly assume that multicast may be available for use by our key establishment 
protocols.   

4.2.9 Unidirectional Communications  

We assume that not all communications channels are bi-directional.  In some cases, unidirectional 
channels may exist where a sensor node is only capable of transmitting or receiving data but not 
both.  For example, a sensor node that is in an active sensor field where targets are being detected 
(e.g., enemy tanks) may be collecting and processing data but not transmitting to avoid detection.  In 
this case, the sensor node may receive data but will not transmit until the danger of detection has 
subsided.  Environmental or adversarial jamming may also cause communications links to be 
unidirectional. 

Unidirectional may impact the design of energy efficient cryptographic key distribution protocols in 
which energy intensive processing is shared between parties.  Instead, one party would assume the 
bulk of the computations.   

4.2.10 Isolated subgroups 

Because of intermittent connectivity due to sleep patterns, unidirectional communications, etc., 
subgroups of a sensor network may become isolated.  These isolated subgroups may not be capable 
of receiving data such as security critical commands or key material.  The subgroups may be only 
temporarily isolated from the network and may rejoin once they awake or routing tables change.  

35 



NAI Labs Technical Report #00-010  

Prior to the establishment of a routing infrastructure, the distributed sensor network will consist of 
subgroups that are merging into larger structures.  

4.2.11 Frequent Routing Changes 

As the available energy decreases in key nodes throughout the network, the need to change the 
routing topology to balance the energy usage within the network becomes important.  Frequent 
routing changes can mean that the intermediate nodes processing data for and end-to-end session 
can change.  Also, since many security services instead will be provided on a hop-by-hop basis, 
cryptographic key establishment will occur with local neighbors in the routing topology.  If the 
routing changes, the set of local neighbors may change and thus cryptographic key establishment may 
need to occur again.   

4.2.12 Population Density 

The population density of sensor nodes in the network may vary depending upon the application 
(e.g., boundary defense, surveillance), the communications capabilities of the sensor nodes, and the 
environment (e.g., desert, rain forest).   We assume relatively short spacing to provide low-probability 
of interception (LPI) and to provide energy efficient and strongly connected routing topology.  We 
assume that a typical distance between nodes is less than 100 meters [Mills00].  A typical sensor 
network will contain less than 1000 nodes and typical clusters sizes (i.e., when using a network 
clustering algorithm as in [Mills00, Wang00a]) will be less than 10 nodes.13   

4.2.13 Unknown Recipients 

When a packet is routed through the sensor network, the packet’s source may not know the path the 
packet takes to its final destination if the packet traverses multiple hops.  For this reason, a node may 
assume that once the packet is transmitted, the intermediary nodes are unknown and may be 
untrustworthy.  For this reason, security services may be applied at either an end-to-end or on a hop-
by-hop basis, depending on the sensitivity and type of data exchanged.   

                                                      
13 Conversation with Dr. Diane Mills of Lockheed Sanders on 17 February 2000. 

36 



NAI Labs Technical Report #00-010  

5 Keying Protocols 

5.1 Background 

In Section 5, each key management protocol is examined based on its ability to satisfy distributed 
sensor network functionality and security requirements, while efficiently overcoming battlefield 
constraints.  For each protocol, the inability to satisfy any of the requirements described in Section 3 
will be noted.  Similarly, the inability to overcome any of the constraints described in Section 4 will 
be noted. 

The most important sensor network constraint posed in Section 4 is that of energy consumption.  
The amount of energy consumed by key management may be minimized for the total system, 
minimized for each node, or limited to a maximum for each node.  Choosing which metric to 
optimize determines the most energy-efficient key management approach for a given scenario.  For 
most of the key management protocols in Section 5, we will analyze the average energy cost for each 
sensor node participating in the key establishment.  Both computational and communications energy 
consumption values will be presented to distinguish between the two (major) sources of energy 
consumption. 

This section begins with a general discussion of keying techniques and is followed with an analysis of 
sources of key management protocol energy consumption.  Section 5.2 examines pre-deployed 
keying methods which provide for key establishment between sensor node without the exchange of 
messages if the participants know the identities of their peers.. Section 5.3 discusses cryptographic 
protocols that require the active participation of a special node such as a super node.  In this section 
two new protocols Identity-Based Symmetric Keying and Rich Uncle, along with well-known 
protocols such as Kerberos are analyzed.  Section 5.4 discusses cryptographic protocol that require 
the active participation of no special nodes such as the Cliques Group Diffie-Hellman protocol and 
the Burmester-Desmedt broadcast conference keying protocol. Section 5.5 provides an overall 
comparison of the techniques. 

5.1.1 Key Establishment Steps 

Establishing a cryptographic key between two or more participants requires two basic steps: (1) 
establishing trust between the participating entities, and (2) performing the cryptographic key 
computation.  Both steps have unique requirements for maintaining key confidentiality, providing 
sufficient authentication and integrity protection, providing availability, etc. 

Trust establishment may be accomplished by using either public key or secret-key based mechanisms.  
Conventional public key mechanisms use digital signatures and public key certificates, which are 
generated, distributed, and maintained by public key infrastructures.  The main advantage of using 
public key algorithms is resistance to exploitation since each node’s public/private key-pair is unique.  
This uniqueness provides the sensor network with the opportunity to identify a malicious adversary’s 
attempt to establish an excessive number of keying relationships with legitimate nodes.  The 
disadvantages of this approach include the computational energy consumption of public key 
algorithms, the communications energy consumption of exchanging public key certificates, and the 
communications energy consumption of exchanging key relationship information necessary to detect 
adversaries masquerading as legitimate sensor nodes. 

Using secret-key mechanisms for trust establishment greatly reduces sensor node energy 
consumption.  Secret-key algorithms can be used to provide trust establishment by authenticating 
exchanged key material using a key common to the participants.  This common key is used to 
compute a keyed message authentication code (MAC) over the exchanged key management 

37 



NAI Labs Technical Report #00-010  

information, authenticating the fact that the message was sent by a “legitimate” sensor node.  Hash-
based MACs (HMACs) such as HMAC-SHA-96 [RFC2404] are suitable for this purpose.  

One solution, loading and computing HMACs based on a network-wide “mission” key, guarantees 
that all sensor nodes can authenticate and verify exchanged key material.  The main advantage of this 
solution is that HMACs are orders of magnitude more energy efficient than public key algorithms.  
However, this approach is weak since the compromise of only a single sensor node will divulge the 
network-wide key, allowing an active adversary to establish keys with a large number of sensor nodes 
without being detected by information available at the security layer.  Although algorithms for 
detecting malicious behavior could be performed at higher protocol layers, such as when fusing 
sensor data reports, we believe it is problematic to differentiate malevolent and simply erroneous data 
in the distributed sensor network environment. 

Similarly, cryptographic key computations will use public key or secret-key algorithms, or a 
combination of both.  Public key and granular secret-key-based protocols are desirable due to the 
limited scope of the established keys.  Network-wide or widely used common keys are undesirable 
due to their greater vulnerability to compromise and larger body of data encrypted under a single key.  
Nonetheless, secret-key-based protocols are desirable since they consume less energy than public 
key-based protocols. 

5.1.2 Basic Keying Techniques 

Providing key management for confidentiality and group-level authentication is difficult due to the ad 
hoc nature, intermittent connectivity, and resource limitations of the distributed sensor network 
environment.  The following sections describe key management protocols that balance security and 
energy constraints in support of these services.  These key management protocols can be categorized 
as pre-deployed, arbitrated, and self-enforcing autonomous keying protocols.  

 

38 



NAI Labs Technical Report #00-010  

Pre-Deployed
Keying

Protocols

Network-
Wide

(Sec. 5.2.1)

Node-
Specific

(Sec. 5.2.2)

Sensor
Keying

Protocols

Tree-Based
Protocols

Logical Key
Hierarchy
(Sec. 5.3.4)

One-Way
Func. Tree
(Sec. 5.3.5)

Kerberos  /
Ottway-Rees
(Sec. 5.3.1)

Symmetric
Cert. Based
(Sec. 5.3.2)

Identity-
Based

(Sec. 5.3.3)

Energy
Consumption

Shifting
(Sec. 5.3.6)

Arbitrated
Keying

Protocols

Self-
Enforcing
Protocols

Group
Protocols
(Sec 5.4.2)

Cliques
GDH

(Sec. 5.4.2.2)

Bermester-
Desmedt

(Sec. 5.4.2.3)

Pairwise
Asymmetric
(Sec. 5.4.1)

Attribute-
Based

(Sec. 5.4.3)

= Public Key Based Protocol

(E)SKDC
Protocol

(Sec. 5.4.2.1)

Just-
Vaudenary

(Sec. 5.4.2.3)

 
Figure 8 - Sensor Network Keying Protocols 

Pre-deployed keying protocols (see Section 5.2) attempt to defray the high sensor node transmission 
costs through a more intensive initial pre-configuration.  Some pre-configuration is always necessary 
but can reduce flexibility and impact security.  Other techniques require less initial configuration.  
Arbitrated keying protocols (see Section 5.3) employ a centralized key distribution point to establish 
and maintain keys for a sensor network.  The central point can be a single centralized entity or 
distributed among trusted sensor nodes (e.g., cluster heads).  Energy consumption for centralized key 
distribution is typically localized with the center performing most of the work; however, the use of 
asymmetric cryptographic protocols can possibly lessen this cost by distributing the computational 
energy away from the center.  Also within this category, hierarchical keying protocols can provide a 
means of efficiently maintaining the “freshness” of the key material for a group.  Self-enforcing 
autonomous keying protocols (see Section 5.4) distribute the establishment of keys throughout the 
group, sometime in a pairwise fashion.   

5.1.3 Energy Consumption of Keying Primitives 

The key management approaches described in this report require the use of cryptographic functions 
that provide confidentiality, authentication, and integrity.  Cryptographic functions can provide these 
security services serving primitive functions for various key generation and distribution approaches.  
The selection and placement of the cryptographic functions within the sensor network influences the 
energy consumption of individual nodes and thus affect the balance of energy throughout the 
network.  Some functions have symmetric energy costs with the transmitter and receiver of the 
processed message consuming relatively equal energy (e.g., symmetric cryptographic algorithms).  In 
other cases, energy consumption is asymmetric with different energy costs for the transmitter and 
receiver of the message (e.g., asymmetric public key cryptographic algorithms).   

39 



NAI Labs Technical Report #00-010  

The following sections describe our approach for addressing the energy costs associated with some 
primitive cryptographic functions.  The functions include encryption/decryption using both 
symmetric and asymmetric algorithms, digital public key signatures, and hashing functions for 
authentication and integrity services.  These calculations can be applied directly to various embedded 
microprocessors to determine the energy that may actually be consumed by a sensor node when 
implementing the cryptographic mechanism. 

5.1.3.1 Energy Computations 

In light of the energy constraints for sensor nodes, it is important to consider the computational 
energy costs of security functions when implementing them in a sensor environment.  The amount 
of energy consumed by a security function on a given microprocessor is primarily determined by the 
processor power consumption, the processor clock frequency, and the number of clocks needed by 
the processor to compute the security function.  The cryptographic algorithm and the efficiency of 
the software implementation determine the number of clocks cycles necessary to perform the 
security function.   

The following sections describe the energy consumption of primitive cryptographic functions used 
throughout the key management approaches described in this paper.  Core cryptographic functions 
include public key algorithms (e.g., RSA, DSS), symmetric algorithms (e.g., AES), and 
integrity/authentication algorithms (e.g., HMACs).  The energy required to perform a given 
operation is computed for various low-power embedded microprocessors typical of sensor nodes 
and other wireless commercial devices (e.g., cell phones, PDAs).  For example, the MIPS R4400, a 
64-bit RISC microprocessor, and the 16-bit Z-180 microcontroller are used in the Sensoria 
Corporation’s WINS NG sensor node.  The SA-1110 StrongARM CISC microprocessor is found in 
the Rockwell Science Center’s WINS sensor node.  Other embedded microprocessors such as the 
Motorola DragonBall (MC68328), M-Core (MMC2001), and Cold Fire (MCF5204) are found in 
various low-power consumer electronics that share similar constraints similar to sensor nodes (e.g., 
limited battery charge). 

Public Key Computations 

Public key algorithms provide both confidentiality and authentication services.  Because of their high 
computational costs, they are typically reserved for authentication or encryption of small messages.  
Algorithms like RSA and the Digital Signature Standard (DSS) have asymmetric designs whose energy 
costs vary significantly between signature/verify and encryption/decryption operations.   

The computational cost of public key functions is directly related to the costs to perform basic 
modular arithmetic functions.  A processor’s total energy consumption for an RSA security operation 
may be computed from the energy consumption values shown in Table 12.  For RSA encryption or 
verification, the processor must compute a modular exponentiation operation of the form: 

Me mod n 
where M is the message being encrypted or verified, e is a public exponent such as 65537, and n is a 
modulus of at least 1024 bits in size.  To compute the number of 128-bit multiply operations 
necessary for the RSA encryption or verification computation, we assume: 

• the Montgomery multiplication method is used; 

• the cost of converting into and out of Montgomery space is negligible; 

• e = 65537; and  

• n is 1024 bits in size; 

40 



NAI Labs Technical Report #00-010  

Thus, with these assumptions, the number of 128-bit operations for the RSA encryption is: 

# of 128-bit operations = (# of 1024-bit modular squares) * (# of 128-bit multiply 
result operations per 1024-bit modular square) + (# of 
1024-bit modular multiplies) * (# of 128-bit multiply result 
operations per 1024-bit modular multiply) 

= Floor(log2(e))*[1.5*(size of n/64)2 + 1.5*(size of n/64)] + 
1*[2*(size of n/64)2 + (size of n/64)] 

= 16*[1.5*(1024/64)2 + 1.5*(1024/64)] + 1*[2*(1024/64)2 + 
(1024/64)] 

= 7056 
For RSA decryption or digital signature, the processor must compute a modular exponentiation 
operation of the form: 

Md mod n 
where M is the message being encrypted or verified, d is the private exponent, and n is a modulus of 
at least 1024 bits in size.  To compute the number of 128-bit multiply result operations necessary for 
the computation, we use the same assumptions as for the RSA encryption/verification operation and 
additionally assume the following: 

• four-bit exponent scanning; 

• the cost of pre-computing values for four-bit exponent scanning is negligible; 

• the computation makes use of the Chinese Remainder theorem; and 

• d is 1024 bits in size. 

Thus, with these assumptions, the number of 128-bit operations for the RSA decryption is: 

# of 128-bit operations = 2*{Floor(log2(d/2))*[1.5*((size of n)/2/64)2 + 1.5*((size of 
n)/2/64)] + (1/4)*Floor(log2(d/2))*[2*((size of n)/2/64)2 + 
((size of n)/2/64)]} 

= 2*{512*[1.5*(512/64)2 + 1.5*(512/64)] + 128*[2*(512/64)2 
+ (512/64)]} 

= 145,408 

The cost of computing the Digital Signature Algorithm (DSA) is computed in a similar fashion with 
the bit size of each function shown in brackets.  The cost of the required SHA-1 hashing is 
considered negligible. 

 
   DSA_Signature[1024] ≈ [1024][160] mod [1024] 

 

 
   DSA_Verify[1024] ≈ 2*([1024][160] mod [1024])
 

The cost of computing a Diffie-Hellman operation is computed in a similar fashion with the bit size 
of each function shown in brackets.   

 
   DH_Operation[1024] ≈ [1024][256] mod [1024] 

41 



NAI Labs Technical Report #00-010  

 

The digital signature and verify functions of the ElGamal cryptographic algorithm can also be 
represented in terms of modular arithmetic functions.  The ElGamal verification function includes 
both the cost to generate the two components g and . )mod(p

M
)mod( pay ba

   ElGamal_Signature[1024] ≈ DSA_Signature[1024] 

 

 
   ElGamal_Verify[1024] ≈ (13.5)*DSA_Signature[1024]

Lenstra and Verheul [Lenstra00] describe XTR as a method to reduce the number of bits and 
subsequent cost of modular exponentiation functions.  The authors assume that XTR with its 
P=Q=170 bits offers approximately the same security as 1020-bit RSA with a 32-bit public exponent 
for signature and decryption functions.  For encryption and verification functions, we estimate the 
XTR performance by scaling the performance offered by Lenstra and Verheul to the RSA 
performance we calculated, modified by our using an RSA public exponent e equal to 65537 rather 
than a full 32-bit public exponent as they suggest. 

]1024[]1024[ _*)11900/1360(_ SignatureRSASignatureXTR ≈  

]1024[]1024[ _*)2754/500(_ VerifyRSAVerifyXTR ≈  

]1024[]1024[ _*)2720/500(_ EncrypytRSAEncryptXTR ≈  

]1024[]1024[ _*)1360/11900(_ DecryptRSADecryptXTR ≈  

Algorithms based on elliptic curve cryptography (ECC) were not evaluated in this draft since reliable 
performance numbers on embedded processors could not be found in the public domain.  Although 
using ECC algorithms in place of algorithms such as RSA and Diffie-Hellman may provide 
significant reductions to energy consumption, Lenstra and Verheul [Lenstra00] contend that XTR 
provides even greater improvement.   

Table 6 compares the relative energy costs for these public key algorithms for various embedded 
microprocessors.  These costs are based on the performance of modular exponentiation functions 
within each microprocessor and the chip’s maximum power consumption. 

42 



NAI Labs Technical Report #00-010  

 

Computational Energy Consumption (mJ) 

Processor 
Clock 
Speed 
(MHz) 

Max. 
Power 
Load 
(mW) RSA 

Sign 
RSA 

Verify 
DSA 
Sign 

DSA 
Verify 

Diffie-
Hell-
man 

El 
Gamal 
Sign 

El 
Gamal 
Verify 

XTR 
Sign 

XTR 
Verify 

MIPS R4000 80 230 16.7 0.81 9.9 20. 15.9 9.94 134 1.91 4.5 

SA-1110 
"StrongARM" 133 240 15.0 0.74 9.1 18.2 14.6 9.1 123 1.71 4.1 

Z-180 10 300 3700 184 2300 4500 3640 2300 31000 420 102 

MC68328 
"DragonBall" 16 52 840 42 520 1040 829 520 7000 96 230 

MCF5204 
"ColdFire" 33 625 775 39 480 960 765 480 6500 89 214 

MMC2001 
"M-Core" 33 81 137 6.9 85 169 136 85 1140 15.7 38.00 

ARC 3 14 40 2 1.13 0.06 0.70 1.40 1.12 0.70 9.4 0.13 0.31 

Table 6 – Computational Energy Costs for Public Key Authentication Algorithms 

Encryption/Decryption Computations 

The National Institute of Standards and Technology (NIST) is sponsoring the development of a next 
generation of cryptographic algorithms called the Advanced Encryption Standard (AES)15.  We consider 
these algorithms for their confidentiality services (i.e., encryption, decryption).  As a conservative 
estimate of AES processing, we based our calculations on results from [Aoki00], who compares 
encryption times for various AES candidate algorithms.  The algorithm finalists in Round 2 of the 
AES selection process include MARS, RC6, Rijndael, Serpent, and Twofish.  Of these five, four 
algorithms have shown encryption times of less than 400 processor clock-cycles for 128-bit 
encryption on a 32-bit microprocessor like the Intel Pentium II [Aoki00].  Based on these results, we 
assume a conservative estimate of 400 clock-cycles to perform a 128-bit block encryption with a 128-
bit key on a 32-bit microprocessor like the MIPS R4400.  We scaled these performance numbers to 
other embedded processors shown in the following table by considering the processors registers sizes 
and instruction execution times (i.e., move from register to memory, add, shift/rotate, and XOR).  
The time that each operation can be completed in is also affected by the size of the registers - using 
smaller registers will require more time to perform the same operation.  We estimate that the cost of 
decryption for these symmetric algorithms is roughly equivalent to their encryption costs.   

 

                                                      
14 Simulation results. 
15 http://www.nist.gov/aes  

43 

http://www.nist.gov/aes


NAI Labs Technical Report #00-010  

Processor Scaling Factor 
AES Energy 

Consumption 
(mJ/128-bit block) 

MIPS R4400 1 0.00115 

SA-1110 "StrongARM" 3 0.00217 

Z-180 20 0.24000 

MC68328 "DragonBall" 10 0.01300 

MCF5204 "ColdFire" 5 0.03800 

MMC2001"M-Core" 3 0.00295 

ARC 3 16 4 0.00008 

Table 7 - AES Energy Consumption Estimates 

The resulting energy consumption of symmetric AES cryptographic algorithms is significantly lower 
than asymmetric public key algorithms and is often outweighed by asymmetric cryptographic 
functions (e.g., RSA) or transmission costs.  For example, to encrypt a 1024-bit block consumes 
approximately 42 mJ on the DragonBall processor using RSA while only 0.104 mJ using our 
estimation of an AES algorithm.  In comparison, the transmission costs for a 1024-bit message are 
roughly 21.5 mJ and 14.3 mJ for transmission and reception, respectively – approximately 100 times 
more than AES encryption.17  

Integrity/authentication 

Because of the significant processing costs of public key authentication functions, an alternative that 
provides authentication and integrity based on hashing algorithms is a lower cost alternative.  Hash-
based Message Authentication Codes (HMACs) compute a message authentication code (MAC) for a message x 
using a secret key k, a message digest code (MDC) h, and padding p.  

)||||||()( kxpkhxHMAC =  

Using the hashing algorithms SHA-1 and MD5 as the MDC function h, we can estimate the number 
of MDC functions with required to HMAC a message of length m is approximated by the following 
formula that accounts for the message size and required padding: 

 

# MDC Functions = 1 + [ (m + 65)/block_size] 

 

The input block_size for both SHA-1 and MD5 is 512 bits.  Table 9 shows the energy cost to compute 
the HMAC for a 1024-bit message based on the hashing results from Table 8.  The hashing cycles for 
each embedded processor were scaled in a similar fashion as was done for the AES algorithms, i.e. 
based processors registers sizes and instruction execution times.  In comparison, the cost to transmit 

                                                      
16 Simulation results. 
17 For the Sensoria WINS NG RF subsystem transmitting at 10 kbps with 10mW of power.  
Reception at 10 kbps.   

44 



NAI Labs Technical Report #00-010  

and receive a 1024-bit message with Sensoria’s WINS NG RF subsystem at 10 kbps with 10mW of 
power is approximately 21.5 mJ.  Similarly, the receive subsystem consumes 14.3 mJ when receiving a 
1024-bit message at the 10 kbps rate.  The WINS NG transmit/receive costs are more than 1000 
times greater than the cost to HMAC a message of equivalent size on the MIPS R4400 and 
StrongARM processors.     

 

Processor Scaling 
Factor 

SHA-1 
Cycles 

per byte 

MD5 
Cycles 

per byte

SHA-1 
Energy 
per byte 

(mJ) 

MD-5 
Energy 
per byte 

(mJ) 

MIPS R4000 1 20 10 0.000058 0.000029 
SA-1110 "StrongARM" 3 60 30 0.000108 0.000054 
Z-180 20 400 200 0.012000 0.006000 
MC68328 "DragonBall" 10 200 100 0.000650 0.000325 
MCF5204 "ColdFire" 5 100 50 0.001894 0.000947 
MMC2001"M-Core" 3 60 30 0.000147 0.000074 
ARC 3 18 4 80 40 0.000004 0.000002 

Table 8 - SHA-1 and MD5 Energy Consumption 

 

Processor HMAC-SHA-1 Energy (mJ) HMAC-MD5 Energy (mJ) 

MIPS R4000 0.0115 0.0058 
SA-1110 "StrongARM" 0.0217 0.0108 
Z-180 2.4015 1.2008 
MC68328 "DragonBall" 0.1301 0.0650 
MCF5204 "ColdFire" 0.3790 0.1895 
MMC2001"M-Core" 0.0295 0.0147 
ARC 3 19 0.0008 0.0004 

Table 9 - HMAC Energy Consumption Estimates for a 1024-bit Message 

5.1.3.2 Impact of Key Management Energy Costs on Routing 

The energy and latency costs associated with security functions may have some influence over the 
selection of routes within the sensor network.  Sensor nodes that act as a center for key distribution 
to a local group may become overly tasked when asked to perform computationally intensive 
cryptographic functions that can drain energy and introduce network latency.  Some keying protocols 

                                                      
18 Simulation results. 
19 Simulation results. 

45 



NAI Labs Technical Report #00-010  

take this into consideration by distributing their cryptographic computations across a group and thus 
the energy to establish and maintain key freshness.  Network routing protocol should consider the 
energy impact of security when attempting the balance network energy reserves to maintain strong 
network connectivity.   

5.2 Pre-deployed Keying 

Loading keys into sensor nodes prior to battlefield deployment offers energy-efficient solutions to 
providing confidentiality and group-level authentication keys.  However, pre-deployed keying can be 
inflexible to changing mission configurations and poses security concerns.  The following sections 
describe various methods of keying sensor nodes prior to deployment and examine their ability to 
satisfy the key management requirements. 

5.2.1 Network-Wide Pre-deployed Keying 

One of the simplest and most energy-efficient key management methods is pre-deployment of a 
network-wide key.  Prior to battlefield deployment, sensor nodes are loaded with the same key by a 
mission authority.  Alternatively, key material from which one or more keys are derived can be 
loaded.  Since each member of the network contains the same keying material, confidentiality and 
authentication keys for sensor data protection are easily computed without any expensive energy 
consuming computations or communications. 

Unfortunately, pre-deployment of a network-wide key is not very secure in many battlefield 
scenarios.  Unattended sensor nodes in hostile territory are tempting targets for enemy counter-
intelligence operations.  Compromise of only a single sensor node exposes the confidentiality keys of 
all sensor nodes in the network, potentially disclosing all future communications as well as all past 
recorded communications to a passive adversary.  Similarly, compromise of the networks 
authentication keys exposes all future communications to undetectable forgery by an adversary. 

Furthermore, pre-deployment of a network-wide key may prevent the network from adding new 
nodes or participating in coalitions.  Sensor nodes added to a network must either have the same key 
loaded as those of the already deployed nodes, or deployed nodes must somehow be securely 
instructed to also use another network-wide key.  Similar problems occur if two separately deployed 
networks need to inter-communicate. 

Pre-deploying a network-wide key for only authenticating exchanged key management information is 
an attractive alternative approach.  Although the vulnerability of a network-wide key is no less real, 
the ramifications of compromise are less severe.  To exploit the compromise, an adversary uses the 
key to establish keying relationships with as many legitimate sensor nodes as possible.  When sensor 
application data is communicated through the network, any data forwarded to the compromised 
node is disclosed.  Exploitation of this approach is less severe since it does not disclose any past 
communications, only discloses future communications that pass through the compromised sensor 
node, and requires the adversary to actively communicate with legitimate sensor nodes to establish 
keying relationships.  This last condition exposes the adversary to detection unlike vulnerabilities that 
can be exploited by a passive adversary. 

5.2.2 Node-Specific Pre-deployed Keying 

The node-specific pre-deployed keying method pre-computes shared keys off-line for possible 
combinations of pairs of sensor nodes and loads the appropriate keys into the nodes prior to their 
deployment.  Once deployed the nodes only need to know the identifier of a peer node in order to 
communicate securely with the peer. This keying method can be extended to small groups by pre-
calculating keys of possible groups of nodes of a certain size or less.   

46 



NAI Labs Technical Report #00-010  

Whenever the Mission Authority cannot anticipate where nodes will be located, to allow for 
maximum network connectivity and security each Node Y receives keys that will allow it to securely 
communicate with all other current DSN nodes and those nodes that will be added during the 
lifetime of Node Y. These other nodes must also have a key loaded prior to their deployment for 
Node Y. This keying method has essentially zero energy cost (for the sensor nodes) and latency for 
the DSN nodes.  

The keying method lacks flexibility and does not scale well.  Once a node has been deployed, the set 
of nodes that it can form an association with is fixed and cannot be extended without employing 
additional (non pre-deployed) keying techniques. A Mission Authority using the group wide pre-
deployment method does not have to provide for future deployments of sensor nodes when 
deploying nodes in the present. . 

The scalability problem stems from the ad-hoc nature of the DSN deployment and operation, which 
prevents the Mission Authority form reliably anticipating which pairs of DSN nodes20 will need a 
key. For a static DSN network of size N, the number of keys necessary for forming groups of size G 
< N is N! / G!(N-G)!  The total number of keys necessary for all groups of size G or less is: 

∑
=









G

g
g
N

2
 

The total number of keys necessary per node for all groups of size G or less is: 

∑
−

=







 −
1

1

1
G

g
g

N
 

Table 10 shows the total number of keys that need to be generated for groups of size 2, 3, 6, 12 or less 
by the DSN owner and Table 11 shows the amount of memory need by each DSN sensor node to 
store its keys, assuming 20 bytes of memory per key. 

 

Total Number of Pre-deployed Keys Number of 
network nodes for all possible 

pairs of nodes 
for all possible 

pairs and triplets
for all groups 6 

or less 
for all groups 12 

or less 

50 1.23x103 2.08x104 1.83x107 1.72x1011 
100 4.95x103 1.67x105 1.27x109 1.21x1015 
500 1.25x105 2.08x107 2.13x1013 4.57x1023 

1000 5.00x105 1.67x108 1.38x1015 2.00x1027 
5000 1.25x107 2.08x1010 2.17x1019 5.04x1035 

10000 5.00x107 1.67x1011 1.40x1021 2.08x1039 
Table 10 - Total Number of Keys Required for Node-Specific Pre-deployed Keying 

                                                      
20 With the same size and deployed within some specified time interval. 

47 



NAI Labs Technical Report #00-010  

 

Storage Required per Node (in bytes) Number of 
network nodes for all possible 

pairs of nodes 
for all possible 

pairs and triplets
for all groups 6 

or less 
for all groups 12 

or less 

50 9.80x102 2.45x104 4.28x107 7.99x1011 
100 1.98x103 9.90x104 1.51x109 2.87x1015 
500 9.98x103 2.50x106 5.11x1012 2.20x1023 

1000 2.00x104 9.99x106 1.65x1014 4.74x1026 
5000 1.00x105 2.50x108 5.20x1017 2.42x1034 

10000 2.00x105 1.00x109 1.67x1019 4.98x1037 
Table 11 – Storage Requirements for Node-Specific Pre-Deployed Keying 

For pairwise keying, the anticipated maximum size of a DSN (10,000 nodes) can be handled by this 
technique, if there is no significant node replacement over the lifetime of the DSN.  This method 
alone cannot support groups of three nodes in even a static, medium size DSN network (500-1000 
nodes) and is totally unsuited for larger groups in all but trivially sized DSNs. 

5.2.3 J-Secure Pre-Deployed Keying 

The keying method of Section 5.2.2 is secure against any coalition of compromised nodes whereas 
the network wide pre-deployed keying method is vulnerable to the compromise of any one node.   
The J-secure pre-deployed keying methods offer compromise protection between that of the above 
methods. The J-secure methods can maintain security of subgroups of nodes against coalitions of up 
to (1 ‹ j ‹ n) compromised nodes that are not part of the subgroup. These methods scale better than 
the node-specific method but also lack flexibility. 

Blom [Blom84] proved that for any J-secure pre-deployed method with m-bit size pairwise session 
keys the minimum amount of key material that must be stored in each node is m (j  + 1) bits.  This 
value translates into (j + 1) keys.21    In the same paper Blom presented a method for doing pairwise 
J-secure pre-deployed keying for any j  ‹ n – 2.  We will not present that method here but rather note 
that using Blom’s method we can provide every sensor node with a key to communicate with every 
other sensor node (no matter how large the DSN) using only 2.0 x 104 bytes of storage and be 
protected against the compromise of up to one thousand nodes.  

However, like the method of Section 5.2.2, we cannot combine two DSNs that have already been 
deployed using this method (or other pre-deployed keying methods) unless the nodes were 
configured anticipating that the two DSNs might be combined. Reconfiguring a DSN after 
deployment, to support another DSN using pre-deployed keying techniques consumes too much 
energy. 

For any J-secure method with m-bit session keys, providing for all possible groups of nodes of a size 
t, independent of the DSN of size, requires at a minimum that each nodes stores  

                                                      
21 The method of Section 5.2.2 meets this bound (with j equal to the DSN size) and therefore 
cannot be improved upon without sacrificing security. 

48 



NAI Labs Technical Report #00-010  









−

−+
⋅

1
1

t
tj

m  

bits, Blundo et al. [Blundo92].  In the same paper the authors provide a method that meets this 
bound.  Table 12 shows the storage requirements for some possible combinations of DSN size, 
group size and number of compromised nodes that can be tolerated without compromising the 
security of group of non-compromised nodes.   

 

Storage Required per Node (in bytes) Number of 
compromised  

nodes tolerated 
for all possible 
pairs of nodes 

for all possible 
pairs and triplets

for all groups 6 
or less 

for all groups 12 
or less 

25 5.20x102 7.02x103 2.85x106 1.20x1010 
50 1.02x103 2.65x104 6.96x107 8.36x1012 

200 4.02x103 4.06x105 5.74x1010 1.42x1019 
300 6.02x103 9.09x105 4.26x1011 1.10x1021 
500 1.00x104 2.52x106 5.37x1012 2.79x1023 

1000 2.00x104 1.00x107 1.69x1014 5.35x1026 
Table 12 – Storage Requirements for J-Secure Pre-Deployed Keying 

For pairwise keying, the anticipated maximum size of a DSN (10,000 nodes) or more nodes can be 
handled by this technique, assuming that the level of compromise tolerance of 1000 or less is acceptable.  This 
method can also support groups of three but the level of compromise that can be provided using a 
reasonable amount of sensor node storage (less than 106 bytes) is limited. J-secure methods cannot 
be used for groups of six or more with acceptable compromise tolerance.   

The reader should also be aware that all of the techniques in this section only provide a single key for 
each pair or other small subgroup of nodes. A method for generating session keys will also be needed 
if pre-deployed methods are to form the basis for establishing long-term security (confidentiality or 
authentication). Since cryptographic keys that are used for authentication (without non-repudiation) 
are not sensitive to the compromise of expired keys the above methods can suit the needs of DSNs. 
These methods differ significantly in their cost, degree of compromise protection and in the impact 
of a compromise. They all have limited flexibility, though the group-wide keying method is 
considerably more flexible than the other methods. 

5.3 Arbitrated Protocols 

A large number of secret-key and public-key based cryptographic techniques have been developed 
for interactively establishing shared pairwise and group keys.  The techniques can be divided into 
arbitrated protocols (where a trusted server is used as part of the protocol) and “autonomous” 
protocols where no trusted third party is used. The protocols can be further categorized into secret 
or public key protocols depending on the dominant mechanism by which the shared key is 
established, rather than the means by which the participants in the protocol are authenticated.  

In this section and the next we will examine representative protocols from the various classes of key 
establishment protocols. Before we begin looking at these protocols we observe that in general 
secret-key protocols have substantially lower computational energy requirements and occasionally 
better communication energy costs than do protocols that rely on public key techniques.  Public key 

49 



NAI Labs Technical Report #00-010  

protocols are more expensive computationally. The difference in communication costs is due to the 
smaller certificates and key sizes use in secret-key protocols. However, secret-key techniques have 
greater pre-configuration requirements (e.g. the Mission Authority has to generate and store securely 
many more keys) than do public key based techniques.   

5.3.1 Traditional Key Distribution Center-Based Methods 

A large number of secret-key based methods have been developed that require an interactive trusted 
third party, a Key Distribution Center (KDC) or a Key Translation Center (KTC),22 in order to 
establish a shared key between any two members of the system.  Kerberos [Newman94], Needham-
Schroeder [Needham78], Otway-Rees [Otway87], Bellare-Rogaway [Bellare93] are a few of these 
protocols.  In these methods a trusted server shares a unique secret-key with each sensor node.  The 
KDC or KTC securely stores these shared keys in a local database.  These secret keys must be 
distributed to the sensor nodes prior to their deployment, which impacts the deployment of new 
trusted servers in the future since the appropriate secret keys for these servers must be calculated in 
advance and stored in sensor nodes.  Updating the sensor nodes after they are deployed consumes 
significant energy. Reusing the secret keys between servers is an option, with a sensor node sharing 
one key with each server, but this approach results low key granularity, each server becomes a single 
point of failure for the security of the system. 
In the following sections we look at two KDC-based protocols, Kerberos and Otway-Rees. The 
most notable differences between them is the difference in energy consumption and that Kerberos 
requires that each sensor node and KDC have secure synchronized clocks, whereas the Otway-Rees 
protocols do not. We will describe each protocol, their security properties and examine their energy 
consumption. 

5.3.1.1 Kerberos 

The Kerberos series of protocols were originally based on the Needham-Schroeder protocol. The 
Kerberos protocols use a KDC to establish a secret shared key between (in the case of a sensor 
network) two sensor nodes. The four-pass Kerberos protocol provides mutual entity authentication, 
key confirmation and a key freshness guarantee between the sensor nodes.  Here we present the 
Kerberos version 5 protocol with certain fields removed for clarity or because they are not needed in 
a sensor network environment. 

The protocol 

Each sensor node i has a secret key that it shares with a KDC (KDCj). IDA is the unique identifier of 
node A, likewise for node B. NA is a random value called a nonce that is used (with sufficiently high 
probability) no more than once for the same purpose [Menezes, p397].  

Round 1  

Node A  Node KDCj:   KDCj || IDA || IDB || NA  
The initiator, Node A, sends its identifier and the identifier of Node B which we assume Node A 
already knows to KDCj.  The KDC looks up Node A and Node B in its database, verifies that they 
are valid supported nodes, and fetches their corresponding shared keys KAj and KBj.  

Define ticketB as E(KBj, K pair || IDA || L) where  K pair is the session key that will be shared by Node 
A and Node B. L is the lifetime of the key.  The KDC generates a ticket for Node A to forward to 

                                                      
22 A Key Translation Center is a KDC that translates a key securely provided by one party into a 
form that can be securely transferred to another party. 

50 



NAI Labs Technical Report #00-010  

Node B and also generates an authenticator, E(KAj, K pair ||IDB ||NA ||L), that provides Node A with 
the shared key and proof that this is the right shared key to use with Node B at this time. The KDC 
sends the following message back to Node A. 
Round 2  

Node KDCj   Node A:   IDA || KDCj || ticketB || NA || E(KAj, K pair ||IDB ||NA ||L) 

Node A decrypts E(KAj, K pair || IDB ||  NA || L) and verifies that IDB and NA match the message it 
sent the KDC in Round 1.  Then Node A takes a fresh timestamp TA, creates the Round 3 message 
and sends it to Node B 

Round 3  

Node A  Node B:    IDB  || IDA || ticketB || E(K pair, IDB || TA ) 

Node B upon receipt of the message decrypts ticketB and obtains K pair, and uses it to decrypt E(K 

pair, IDB || TA). Node B can then verify the identifier fields obtained from both encrypted values, that 
the timestamp TA is still valid, and that Node B’s local time is within the lifetime L.  If the 
verification step succeeds Node B encrypts the timestamp provided by Node A with the shared key 
and sends the Round 4 message to Node A.   

Round 4  

Node B  Node A:    IDA  || IDB  || E(K pair, TA) 
Node A decrypts the message and verifies that the timestamp is same one it generated for Node B in  
Round 3. This message allows Node A to determine that Node B received the Round 3 message and 
successfully decrypted the shared key. 

 

51 



NAI Labs Technical Report #00-010  

 

Node B announces  
itself to Node - A 

Node - A Node - B 

time 

KDC 

Request session Key from 
KDC’ 

Verify R2 message 
Create confirmation of 
shared key for Node B 

Verify R4 message 
establish that Node B has 
the Shared Key 

Generate a ticket and 
authenticator  
Sends ticket & 
authenticator to A 

Verify R3 message 
Generate confirmation of 
Shared Key for Node A 

Round - 1

Round - 2

Round - 3

Round - 4 

Round - 0

 Figure 9 - Kerberos V (modified for DSN use) 

Analysis 

This version of the Kerberos protocol provides mutual entity authentication, key confirmation and a 
key freshness guarantee.  Each sensor node performs two secret-key decryptions and one secret-key 
encryption. Under these assumptions: 

• The node ID and KDC ID sizes are 64 bits. 
• The symmetric keys are 128 bits. 
• All nonces are 64 bits. 
• The timestamps and validity periods (lifetimes) are 64 bits.  
• The Round 1 message is 192 bits. 
• The Round 2 message is 832 bits. 
• The Round 3 message is 704 bits. 
• The Round 4 message is 320 bits. 

The communication energy costs are: 35 mJ for Node A, 17 mJ for Node B, 20 mJ for the KDC. As 
is shown in Table 13 the computational energy cost of this method is relatively low. The total energy 
cost of the protocol is essentially the same as the communication cost for all of the processors except 
for the Z-180, where the total cost ranges from 5% to 10% more than the communication cost for 
the protocol participants. 

 

52 



NAI Labs Technical Report #00-010  

Computational Energy Consumption (mJ) Processor  Node A Node B KDC 
MIPS R4000 0.0081 0.0075 0.0052 
SA-1110 “StrongARM” 0.015 0.014 0.0097 
Z-180 1.7 1.6 1.1 
MC68328 “DragonBall” 0.091 0.098 0.072 
MCF5204 “ColdFire” 0.027 0.25 0.17 
MMC2001 “M-Core” 0.021 0.019 0.013 
ARC-3 5.6x10-4 5.2x10-4 3.6x10-4 

Table 13 – Kerberos Protocol Computational Energy Consumption 

An important consideration with protocols that use trusted servers is the total energy cost of the 
protocol (minus the energy rich trusted server). The energy cost of the protocol increases with 
increasing distance (number of hops and hop distance) between the participants. The above 
communication energy costs were based on the assumption that Node A was one hop away from 
Node B and vice versa and we did not include the energy cost imposed on any intermediate nodes 
between Node A and the KDC.  In the next table we display estimated communication energy cost 
to the DSN of this protocol (minus the KDC cost) for a number of different hop counts between 
Node A and the KDC, we again assume that Nodes A and B have no intermediate nodes.  The total 
energy cost is essentially the same as the communication energy cost. 

 
Number of Hops  Communication Energy Consumption (mJ) 

1 52 
2 88 
4 130 
8 220 

16 390 
Table 14 – Kerberos Protocol Multi-hop Total Sensor Node Communication Energy 

Consumption 

5.3.1.2 Otway-Rees 

The Otway-Rees protocol is also a trusted server-based four-pass protocol.  Unlike Kerberos, this 
protocol only uses nonces rather than timestamps to prevent replay and establish key freshness. 
Secure synchronized clocks are therefore not used in this protocol.  Here we present the protocol 
with certain fields removed for clarity or because they are not required in a DSN environment. 

The protocol 

The protocol consists of four rounds.  Each sensor node i has a secret key that it shares with a KDC 
(KDCj). IDA is the unique identifier of Node A likewise for Node B. NA and M are nonces.  Nonce 
M functions as a transaction identifier. 

Round 1  

Node A  Node B:   KDCj || M || IDA || IDB || E(KAj , NA || M || IDA  || IDB ) 

The initiator, Node A, generates an encrypted value, E(KAj , NA || M || IDA || IDB), for the KDC that 
identifies the participants in the protocol and include the nonces NA and M to prevent replay attacks. 

53 



NAI Labs Technical Report #00-010  

Node A sends the Round 1 message to Node B. Node A must know node B’s identity prior to 
sending the message since that input is encrypted under Node A’s shared key with KDCj. 

Node B receives the message and creates an encrypted value E(KBj, NA || M || IDA || IDB ) 
(corresponding to the same transaction as does Nodes A’s E(KAj , NA || M || IDA  || IDB ) ). Node B 
combines this encrypted value with the Round 1 message components and sends the resulting 
message to the KDC. 

Round 2  

Node B  Node KDCj: KDCj || M || IDA || IDB || E(KAj , NA || M || IDA  || IDB ) || 
E(KBj, NB  || M || IDA  || IDB ) 

Upon receiving the Round 2 message the KDC looks up nodes A and B in its database (checking the 
nodes are valid) and uses the stored, shared keys to decrypt both encrypted parts of the message.  
The KDC checks that the node identifiers and the nonce M are used consistently throughout the 
message.23 The KDC generates a session key K pair and encrypts it and the nonces provided by nodes 
A and B under the appropriate session keys. The concatenation of these two encrypted values is sent 
back to Node B as the Round 3 message. 

Round 3  

Node KDCj  Node B:  IDB || E(KAj , NA || K pair ) || E(KBj , NB || K pair ) 

Node B decrypts E(KBj , NB || K pair ), and verifies that NB matches the nonce it used earlier. If the 
values match, Node B uses K pair as its shared key with A and sends the first half of the message to 
Node A optionally concatenated with both nonces encrypted under the shared key.  

Round 4  

Node B  Node A:    IDA || E(KAj , NA  || K pair ) || [ E(K pair, NA || NB) ] 

Node A decrypts E(KAj , NA || K pair ),  and verifies that NA matches the nonce it used earlier. If the 
values match, Node A uses K pair as its shared key with B.  

If the optional part of the Round 4 message is sent to Node A, then Node A decrypts it and verifies 
nonce NA.  Then Node A encrypts NB using the shared key and sends that result back to Node B. 

Round 5 (Optional)  

Node A  Node B:    [ IDB || E(K pair, NB) ] 

Node B decrypts the message and verifies NB.  

 

                                                      
23 Otherwise this protocol is vulnerable to an intruder-in-the middle attack [Boyd93, 
vanOorshot93]. 

54 



NAI Labs Technical Report #00-010  

 

Request that Node B use 
KDC to set up a establish 
a session key 

Node - A Node - B 

time 

KDC 

Decrypt session key and 
send confirmation to 
Node B 

Encrypt session key 
for Nodes A & B  

Request session key from 
KDC 

Decrypt session key 
and forward  Node 
A’s encrypted copy 

Verify that Node A 
has the key 

Round - 1

Round - 2

Round - 3 

Round - 4

Round – 5 (optional) 

 Figure 10 - Otway-Rees Protocol (modified for DSN use) 

Analysis 

This Otway-Rees protocol provides Nodes A and B with assurance that K pair is fresh.  Unless the 
optional fifth message is used, Node B has limited assurance that Node A knows K pair until 
subsequent use of the shared key by Node A.  Also using the optional field in Round 3 of the 
protocol gives Nodes A and B key confirmation and entity authentication assurance. 

If the optional parts of the protocols are performed each sensor node performs a secret-key 
encryption and decryption, two encryptions and decryptions. Like the Kerberos protocols the energy 
cost of the Otway-Rees protocol is dominated by the communication energy costs. Under these 
assumptions: 

• The node ID and KDC ID sizes are 64 bits. 
• The symmetric keys are 128 bits. 
• All nonces are 64 bits. 
• The Round 1 message is 512 bits. 
• The Round 2 message is 768 bits. 
• The Round 3 message is 448 bits. 
• The Round 4 message is 384 bits. 

The resulting communication energy costs are: 16 mJ for Node A, 38 mJ for Node B, and 20 mJ for 
the KDC. As shown in Table 15, the computational energy cost of this method is relatively low, 
though not as low as the Kerberos V protocol. 

55 



NAI Labs Technical Report #00-010  

 
Computational Energy Costs (mJ) Processor Nodes A and B KDC 

MIPS R4000 0.0052 0.0081 
SA-1110 “StrongARM” 0.0097 0.0152 
Z-180 1.08 1.44 
MC68328 “DragonBall” 0.059 0.0910 
MCF5204 “ColdFire” 0.171 0.27 
MMC2001 “M-Core” 0.0133 0.021 
ARC-3 0.0004 0.0006 

Table 15 – Otway-Rees Protocol Computational Energy Consumption 

The communication energy costs were based on the assumption that Node A was one hop away 
from Node B and vice versa and the energy cost imposed on any intermediate nodes between Node 
B and the KDC were not included.  The next table displays estimated total energy costs to the DSN 
of this protocol for a number of different hop counts between Node B and the KDC. 

 
Number of Hops Communications Energy Consumption (mJ) 

1 99 
2 180 
4 260 
8 410 

16 723 
Table 16 - Otway-Rees Protocol Multi-Hop Communication Energy Consumption 

Compared to the Kerberos protocol, the Otway-Rees protocol consumes much more energy when 
the KDC is many hops away from the sensor nodes.  The greatest negative impact of choosing the 
Otway-Rees method over the Kerberos protocol is the impact on the ordinary sensor nodes 
surrounding the presumably energy-rich KDC.  Intermediate nodes that handle communications in 
both directions between the KDC and other sensor nodes consume 36 mJ in the Kerberos protocol 
and 78 mJ for the Otway-Rees protocol per pair of sensor nodes. The Kerberos protocol is much 
better suited to DSN’s that have low power synchronized clocks on their sensor nodes. 

5.3.1.3 KDC Database Update Cost 

A limitation of the key exchange methods presented above is that each KDC in the system needs to 
maintain a database of valid sensor nodes, which includes the keys that the KDC shares with the 
sensor nodes. These shared keys are typically unique to each KDC or KTC in the DSN as well, i.e. 
for each combination of sensor node and KDC a different key is used, so that the system can tolerate 
the compromise of a KDC an still continue to operate.  

Before a sensor node is deployed, the shared key for every KDC that it will need to use throughout 
its lifetime must be installed on the sensor node.  Likewise the KDC’s database needs entries for 
sensor nodes that will be deployed in the future prior to the KDC’s deployment or the database will 
need to be remotely updated by the Mission Authority after the KDC is deployed on the battlefield.  
Such an update mechanism could be provided, but the communication energy cost of such an 
approach makes its use unattractive.  

We assume that each KDC in the sensor network needs to receive a 20-byte record in order to 
support a new sensor node.  The total DSN wide communication energy cost of updating the KDC’s 

56 



NAI Labs Technical Report #00-010  

with varying average distances (in hops) from the Mission Authority to the KDC and different 
number of KDC’s receiving an update is shown in Table 17.  Here each KDC receives a single 
update message adding 12 new sensor nodes to the DSN.  Each message contains 2000 bits (1920 + 
80 bits of header) of information and we assume that all update messages take different paths. 

 
Energy Consumption per Update Message (J) Number of KDCs 4 Hops 8 Hops 16 Hops 32 Hops 

3 0.82 1.64 3.28 6.56 
6 1.64 3.28 6.56 13.13 

12 3.28 6.56 13.13 26.25 
24 6.56 13.13 26.25 52.50 
48 13.13 26.25 52.50 105.00 
96 26.25 52.50 105.00 210.00 

Table 17 - Update Message Energy Consumption Required to Add 12 Nodes 

In Sections 5.3.2 and 5.3.3 below describe two symmetric key based arbitrated methods that do not 
require that each KDC maintain a databases for each sensor node.  The first method uses symmetric 
key (i.e. secret-key cryptosystem) based certificates [Davis90]. This approach places the responsibility 
for storing the shared key on the sensor nodes. In the second method the secret keys that are shared 
by sensor nodes and KDC are generated based on the identity of the sensor node and secret 
information shared by the KDC and the DSN administrator. The trusted server generates the shared 
key when needed.  This approach offers lower communication energy cost than does the symmetric 
certificate method and is equally as flexible. 

5.3.2 Symmetric Key Certificate-Based Keying 

In a symmetric key based certificate method, modified for sensor network use, the key that is shared 
between a sensor node and a trusted server (a KDC or KTC) is only stored on the sensor node and 
not on the server. In addition to its copy of the shared key, the sensor node also has a copy of a 
certificate for that shared key that only the proper KDC and the Mission Authority for the DSN can 
decrypt.  For example a certificate that contains a secret key that should be shared by sensor Node A 
and KTCj would have the form: 

E(KTj, KAj || IDA || L) 

Where IDA, is Node A’s identifier, L is the lifetime of this certificate, KAj is the key that the KTC and 
Node A will share, and KTj is a secret key that the Mission Authority and the KTCj share. 

This approach offers a significant flexibility advantage over the traditional trusted server based 
protocols in Section 5.3.1.  The trusted server does not store the shared keys, such as KAj, and does 
not have to protect and maintain a database of such keys. (See the 5.3.1.3 section for information on 
the energy costs of updating such a database after the KDC has been fielded.)  However, it is up to 
the sensor nodes that are participating in certificate-based key establishment protocol to provide the 
necessary certificates to the appropriate trusted server and the energy cost of sending the certificates 
to the KTCs are significant. 

The following protocol is a slightly modified version of a symmetric key certificate based key 
establishment protocol by Davis et. al [Davis90]. In this protocol, unlike the protocols in Section 
5.3.1, one of the sensor nodes creates the key that it will share with its peer sensor node. This node 
has the responsibility of making sure that the shared key is not reused. Other symmetric key 
certificate based key establishment protocols assign key generation responsibility to the trusted server 
[Davis90].  

57 



NAI Labs Technical Report #00-010  

The protocol 

The protocol has four rounds. Each sensor, Node A, has a secret-key certificate certAj = E(KTj,, KAj 
|| IDA || L) as explained above. The protocol initiator, Node A, generates two nonces M and NA and 
encrypts these values; the identities of itself and its peer, Node B; and the session key Keypair; using 
the secret key that it shares with the local key translation center KTCj. In this protocol, the session 
key Keypair is chosen by an ordinary sensor node rather than by the trusted server. Node A must 
properly generates the shared key to assure its freshness.  

The encrypted value, Node A’s symmetric certificate for KTCj, the identities of all three participants 
and the nonce M are sent by Node A to B. 

Round 1  

Node A  Node B: IDB || IDA || KDCj || M || E(KTj,, KAj || IDA || L) || 
E(KAj, Keypair || NA || M  || IDA || IDB ) 

Node B receives the message, optionally generates a nonce NB, and encrypts the identities of the 
sensor nodes, NB, and M, using KBj.  Node B then takes the message it received, adds its own 
certificate E(KTj,, KBj || IDB  || L) for KTCj, the optional encrypted value (which provides additional 
authentication) if necessary, and sends the result to KTCj. as the Round 2 message. 

Round 2  

Node B  Node KTCj: KDCj || IDA || IDB || M || E(KTj,, KAj || IDA || L) || E(KAj, Keypair 
|| NA || M, IDA || IDB) || E(KTj,, KBj || IDB  || L) [ ||  E(KBj, NB || 
M || IDA  || IDB)] 

KTCj decrypts the certificates using KTj and uses the key, KAj, obtained from certificate certAj, to 
decrypt E(KAj , Keypair, NA || M || IDA || IDB ) and optionally uses KBj obtained from certificate 
certBj, to decrypt  E(KBj, NB || M || IDA || IDB). KTCj then performs the following actions 
depending on the variant of the protocol in use: 

• If the optional authentication is not done:  The KTC checks that the sensor node identity 
in certBj matches the second sensor node identity in E(KAj, Keypair, NA || M || IDA || IDB) so 
that the key KBj is the proper key for the sensor node that Node A wishes to establish a 
shared key with. The KTC also checks that M is used consistently throughout the message.   

• If the optional authentication is done:  The KTC performs the above checks and also 
checks that the sensor node identity in certBj matches the second sensor node identity in 
E(KAj, Keypair, NA || M || IDA || IDB) as in the above. In addition the KTC checks that Node 
B generated E(KBj, NB || M || IDA || IDB).   

The KTC encrypts the shared key and the nonces provided in the Round 2 message under the key it 
shares with Node B and sends the result with the necessary identifiers back to Node B as the Round 
3 message. 

Round 3   

Node KDCj  Node B:  IDB || IDA || E(KBj , Keypair || M || NA [ || NB ] )  

Node B decrypts the message and check that the nonce M is correct, or optionally that nonce NB is 
correct. Node B then optionally encrypts the nonce NA provided by Node A with the shared key 
generated by Node A and sends the result back to Node A.  An alternative is to skip Round 4 and 
rely on the future use of the shared key to convince Node A that Node B knows the shared key (key 
confirmation). 

58 



NAI Labs Technical Report #00-010  

Round 4 

Node B  Node A:  [ IDA || IDB || E(Keypair, NA )] 

Node A decrypts the message and checks that the nonce NA is correct, confirming that Node B 
knows the shared key. 

 
 

Generate Shared Key 
for Node B and request 
that B use KTC to get 
the key 

Node – A Node - B 

time 

KTC 

Verify and translate 
the Shared Key for 
Node B 

Establish that Node 
B know the right key 

Request that KTC 
translate the Shared Key 
from Node A 

Obtain the Shared 
Key -- 
Node B 
demonstrates to 
Node A that it knows 
the key 

Round - 1 

Round - 2 

Round - 3

Round – 4 

 Figure 11 - Symmetric Certificate Protocol (modified for DSN use) 

Analysis 

The simpler version of the protocol provides one-way entity authentication, and a key freshness 
guarantee. The use of the optional message components and the fourth message provides mutual 
entity authentication, key confirmation and a key freshness guarantee. Sensor Node A performs one 
secret-key encryption and optionally one secret-key decryption. Sensor Node B performs two secret-
key decryptions, one secret-key encryption and optionally one extra encryption. 

59 



NAI Labs Technical Report #00-010  

 
Energy Consumption (mJ) 

Processor Node A Node B KDC Node A + 
Node B 

MIPS R4000 15.2 42 25 57 
SA-1110 “StrongARM” 15.2 42 25 57 
Z-180 16.4 44 27 60 
MC68328 “DragonBall” 15.3 42 25 57 
MCF5204 “ColdFire” 15.4 42 25 58 
MMC2001 “M-Core” 15.2 42 25 57 
ARC-3 15.2 42 25 57 

Table 18 - Energy Consumption per Node for Symmetric Key Certificate Protocol 

Under these assumptions: 
• The node ID and KDC ID sizes are 64 bits. 
• The symmetric keys are 128 bits. 
• All nonces are 64 bits. 
• The ID sizes are 32 bits. 
• The lifetime field size is 64 bits. 
• The Round 1 message is 640 bits. 
• The Round 2 message is 1184 bits. 
• The Round 3 message is 384 bits. 
• The Round 4 message is 128 bits. 

 

The total energy consumed by this protocol, when the three participants are neighbors, ranges from 
81 mJ to 87 mJ. Almost all of the energy consumed by this protocol comes from the 
communications, not the computations.  Only the Z-180 processor consumes a noticeable amount of 
computational energy when compared to the communications energy (approximately 7%).  There is 
little variation in combined (computational and communication) energy consumption with processor 
type as is typical of all the secret-key based protocols we have examined to date.  It is also worth 
noting that the energy consumed by the KDC is low per run of this protocol.  This is also typical of 
the pairwise symmetric key based protocols.  

In the Kerberos protocol the total energy consumed by the ordinary nodes ranges from 52 mJ to 55 
mJ and the KDC nodes consumes between 20 and 21 mJ depending on processor type.  These 
energy consumption numbers are significantly better than this symmetric certificate based protocol. 
However, in the Kerberos protocol the key distribution centers store all of the keys that they share 
with the sensor nodes so in order to compare the two protocols this update cost must be considered. 

Since the Symmetric Key Certificate protocol uses a trusted server we need to consider how the 
energy cost of the protocol increases with increased distance (number of hops and hop distance) 
between the participants.  In the next table we display estimated communication energy cost to the 
DSN of this protocol (total cost minus the KDC’s cost) for a number of different hop counts 
between Node B and the KDC, nodes A and B are assumed to have no intermediate nodes.  The 
total energy cost of the protocol to DSN (not including the KDC’s cost) is essentially the same as the 
communication energy cost. 

60 



NAI Labs Technical Report #00-010  

 
Number of Hops Communications Energy Consumption (mJ) 

1 52 
2 88 
4 130 
8 220 

16 390 
Table 19 - Symmetric Key Certificate Protocol Multi-hop Communication Energy Cost 

This protocol can be modified that the initiator does not specify the identity of its peer. This 
approach, in which the trusted server acts as a KDC rather than a KTC, allows the initiator to 
broadcast the first message of the protocol to a set of peer sensor nodes.  This approach has slightly 
lower energy consumption and latency and is better suited for establishing shared keys between the 
initiator node and multiple local nodes than the protocol presented above. 

This protocol has a drawback, which impacts its use in sensor network. Since each sensor node needs 
a different certificate for each KTC that it uses, to provide key granularity, the sensor nodes must be 
pre-configured with all of the certificates that each node will need prior to their deployment.  
Updating a large deployed sensor network to support a new KTC has prohibitive communication 
cost. Therefore, the Mission Authority must plan for the future and store extra certificates into the 
sensor nodes.  As new KTC nodes are deployed the Mission Authority can assign each unused 
identity KTCj. for which the currently deploy sensor nodes have corresponding certificates. This 
approach requires a great deal of computation on the part of the Mission Authority and is inadequate 
if the Mission Authority needs to join two already deployed sensor networks. 

5.3.3 Identity-Based Symmetric Keying  

An alternative key establishment technique that we have developed during this project is presented 
here. This approach, which we call Identity-Based Symmetric Keying (IBSK),24 results in protocols 
that have lower energy costs than do symmetric key based certificate protocols and compare 
favorably (w.r.t. energy consumption) with traditional secret-key protocols such as Kerberos even 
when not considering the cost of doing KDC updates. IBSK based protocols, like the symmetric key 
certificate protocols, doe not require that the trusted servers maintain a database of keys that they 
share with the ordinary sensor nodes.  Also like the symmetric key certificate protocol presented 
above IBSK protocols can use different keys for each KDC sensor node pair and use different 
shared keys between each KDC and the Mission Authority. This provides strong compromise 
protection. 

In a DSN the KDC’s or KTC’s in an IBSK protocol do not store the keys that they share with the 
sensor nodes.  Instead each trusted server uses a key that it shares with the Mission Authority and the 
identity of the sensor node to generate the shared key for that sensor node. The sensor node is 

                                                      
24 In IBSK, the key shared between a sensor and a super node is generated by inputting the identities 
of the sensor and super nodes to a key generation function. The notion of deriving a cryptographic 
key from the identity of a protocol principal is certainly not new.  This identity based public key 
generation has been studied extensively, see [Schneier96] for a survey, and identity based symmetric 
keys have been used for authentication in [TMN] and in other protocols. The protocol presented in 
this section uses identity based symmetric keys for both confidentiality and authentication, and the 
authors believe that this protocol has not appeared before in the literature.  

61 



NAI Labs Technical Report #00-010  

loaded with the shared key prior to deployment.  For example, KDCj generates the key, KAj, that it 
shares with Node A by performing the following operation.  

KAj  = E(KTj , H( IDA || KDCj ) ) 
Additional information such as an expiration time can be included in the input to the hash function. 
The energy advantage of IBSK protocols vs. symmetric certificate based protocol is that the 
messages are typically shorter; certificates are expensive to transmit and receive. 

Protocol: 

Node B generates nonce NB and sends the following message to Node A requesting that it contact 
KDCj to set up a shared key. 

Round 1  

Node B  Node A: IDA || IDB || KDCj || NB  

Node A receives the Round 1 message and generates the request message to send to KDCj, where 
M(KAj, KDCj || IDA || IDB || NA ||  NB ) is represent the use a message authentication code such as 
SHA-1.  The first argument, KAj, is the key and the second is the data. 

Round 2  

Node A  Node KDCj: KDCj || IDA || IDB || NA || NB || M(KAj, KDCj || IDA || IDB || NA ||  
NB ) 

KDCj uses the identifier of Node A and the secret-key that it shares with the Mission Authority to 
generate KAj. The KDC then uses KAj to verify the MAC and if successful (and both Node A and 
Node B are still valid nodes) it generates the shared key Keypair for nodes A and B. This shared key 
can be generates by encrypting the concatenation of the node identifiers and the nonces, i.e. Kpair = 
E(KKDC-j, IDA || IDB || RA || RB  ), where KKDC-j is a secret key known only to KDCj. KDCj then 
encrypts the shared key and some verification information using KAj and KBj. The concatenation of 
these two encryptions plus the identifiers of the sensor nodes is the Round 3 message. 
Round 3   

Node KDCj  Node A: IDA || IDB || E(KAj , H( IDA || IDB || NA || NB ) || Keypair ) || 

E(KBj , H( IDA || IDB || NA || NB ) || Keypair )  

Node A decrypts E(KAj , H( IDA || IDB || NA || NB ) || Keypair ), recovers Keypair, and verifies H( 
IDA || IDB || NA || NB ).  If the verification succeeds Node A replaces E(KAj , H( IDA || IDB || NA || 
NB ) || Keypair ) with NA, generates E(Keypair, NA || NB ) to prove to Node B that Node A received 
the shared key, and sends the resulting message to Node B.  

Round 4  

Node A  Node B: IDB || IDA || NA || E(KBj , H( IDA || IDB || NA || NB ) || Keypair ) || 
E(Keypair, NA || NB ) 

 

Node B decrypts (KBj , H( IDA || IDB || NA || NB ) || Keypair ), recovers Keypair, and verifies H( IDA 
|| IDB || NA || NB ).  Node B then decrypts E(Keypair, NA || NB ) and verifiers its contents. If the 
verification succeeds Node B generates a shared key confirmation message and sends it to Node A.  

Round 5  

Node B  Node A: IDA || IDB || E(Keypair, NB || NA ) 

62 



NAI Labs Technical Report #00-010  

 

 
 

Request Shared Key for 
Node A 

Decrypt and verify recv’d 
message Generate proof 
that Node A has the 
Shared Key and send to 
B  

Node - A Node - B 

time 

KDC 

Generate 
authenticated request 
for Shared Key and 
send it to KDC 

Validate request 
generate Shared Key 
encrypt it for nodes A 
& B and send it to A 

Verify that B has the 
Shared Key 

Decrypt and verify 
Shared Key, establish 
that A has it, generate 
proof that B has the 
key and send to A 

Round – 1 

Round - 2

Round - 3 

Round  - 4 

Round  - 5 

 

Figure 12 - Identity Based Symmetric Keying Protocol 

Analysis 

The protocol provides mutual entity authentication, key confirmation and a key freshness guarantee. 
Each sensor node (nodes A and B) performs two secret-key decryptions and one secret-key 
encryption. Under these assumptions: 

• The node ID and KDC ID sizes are 64 bits. 
• The symmetric keys are 128 bits. 
• All nonces are 64 bits. 
• The Round 1 message is 768 bits. 
• The Round 2 message is 1280 bits. 
• The Round 3 message is 960 bits. 
• The Round 4 message is 896 bits. 

As shown in Table 20, the computational energy cost of this method is relatively low, and is less than 
5% of the total communication cost (71 mJ) of the sensor nodes for the inefficient Z-180 processor.  
The total energy cost of the protocol when the participants are neighbors ranges from 94 mJ to 100 
mJ. 

63 



NAI Labs Technical Report #00-010  

 
Computational Energy Costs (mJ) Processor Node A + Node B KDC 

MIPS R4000 0.0139 0.0114 
SA-1110 “StrongARM” 0.0262 0.021 
Z-180 2.9 2.4 
MC68328 “DragonBall” 0.157 0.129 
MCF5204 “ColdFire” 0.46 0.38 
MMC2001 “M-Core” 0.036 0.029 
ARC-3 0.001 0.0008 

Table 20 - Identity-Based Symmetric Keying Computational Energy Consumption 

The IBSK protocol costs the ordinary sensor nodes on average only 84% of the energy of the 
symmetric certificate protocol presented in Section 5.3.2 and is approximately 92% of the energy of 
the Kerberos protocol. The KDCs of the IBSK protocol, like the symmetric certificate protocol but 
unlike the Kerberos or Otway Rees protocols, do not need to store the keys that they share with the 
sensor nodes.   

The IBSK and Symmetric Certificate Protocols do not need to be updated when new nodes are 
deployed. In the Symmetric Certificate Protocol the KDC learns about sensor nodes via the 
certificates that it receives during the protocol, in IBSK the KDC only needs an identifier for a 
sensor node in order to establish a shared key with the sensor.  In all of the protocols in Section 5.3.1 
when a new KDC is deployed those sensor nodes that will make use it must have been deployed with 
the necessary key for that KDC or they must be updated in the field. The cost of updating the sensor 
nodes grows linearly with the number of sensor nodes and linearly with the average “distance” 
between the sensor nodes and the closest gateway node. The Mission Authority must generate and 
transmit (and the DSN forward) a unique message for each sensor node (for some region of the 
DSN).   

In IBSK the Mission Authority must plan for the future and store extra KAj keys in the sensor nodes.  
As new KDC nodes are deployed the Mission Authority can assign each unused identity KDCj. for 
which the currently deployed sensor nodes have corresponding certificates. This approach requires a 
great deal of computation on the part of the Mission Authority and is inadequate if the Mission 
Authority needs to join two already deployed sensor networks. 

Applying Identity Based Keying to the Kerberos and Ottaway-Reese Protocols 

In the Kerbeos and Otway-Reese protocols the key shared by each sensor node and super node could 
be generated using an IBSK key generation equation such as KAj = E(KTj , H( IDA || KDCj ) ). This 
simple extension of these protocols does not affect the messages that make up each protocol but it 
eliminates the energy cost of updating the super node databases, see Table 17, when new sensor 
nodes are deployed and reduces storage costs on the super nodes.  Eliminating the database updates 
saves considerable energy, for example the estimated communication energy cost of updating 24 
super nodes that are each an average of 16 hops away from a gateway nodes about the deployment of 
12 sensor nodes each is 26.25 Joules or approx. 2.19 Joules per sensor node. Compare this value with 
the cost of performing the Kerberos protocol where the sensor nodes are also about 16 hops away 
from the super node, and we see that updating the databases is 5 times more costly that running the 
protocol itself in this instance. 

64 



NAI Labs Technical Report #00-010  

5.3.4 Arbitrated Group Keying Protocols 

This document examines key establishment techniques with the goal of providing security services 
for DSN system operations such as routing.  In this context we are primarily focused on pairwise and 
small group key establishment.  Furthermore since the DSN nodes are assumed not to be mobile 
nodes, as is the case in general ad-hoc networks, the membership of the groups is relatively static.  

5.3.4.1 Small Group Extensions of Arbitrated Pairwise Protocols 

The pairwise key establishment protocols of Sections 5.3.1, 5.3.2 and 5.3.3 can be extended to 
support key establishment for small groups in a relatively straightforward manner once the potential 
membership of the group has been established. The Kerberos protocol, can be extended to the small 
group setting by a straightforward modification of the standard protocol.  When the protocol begins, 
the initiator node of the group and the potential membership of the group have already been 
determined.  

The protocol 

Each sensor node i has a secret key that it shares with a KDC (for simplicity sake we will assume that 
there is one KDC in the system, KDCj. IDA is the unique identifier of node A, likewise IDB for node 
B. NA is a random nonce that is used (with sufficiently high probability) no more than once for the 
same purpose [Menezes, p397].  Node A has the role of the group initiator and the potential 
membership of the group is {Node A, Node B, Node C, Node D, Node E, Node F}. 

Round 1  

Node A  Node KDCj:   KDCj || IDA || IDB || IDC || IDD || IDE || IDF || NA  
The initiator, Node A, sends the identity of itself and the other proposed group members, who we 
assume Node A already knows, to KDCj.  The KDC looks up Node A through Node F in its 
database, verifies that they are valid supported nodes, and fetches their corresponding shared keys 
KAj through KFj.  

Define ticketB as E(KBj, K group || IDA || IDC || IDD || IDE || IDF || L) where  K group  is the group key 
that will be shared by the subset of {Node A … Node F} approved by the KDC. L is the lifetime of 
the key.  The ticket, ticketB can only be decrypted by Node B. The other tickets are defined 
analogously. The KDC may reject some of the member of the group or disallow the group entirely. 
If Node A is not a member of the group then we will assume that the group is rejected, other 
strategies are possible by extending the protocol. Node A obtains the group key by decrypting E(KAj, 
K group || IDB || IDC || IDD || IDE || IDF || NA || L). The KDC sends the following message back to 
Node A. 
Round 2  

Node KDCj   Node A: IDA || KDCj || ticketB || ticketC || ticketD || ticketE || 
ticketF || NA || E(KAj, K group || IDB || IDC || IDD || IDE || 
IDF || NA || L) 

Node A decrypts E(KAj, K group || IDB ||… || IDF || NA || L) and verifies that IDB through IDF  (or 
whatever subset of this list the KDC approved) and NA match the message what Node A sent to the 
KDC in Round 1. Then Node A takes a fresh timestamp TA, creates the Round 3 messages and 
sends them to the other nodes that make up the group. 

Round 3  

65 



NAI Labs Technical Report #00-010  

Node A  Node X:  IDX  || IDA || ticketB || E(K group, IDX || [other group 
member’s IDs ||]  TA ) 

When it receives its message, each Node X, decrypts ticketX and obtains K pair, and uses it to decrypt 
E(K group, IDX || TA || NAX). The nodes can verify the identifiers obtained from both encrypted values, 
that the timestamp TA is still valid and that Node B’s local time is within the lifetime L.  Each node 
encrypts the timestamp and nonce provided by Node A with the shared key message and sends its 
Round 4 message to Node A.   

Round 4  

Node X  Node A:    IDA  || IDX  || E(K group, TA || IDX) 
Node A decrypts the messages and verifies that the timestamp and nonce match what it sent Node X 
in Round 3. This message allows Node A to determine that Node X received the Round 3 message 
and successfully decrypted the group key. Notice that any of the other group members can 
successfully claim to Node A that another group member has received the group key. 

Analysis 

This extension of the Kerberos protocol provides mutual entity authentication, limited key confirmation 
and a key freshness guarantee.  Each sensor node performs two secret-key decryptions and one 
secret-key encryption. Under these assumptions: 

• The size of the proposed group is 6 and the KDC approves of the entire group 
• The node ID and KDC ID sizes are 64 bits. 
• The symmetric keys are 128 bits. 
• All nonces are 64 bits. 
• The timestamps and validity periods (lifetimes) are 64 bits.  
• The Round 1 message is 512 bits. 
• The Round 2 message is 4032 bits. 
• The Round 3 messages are 896 bits, assuming no extra IDs are sent. 
• The Round 4 messages are 384 bits, since including the extra ID does not increase length of 

the ciphertext. 

The communication energy costs are: 188 mJ for Node A, 21 mJ for each of the other group 
members, 91 mJ for the KDC. As is shown in Table 21, the computational energy cost of this 
method is relatively low. The total energy cost of the protocol is essentially the same as the 
communication cost for all of the processors except for the Z-180, where the total cost ranges from 
5% to 10% more than the communication cost (single hop scenario).  The cost of this protocol can 
be reduced by replacing the ID’s within the tickets with a hash of the IDs and a bitmap of which of 
the proposed group members have been accepted, a saving of about 190 bits per ticket.  

66 



NAI Labs Technical Report #00-010  

 
Computational Energy Consumption (mJ) Processor Node A Nodes B … F KDC 

MIPS R4000 0.023 0.015 0.063 
SA-1110 “StrongARM” 0.043 0.028 0.12 
Z-180 4.8 3.1 13 
MC68328 “DragonBall” 0.26 0.17 1.0 
MCF5204 “ColdFire” 0.76 0.49 2.1 
MMC2001 “M-Core” 0.059 0.038 0.16 
ARC-3 1.6x10-3 1.0x10-3 4.4x10-3 
Table 21 – Group Kerberos Protocol Computational Energy Consumption (group size = 6) 

An important consideration with protocols that use trusted servers is the total energy cost of the 
protocol (minus the cost to the energy rich trusted server). The energy cost of the protocol increases 
with the increase distance (number of hops and hop distance) between the participants. The earlier 
communication energy costs were based on the assumption that Node A was one hop away from the 
other nodes in the group and we did not include the energy cost imposed on any intermediate nodes 
between Node A and the KDC.  In the next table we display estimated communication energy cost 
to the DSN of this protocol (minus the KDC cost) for a number of different hop counts between 
Node A and the KDC.  The total energy cost is essentially the same as the communication energy 
cost. 

 
Number of Hops  Communications Energy Consumption (mJ) 

1 293 
2 408 
4 636 
8 1090 

16 2010 
Table 22 – Group Kerberos Protocol Multi-hop Communication Energy Consumption 

(group size = 6) 

5.3.4.2 Logical Key Hierarchy 

Wallner et. al. propose a hierarchical keying method [Walner98] called Logical Key Hierarchy (LKH) 
that facilitates the distribution of a common group key to a large number of participants.  In this 
method, a central trusted third party (TTP) initiates the creation of a logical key hierarchy 
constructed of key-encryption-keys (KEKs) with a single group key, GTEK, at the root of the tree (see 
Figure 14).  The leaves of the tree correspond to unique KEKs shared between each participant and 
the TTP.    Each tier above a participant corresponds to a different KEK.  Every participant has 
knowledge of only the KEKs in a direct path from their leaf node to the root.  In the event of a 
compromise, the TTP can use the hierarchical tree of KEKs to efficiently rekey the compromised 
portions of the tree, including the GTEK.   

The Protocol 

LKH is not specifically a protocol but rather a key management technique for efficiently keying a 
large group of participants.  Within a sensor network, the hierarchical technique can be applied in 

67 



NAI Labs Technical Report #00-010  

support of other keying protocol such as pre-deployed keying (see Section 5.2) to provide a mechanism 
to maintain freshness of the shared deployed cryptographic keys.   

 

Member 
unique KEK

TTP

group
members

group key (GTEK)

Key 
encryption 
keys 
(KEKs)

 
Figure 13 - Logical Key Hierarchy (LKH) 

Analysis 

Because of its hierarchical structure, LKH can perform rekey operations with logarithmic efficiency.  
The number of messages required to rekey the tree is (k-1)d for a k-ary tree of depth d.  The creation 
of the initial tree requires the exchange of secret parameters between each participant and the TTP.  
This peer-to-peer communication is probably best performed prior to deployment of a sensor 
network to minimize the linear cost of creating the tree with its group members.  Otherwise, the TTP 
would have the energy expense of contacting each sensor node individually to establish the unique 
shared key.  The transmission cost to at the TTP to initialize the group is 2nK+d for n participants, a 
tree of depth d, and a key size of K [McGrew].  Thus, for a 100 sensor nodes organized into a logical 
binary-tree of depth 7, requires approximately 25.6 kbits to be transmitted by the TTP to initialize the 
group using 128-bit keys at a cost of 538 mJ.25  

In the event of a compromise or to maintain freshness of keys, LKH can be applied to efficiently 
rekey portions of a DSN sharing a common group key.  The computational energy costs to the 
network is centralized at the TTP who must complete the logical tree by encrypting and distributing 
the portions of the tree to affected sensor nodes.  The total broadcast size of the rekey message is 
approximately 2dK+d [McGrew].  The resulting transmission energy consumption at the TTP is 
approximately 38 mJ to evict a single member from the tree.  The rekey computation costs associated 
with each node is negligible, consisting of decrypting the wrapped or encrypted keys of the tree.  A 
more significant cost is the cost to transmit the rekey messages.   

                                                      
25 For the Sensoria WINS NG RF subsystem transmitting at 10 kbps with 10mW of power.   

68 



NAI Labs Technical Report #00-010  

The method requires each participant store d+1 keys.  The TTP must store all the keys in the tree 
and perform the key encryption functions required for distribution of new GTEKs when required 
due to compromise or cryptoperiod expiration. In this centralized role, the TTP is vulnerable to 
denial of service attacks as a central point of failure in the method. 

The centralized nature of this hierarchical keying approach is most efficient in a multicast 
communications environment.  However, in a multi-hop sensor network, the energy efficiency 
benefits of LKH are vastly outweighed by the communications cost of routing keying messages over 
multiple hops. 

5.3.4.3 One-way Function Tree 

Balenson, McGrew, and Sherman [McGrew97] present a hierarchical group keying method that 
establishes a common group key for participants by “pulling” the key from the root using one-way 
functions rather than “pushing” it from the root using key-encryption-keys as in LKH.  

The Protocol 

A randomly chosen key is assigned to each member that resides at leaves in a binary tree; the root is 
the group key.  Each node in the tree is associated with two cryptographic keys: a node key kx and a 
blinded node key k’x computed from the node key using a one-way function g where k’x= g(kx).  The 
one-way blinding function can be a cryptographic hash function such as SHA-1, MD5, or even a 
simple XOR requiring significantly less energy than public key operation.   

 

k’X = g (kX)
kX

kP = f (k’X,k’Y)

k’Y = g (kY)
kY

group
manager

group
members

group key

logical 
entities

 

Figure 14 - A One-Way Function Tree (OFT) 

The TTP maintains the entire one-way function tree.  Each member in the tree knows the unblinded 
node keys on a direct path from its node to the root, and the blinded node keys that are siblings 
along this same path.  The member knows no other keys in the tree.  The number of keys stored by 
group members and the number of keys required to be broadcast when new members are added or 
evicted is logarithmic providing a scalable linear rekey performance to support compromise or 

69 



NAI Labs Technical Report #00-010  

freshness requirements.  Unlike LKH, the energy costs required to generate the group key is 
distributed throughout the group.  Interior node keys are defined by the rule: 

kp = f( g(kx), g(ky) ), 
where x and y denote the left and right child of the node p, respectively.  With the proper blinded and 
unblinded node keys, each group member can construct the root group key.   

Analysis 

As in LKH, establishment of the tree is probably best performed prior to deployment of a sensor 
network to minimize the linear cost of creating the tree with its group members.  Otherwise, the TTP 
encounters the energy expense of contacting each sensor node individually to establish the unique 
shared key.  This cost is identical to LKH.   

The benefit of OFT’s hashing functions is evident its rekey performance.  An OFT rekey broadcast 
message size is on the order of dK+d bits for a tree of depth d and key size K [McGrew].  Thus, a 
128-bit key and a logical tree of depth 7 requires roughly half as much energy as LKH, only 19 mJ, to 
evict a single node from the tree.26 

As with the LKH protocol, the centralized nature of OFT is most efficient in a multicast 
communications environment.  However, in a multi-hop sensor network, the energy efficiency 
benefits of OFT keying are vastly outweighed by the communications cost of routing keying 
messages over multiple hops. 

5.3.5 Energy Consumption Shifting Key Establishment Protocols  

Distributed sensor networks will contain a small numbers of nodes with additional communications 
capabilities and available energy.  These energy-endowed super nodes include gateway nodes with 
long-haul communications capabilities, vehicular-mounted communications nodes, and soldier radio 
nodes.  Nearby generic sensor nodes can shift their key management computational energy burden to 
these super nodes by using certain key establishment protocols that leverage the asymmetric 
computational characteristics of some public key cryptographic algorithms, especially RSA, to 
minimize the computational energy costs of establishing a common key between two sensor nodes.  
In this section we will discuss arbitrated energy consumption shifting key establishment protocols 
with the energy-endowed nodes functioning as the arbitrator, in Section 5.3.5 we will discuss energy 
consumption shifting key establishment protocols that do not use trusted third parties. 

Research into arbitrated energy consumption shifting keying protocols began with the work of 
Tatebayashi, Matsuzaki, and Newman [Tate89].  They proposed that mobile devices could establish 
pairwise shared keys by using public key cryptography and a trusted third party that assumes the 
majority of the computational cost of the protocol.  

The mobile nodes use RSA to encrypt “keying material” with the public key of a trusted third party 
and send the results to the TTP. The TTP decrypts the messages and generates a secure message 
using a symmetric key algorithm that contains the session key that the mobile nodes should use 
(generated by one of them).  This message is sent back to the other mobile node that decrypts the 
message to recover the key.  

The original TMN protocol (KDP1) using the description from [Tate89]: 

Node A generates a random value RA in ZN and encrypts RA using the RSA public key of the trusted 
third party S and sends the result in a message to S. 

                                                      
26 For the Sensoria WINS NG RF subsystem transmitting at 10 kbps with 10mW of power.   

70 



NAI Labs Technical Report #00-010  

Round 1  

Node A  TTP S:   E(K  , R  ) Public-S A

The trusted third party S decrypts the message and recovers R . The trusted third party then calls 
Node B. 

A

Round 2  

TTP S  Node B: ”S calling B”  
When Node B receives this message it generates a random value R  in Z  and encrypts R  using the 
RSA public key of the trusted third party S and sends the result in a message to S. 

B N B

Round 3  

Node B  TTP S:  E(KPublic-S , RB ) 
The trusted third party S decrypts the message and recovers RB. The trusted third party then 
“encrypts RB by a key-encryption key RA and sends the result,  E(RA , RB), to Node A. 

Round 4  

TTP S  Node A:   E(RA , RB),   

Node A decrypts E(RA , RB), and uses the result RB  as the session key fo Node A. 

This protocol has a serious flaw that was first pointed out by Simmons [Tate89, see also 
Simmons94], the author’s revision of the above protocol (called KDP2) was broken by Park et al. 
[Park94] who proposed a fix. Other authors have found different attacks on KPD1 and KDP2 and 
proposed other variants of the protocols, see [Lowe97].  

5.3.5.1 The Rich Uncle Protocol(s) 

In this section we propose a protocol that uses the same principles as the TNM protocol and it 
variants. This protocol, which we call Rich Uncle, differs from the TNM variations in a number of 
respects: 

1. All of the mobile nodes can contribute to the value of the shared group key. This provides 
superior security. 

2. All of the mobile nodes initially contact the TTP. In the TNM protocol the initiator mobile node 
contacts the TTP and the TTP sends a message in the clear to the other mobile node informing 
it that the initiator node is trying to establish a shared key. The TNN approach is better suited 
for cell-phones and other such applications while the Rich Uncle approach is better for DSNs.  

3. Some of the TNM protocol variations use a secret shared by each mobile node and the trusted 
third part to authenticate the mobile node to the trusted third party in rounds 1 and 3 of the 
protocol.  This approach greatly limits the flexibility of the protocol. The Rich Uncle protocol 
uses certificates signed by the DSN Authority that contain a “hash” of a secret known only to 
each mobile node rather than having each trusted third party in the system store a copy of these 
secrets. In Rich Uncle each mobile node authenticates itself to the trusted third party by 
presenting its certificate and its secret (encrypted using the public key of the TTP) to the trusted 
third party. This approach eliminates the need for each TTP to maintain a long-term database of 
the secrets of the sensor nodes, which weakens the security of the DSN and limits its flexibility. 

 

71 



NAI Labs Technical Report #00-010  

The Protocol 

As shown in Figure 15, the protocol begins by the super node sending an RSA-signed public key 
certificate (or potentially chain of certificates) to nearby nodes during the routing phase.  Each sensor 
node verifies the certificate (or chain of certificates) to a public key root loaded during manufacturing 
or pre-deployment. 

Sensor A

Sensor B

Super Node
MsgID || E (KM, Counter||IDB||IDS) ||

MAC (KM, MsgID||Counter||IDB||IDS) ||
MAC (KM, H(KB||NB)||MsgID||Counter||IDB||IDS)

MsgID || E (KM, Counter||IDA||IDS) ||
MAC (KM, MsgID||Counter||IDA||IDS) ||

MAC (KM, H(KA||NA)||MsgID||
Counter||IDA||IDS)

Step 2Step 2

Step 1Step 1

Step 3aStep 3a

Step 3bStep 3b

Step 4bStep 4b

Step 4aStep 4a
MsgID || E (KA, CertA) ||

E (Spub, Counter||IDA||IDB||KA||NA) ||
MAC (KA, MsgID||CertA||Counter||IDA||IDB||NA)

MsgID || E (KB, CertB) ||
E (Spub, Counter||IDB||IDA||KB||NB) ||

MAC (KB, MsgID||CertB||Counter||IDB||IDA||NB)

MsgID || E (KB, Counter||IDA||H(KA||NA)) ||
MAC (KB, MsgID||Counter||IDA||H(KA||NA))

MsgID || E(KA, Counter||IDB||H(KB||NB)) ||
MAC (KA, MsgID||Counter||IDB||H(KB||NB))

 

Figure 15 - Rich Uncle Keying Protocol 

In step 2 shown in Figure 15, the nodes exchange messages of the form: 

 Message2 = MsgID ||  E (KM,Counter || IDi || IDS) ||  

MAC (KM, MsgID || Counter || IDi || IDS) || 

MAC (KM, H(Ki || Ni) || MsgID || Counter || IDi || IDS) 
where, 

MsgID is a 32-bit value used to identify this message as Message2, since the remainder of 
the message is encrypted, 

Counter is a 32-bit counter value used to prevent replay attacks, 

IDi is the transmitting node’s ID number, 

IDS is a super node ID number, 

72 



NAI Labs Technical Report #00-010  

MAC(KM, …) denotes use of a message authentication code, such as the HMAC-SHA-1-96 
algorithm, using a pre-deployed network-wide mission key, 

Ki is node i’s symmetric key, 

Ni is random nonce information generated by node i and used only for this key exchange, 

H(…) denotes use of a hash function, such as SHA-1, and 

|| denotes concatenation. 

Exchanging Counter discourages replay attacks by an adversary that records and then re-transmits a 
node’s legitimate transmission, and also obviates the need for an initialization vector by ensuring the 
uniqueness of the first plaintext encryption block.  Receiving nodes must maintain previous counter 
values of Message2 messages to ensure new counter values are used for each new exchange 
attempt.  The purpose of exchange IDi is for binding purposes later in the protocol.  The purpose of 
exchanging IDS is to synchronize the two sensor node participants on the chance that two or more 
super nodes are within one (or more) hops of either node.  All message parameters in Messages 2 
through 4, except MsgID, are encrypted for confidentiality protection of the exchanged key material, 
the exchanged integrity/authentication tags, and the identities of the exchanging parities.  
Exchanging the MAC(KM,MsgID || Counter || IDi || IDS) ensures legitimate receivers that the 
transmitting node knows the pre-deployed network-wide mission key and that the transmission is 
unique, further providing a modest level of denial of service protection.  The MAC(KM,H(Ki || Ni) || 
MsgID || Counter || IDi || IDS) term is used later in the protocol to bind the key material received 
from the super node (i.e. H(Ki || Ni)) with the other information received from node i in Message2. 

In step 3 of the Rich Uncle protocol, each participating node sends the super node its contribution to 
the shared key using the following message: 

 Message3 = MsgID ||  Certi || E(Spub, Counter || IDi || IDj || Ki || Ni) ||  

MAC(Ki, MsgID || Certi || Counter || IDi || IDj || Ni)  
where, 

MsgID, Counter, IDi, Ki, and Ni are as described above, 

IDj is the ID number of the node that node i wishes to establish a key, 

Certi is a certificate that contains H(Ki), and is signed by a mission authority trusted by the 
system root, and 

Spub is the super node’s public key. 

Step 3 provides the super node with a unique proof of the node’s credentials, contribution to the 
shared key, the identity of the other node, and a key for protecting key material sent back to node i 
by the super node.  The node’s credentials are established with the super node by providing the Ki 
corresponding to the H(Ki) contained in the verifiable Certi.  Node i’s contribution to the shared key 
is Ki || Ni.  The MAC provides binding integrity between all message parameters.  Message4 is 
protected using the Ki provided in Message3. 

In Step 4, the super node forwards each node’s key material contribution to the other node to allow 
each node to compute the shared key.  This last message is of the form: 

 Message4 = MsgID ||  E(Ki, Counter || IDj || H(Kj || Nj)) || 

MAC(Ki, MsgID || Counter || IDj || H(Kj || Nj)) 
where, 

73 



NAI Labs Technical Report #00-010  

MsgID, Counter, IDj, Ki, Kj, and Nj are as described above, except the subscript j denotes 
ID and key contribution from another node. 

In addition to the other node’s key material, the super node authenticates the provided key material 
to ensure the receiving node of the legitimacy of both the other sensor node and its key contribution.  
Authentication is provided through the use of a MAC based on the same unique symmetric key 
provided by the sensor node to the super node in Message3. 

Energy Consumption 

The goal of the Rich Uncle technique is to shift the computational burden of key establishment from 
the low-energy sensor nodes to energy-endowed super nodes.  However, if computational energy 
consumption is not a large portion of the overall energy consumption, the Rich Uncle benefit is 
largely negated. 

For instance, the WINS sensor nodes for the FY 2000 SensIT experiment will use the very capable 
R4400 processor as the main processor, but will also use a less energy efficient RF subsystem for 
transmission and reception of key exchange information.  As shown in Table 23, the energy costs of 
the Rich Uncle technique show the ratio of overall energy consumption between super and sensor 
node is less than a factor of two, even though the computational energy consumption ratio is over a 
factor of ten. 

 

Step Consumption Type Sensor Node 
Energy (mJ) 

Super Node 
Energy (mJ) 

Communications 28.00 84.00 
Computation 0.81 0.00 Step 1 
Step 1 Sub Total 28.81 84.00 
Communications 12.32 0.00 
Computation 0.00 0.00 Step 2 
Step 2 Sub Total 12.32 0.00 
Communications 49.06 65.41 
Computation 0.81 16.72 Step 3 
Step 3 Sub Total 49.87 82.13 
Communications 5.38 16.13 
Computation 0.00 0.00 Step 4 
Step 4 Sub Total 5.38 16.13 
Communications 94.75 165.54 
Computation 1.62 16.72 Totals 
Total of All Steps 96.37 182.26 

Table 23 - Rich Uncle Energy Consumption for MIPS R4000 with WINS Communications 

74 



NAI Labs Technical Report #00-010  

If the WINS RF subsystem is substituted with the more energy-efficient MuRF RF subsystem 
[Philsar00], the Rich Uncle energy consumption costs shown in Table 24 drop as expected.  More 
interestingly, the ratio of energy consumption between the super and sensor nodes increases. 

 

Step Consumption Type Sensor Node 
Energy (mJ) 

Super Node 
Energy (mJ) 

Communications 4.21 28.94 
Computation 0.81 0.00 Step 1 
Step 1 Sub Total 5.02 15.20 
Communications 3.29 0.00 
Computation 0.00 0.00 Step 2 
Step 2 Sub Total 3.29 0.00 
Communications 16.90 9.84 
Computation 0.81 16.72 Step 3 
Step 3 Sub Total 17.71 26.56 
Communications 0.81 5.56 
Computation 0.00 0.00 Step 4 
Step 4 Sub Total 0.81 5.56 
Communications 25.21 44.34 
Computation 1.62 16.72 Totals 
Total of All Steps 26.84 61.06 

Table 24 - Rich Uncle Energy Consumption for MIPS R4000 with MuRF Communications 

Since sensor nodes must be inexpensive, it is possible future node configurations will use less capable 
processors such as the Motorola Dragonball processor that is deployed in millions of Palm Pilots.  If 
the Palm Pilot’s Dragonball processor is substituted for the MIPS R4000, the ratio of super to sensor 
node increases even more dramatically. 

 

Step Consumption Type Sensor Node 
Energy (mJ) 

Super Node 
Energy (mJ) 

Communications 4.21 28.94 
Computation 42.16 0.00 Step 1 
Step 1 Sub Total 46.37 28.94 
Communications 3.29 0.00 
Computation 0.00 0.00 Step 2 
Step 2 Sub Total 3.29 0.00 
Communications 16.90 9.84 
Computation 42.16 840.25 Step 3 
Step 3 Sub Total 59.06 850.09 
Communications 0.81 5.56 
Computation 0.00 0.00 Step 4 
Step 4 Sub Total 0.81 5.56 
Communications 25.21 44.34 
Computation 84.31 840.25 Totals 
Total of All Steps 109.52 884.59 

Table 25 - Rich Uncle Energy Consumption for Dragonball with MuRF Communications 

75 



NAI Labs Technical Report #00-010  

Table 26 compares four sensor node compositions, showing how the Rich Uncle method provides 
its greatest benefit when a less capable processor and energy-efficient RF subsystem are mated 
together. 

 

Node Composition 
Sensor Node 

Energy 
Consumed (mJ) 

Super Node 
Energy 

Consumed (mJ) 
Energy Ratio, 
Super/Sensor 

R4000 Processor w/ 
WINS Communications 96.37 182.26 1.89 

R4000 Processor w/ 
MuRF Communications 26.84 61.06 2.28 

Dragonball Processor w/ 
WINS Communications 179.07 1005.79 5.62 

Dragonball Processor w/ 
MuRF Communications 109.52 884.59 8.08 

Table 26 - Relative Energy Consumption for Various Rich Uncle Scenarios 

The Rich Uncle energy consumption costs are based on the following assumptions:  

• The public key certificate infrastructure is two levels. 
• The RSA modulus size is 1024 bits. 
• The RSA public exponent is 65537. 
• The message ID size is 32 bits. 
• The node ID size is 32 bits. 
• All symmetric keys and nonces are 128 bits. 
• The counter size is 32 bits. 
• The authentication tag size is 96 bits. 
• The super node certificate size is 2000 bits. 
• The sensor node certificate size is 1184 bits. 
• The computational energy costs of AES and SHA-1 are negligible compared to other energy 

costs. 

Protocol Extensions 

The basic Rich Uncle protocol can be extended to establish a key with three or more single-hop-
connected sensor nodes, instead of just pairs.  Such a group Rich Uncle protocol will provide even 
greater gains over multiple pairwise key establishments. 

Similarly, the Rich Uncle method can be extended to establish a common key with two or more 
multi-hop-connected sensor nodes, instead of just singly-hop-connected nodes.  Although such an 
extension allows more nodes to gain the benefits of using the Rich Uncle method, it does so at the 
expense of additional communications required to forward key management information over 
multiple hops.  Depending on the relative cost of computation and communications within 
participating sensor nodes, Rich Uncle benefits generally do not extend beyond two or three hops 
from the super node. 

Further Protocol Extensions27 

                                                      
27 Based on the assumption that most sensor nodes will need to set up more that one shared key. 

76 



NAI Labs Technical Report #00-010  

The protocols presented above appeared in the draft version of this document (dated June 1, 2000) 
subsequently we have developed versions of the protocol to provide greater energy efficiency / 
security.  The enhancements consist of modifications to the “Message 3” portion of the original 
protocol. 

Improving the Energy Efficiency of the Rich Uncle protocol 

In the new step 3 (enhancement 1) of the protocol, each participating node sends the super node its 
contribution to the shared key using the following message the first time: 

 Message3e =   MsgID || Certi ||  E(Spub, Counter || IDi || IDj || Ki || Ni || ki/S)  

MAC(Ki, MsgID || Certi || Counter || IDi || IDj || Ni)  
where, 

MsgID, Counter, IDi, Ki, Ni IDj Certi Spub are as described above, 

ki/S is a symmetric key that sensor node IDi will use to protect traffic that is sends to super 
node S.   

Later communications between the sensor node and the super node can utilize the more efficient 
format 

 Message3e’ =   MsgID  || E(ki/S, Counter || IDi || IDj || Ki || Ni) ||   

MAC(Ki, MsgID || Certi || Counter || IDi || IDj || Ni)  
As in the original version of this protocol the new Step 3 provides the super node with a unique 
proof of the node’s credentials, contribution to the shared key, the identity of the other node, and a 
key for protecting key material sent back to node i by the super node.  The node’s credentials are 
established with the super node by providing the Ki corresponding to the H(Ki) contained in the 
verifiable Certi.  Node i’s contribution to the shared key is Ki || Ni.  The MAC provides binding 
integrity between all message parameters.   

In all versions of the protocol the certificate Certi does not need to be send to the super nodes each 
time sensor node i needs to establish a pairwise or group key with another node(s), if the super node 
will reliably store the necessary information from the certificate. Storing this information has some 
security implications, see below. 

In this version of the protocol E(Spub, Counter || IDi || Ki || Ni || ki/S) only needs be sent to the 
super node once, until the key ki/S needs to be changed, if the super node will reliably store the key 
ki/S. Comparing the original version of the protocol with this version we see that the initial step 3 
message from a sensor node  to a super node is slightly longer and more computationally expensive 
in the new version of the protocol but if the sensor node need to establish 2 or more keys then is 
version of the protocol offer substantial computational and communication energy savings.  

Table 27 presents the modified protocol’s energy consumption for four sensor node configurations.  
These values where obtained by using Message 3e’ and dropping Step 1 since the super node’s 
certificate was distributed earlier and using the same assumptions about message component sizes as 
above. 

77 



NAI Labs Technical Report #00-010  

 

Node Composition 
Sensor Node 

Energy 
Consumed (mJ) 

Super Node 
Energy 

Consumed (mJ) 
Energy Ratio, 
Super/Sensor 

R4000 Processor w/ 
WINS Communications 28.45 30.46 1.07 

R4000 Processor w/ 
MuRF Communications 7.80 7.71 0.99 

Dragonball Processor w/ 
WINS Communications 28.45 30.46 1.07 

Dragonball Processor w/ 
MuRF Communications 7.80 7.71 0.99 

Table 27 - Relative Energy Consumption for (Modified) Rich Uncle Scenarios 

The values are a substantial saving over the standard version, though the energy shifting disappears. 
However, Table 27, only presents the cost of the protocol when the Message 3e’ message is used. 
The Message 3e message must be used at a minimum when a sensor node first contacts a super node.  
The protocol using the Message 3e message energy consumption is very similar to the earlier Rich 
Uncle protocol.  Table 28 shows the average energy consumption per protocol run if a sensor node 
uses a super node to establish six key pairs (assuming the certificates are only distributed as needed). 

 

Node Composition 
Sensor Node 

Energy 
Consumed (mJ) 

Super Node 
Energy 

Consumed (mJ) 
R4000 Processor w/ WINS 
Communications 39.77 55.76 

R4000 Processor w/ MuRF 
Communications 10.97 16.61 

Dragonball Processor w/ 
WINS Communications 53.55 193.02 

Dragonball Processor w/ 
MuRF Communications 24.76 153.86 

Table 28 – Average Energy Consumption for (Modified) Rich Uncle (6 key-pairs) 

In this situation the modified Rich Uncle saves between 17% (Dragonball-MuRF-Super Node) and 
41% (R4000-WINS-Sensor Node) of the cost of the original version of the protocol.  

Improving the Security of the Rich Uncle protocol 

One security problem that occurs to varying degrees in both of the above versions of the Rich Uncle 
protocol is that a (compromised) super node can impersonate any sensor node that utilizes it to 
another super node. Running the above protocols requires a sensor node to divulge its secret key Ki 
to the super node.   

One approach that addresses this problem would be for each sensor node to have a different for Ki 
and corresponding certificate each super node.  This approach reduces the flexibility advantage that 
Rich Uncle protocols have over the IDSK protocol and we reject it. An alternative approach is to 
“hash” (actually a one-way function[Menezes97) each sensor node’s Ki multiple times and store the 
result, H n(Ki) = H(H(H(… (H(Ki))…))). in the sensor node’s certificate Certi and change Message 
3 to: 

78 



NAI Labs Technical Report #00-010  

Message3s = MsgID || Certi ||  E(Spub, Counter || IDi || IDj || H n-a(Ki)  || Ni || ki/S) || 
MAC(Ki, MsgID || Certi || Counter || IDi || IDj || Ni)  

where, 

a(i) is positive number less than n. 
Later communications between the sensor node and the super node can utilize the more efficient 
format 

 Message3s’ = MsgID || E(ki/S, Counter || IDi || IDj ||  H n-a(Ki)  || Ni) || 

MAC(Ki, MsgID || Counter || IDi || IDj || Ni)  

The trick here is to synchronize the value of a between the sensor node and the super node(s) and to 
increase it over time so that each values of H n-a(Ki) that have been used in the past become useless 
to an adversary.   

One approach would be establish a “time zero” (included in each certificate) that specifics when a   
has the value of zero for the sensor node. A DSN would have a policy of incrementing the value of 
each a every hour or day. The value n would have to be sufficiently large such that each a < n for 
the lifetime of the sensor node. This approach will require that E(Spub, IDi || H n-a(Ki) || ki/S) will 
need to be recalculated and sent more frequently than in Message 3’ above.  

This approach need not consume no more energy than the improved version of the Rich Uncle 
protocol, the hashes H(Ki), H(H(Ki)), …, Hn(Ki) in a table on each sensor node. The cost of 
computing one of these hashes is low, see Table 8, time-memory trade-offs can be used to balance 
computational cost vs. storage cost.  

 

5.3.6 Public Key Based Kerberos Protocols 

Most key establishment protocols designed for mobile /wireless environments establish a key shared 
by a single mobile device and some base station (or central service). These protocols would not be 
suitable for establishing a shared key between two mobile devices. However a number of other 
public-key based key establishment protocols that are arbitrated by trusted servers have been 
developed in other settings.  In this section we examine the suitability of these Public Key Based 
Kerberos protocols in a Distributed Sensor Network.  The protocols of Tung et al [Tung00a], 
Sirbu[Sirbu97] and Davis[Davis95],28 the so called public key based initial authentication protocols 
(PKINT) [Tang00a] could be used within a DSN. Other “public key Kerberos systems such as Tung 
et al [Tung00b] only employ public key cryptography for cross realm operations which roughly 
corresponds to operations between different DSNs. Such operations are beyond the scope of this 
report and these protocols will not be discussed further here. 

It is interesting to note that the primary focus on the efficiency of the PKINT protocols is on server 
scalability and state minimization rather than client computational efficiency or even communication 

                                                      
28 The related Needham and Schroeder [Needham78] protocol uses seven messages and therefore 
has higher latency than the protocols presented in this section. In addition a couple of flaws have 
been discovered in the protocol. Denning and Socco [Denning81] discovered a replay attack 
against the protocol that can be overcome in various ways including using timestamps. The 
original protocol also contains a flaw, discovers by Lowe [Lowe95], that allows an adversary to 
impersonate one sensor node to another, which can be prevented by including additional identity 
information in protocol. Therefore, we rule out using this protocol in distributed sensor networks. 

79 



NAI Labs Technical Report #00-010  

minimization (as measured by the number of bits transmitted and received).  Also note that the 
protocols are limited to two party communication establishment rather than providing for small 
groups.  

Davis’ Public Key Kerberos 

Davis’ PK Kerberos protocol utilizes symmetric key cryptography to establish a shared session key 
between the initiating client (Node A) and the Kerberos server and to distribute the shared 
symmetric key between the clients, Node A and Node B.  The Kerberos server only uses public key 
cryptography to distribute the shared session key to Node B. This design requires that secret key 
shared by each sensor nodes and the Kerberos server already be in place before the protocols 
commences. In a DSN setting such a protocol does not provide us with flexibility that we look for 
from a public key based protocol. We rule out protocols (such as this) that burden a DSN with the 
increase energy cost of public key cryptography or symmetric key cryptography without providing 
sufficient gains in flexibility and perhaps security as well.  

Sirbu and Chuang’s Public Key Kerberos 

Sirbu and Chang take a very different approach to employing Public Key cryptography in Kerberos.  
They do away with the authentication server altogether converting initial authentication and session 
key establishment between Node A and Node B into a two party protocol. This protocol is not 
arbitrated (it is a form of pairwise asymmetric keying) and therefore cannot utilize the arbitrator’s 
enhanced capabilities such as greater battery energy to reduce the energy load that key establishment 
places on the sensor nodes. The protocol does improve upon the techniques described in Section 
5.4.1. We will not discuss this protocol further. 

Tang et al.’s Public Key Initial Authentication Kerberos 

Tang et al.’s protocol (PKINT) requires that the clients (sensor nodes) perform expensive public key 
operations including signing messages. Using this protocol in a DSN would place a significantly 
greater energy load on the sensor nodes that the Rich Uncle protocol discussed above. Therefore we 
rule out this protocol as well.  

5.4 Self-Enforcing Autonomous Keying Protocols 

5.4.1 Pairwise Asymmetric Keying 

A large number of pairwise key establishment protocols have been developed since the 
announcement of the Diffie-Hellman Key Agreement Protocol in 1976. Many of these protocols 
(including the Diffie-Hellman) unaltered are not suitable use in distributed sensor networks since 
they do not provide sufficient entity authentication.     

In this section we describe a class of pairwise asymmetric protocols (protocols that encrypt and sign 
a session key, [Menezes97, p509]) and discuss their energy consumption. Then we compare energy 
cost of this class of protocol against a Beller-Yacobi protocol that was designed to reduce the 
computational cost (number of CPU cycles) of one of the protocols participants (i.e. a smartcard).  

80 



NAI Labs Technical Report #00-010  

5.  Encrypt Kpass and
Transmit

3.  Generate K

4.  Generate Signature

6.  Receive message and
Verify Certificate Signature

7.  Verify Signature and decrypt
Kpair

8. Generate and send
confirmation

Node - A Node - B

time

1.  Transmit Certificate

2. Verify Certificate
     Signature

Cert(Node-B)

Cert(Node - A), EncPuB(NA || Keypair || IDA),
SigPrA (H(NA || Keypair || IDA))

9 Verify confirmation

 

Figure 16 – Pairwise Public Key Based Protocol (PK-TPP) 

The Protocol 

Each sensor node such as Node A, has a public-key certificate certA which provides a copy of Node 
A’s public key and provides a binding between the key and Node A’s identity, IDA. The public-key 
signature contained within the certificate provides this binding.  The Mission Authority using its 
private key, KMA-private, generates this signature. Each sensor node has embedded within it during the 
pre-deployment phase the corresponding public key, KMA-public, which it uses to verify certificates 
signed by the Mission Authority.  

The protocol begins with the initiator sensor node, Node B, generating a random nonce, NB, and 
sending it along with its certificate to Node A. 

Round 1  

Node B  Node A:  IDA || IDB || NB || CertB 

Node A receives the message and verifies node B’s certificate (i.e. verifies the signature generated by 
the Mission Authority). Node A generates the shared key Keypair and a random nonce NA. Node A 
encrypts NA and Keypair  so that the key and the nonce will be communicated to Node B privately. 
Node A generates Sig(KA-private, Hash(NA || Keypair || IDA )) which will provide Node B with an 
authenticated copy of the key and the nonce.  

81 



NAI Labs Technical Report #00-010  

Node A sends its certificate, signature and the encrypted value to Node B 

Round 2  

Node A  Node B:  IDB || IDA || E(KB-public, NA || Keypair || IDA) ||  
Sig(KA-private, Hash(NA || Keypair || IDA  )) || CertA 

Node B verifies Node A’s certificate, decrypts the shared key using its private key KB-private, and 
verifies the signature using Node A’s public key, KA-public. Now only Node A and Node B know the 
shared key Keypair and the nonce NA.   

Optionally Node B can prove to Node A that it did participate in the protocol (the Round 1 message 
could be a replay) and that it received and successfully obtained the key by sending the following 
message back to Node A. 

Round 3   

Node B  Node A:  IDA || IDB || E(Keypair, NA )  

Node A decrypts the message and checks that the nonce NA is correct. The protocol can be realized 
using different combinations of public-key algorithms such as RSA, ElGamal encryption or 
signature, Elliptic Curve encryption, XTR encryption or signature, or DSA. The full version of the 
protocol provides mutual entity authentication and key delivery confirmation. The short version of 
the protocol only provides one-way entity authentication and must rely on the use of Keypair by 
Node B in order for Node A to know that Node B has successfully received the key.  

The energy cost of this protocol and how the energy cost of the protocol is distributed between the 
participating sensor nodes varies with the choice of crypto-algorithm.  Table 29 presents the cost of 
this protocol with the optional third message for protocols using the RSA and XTR cryptosystems. 

As part of our research we have been examining the Beller-Yacobi protocols. These protocols are 
public-key based pairwise key establishment protocols. The most efficient of these protocols is the 
two-pass protocol.   The Beller-Yacobi two-pass protocol (BY-2) [Beller93] (typically) employs RSA 
encryption and either ElGamal or DSA signature methods plus a symmetric key method.  It was 
designed to reduce the computational (# CPU cycles) cost for one of its participants (a smartcard or 
a wireless terminal) interacting with a higher power peer.  However, when we examined the energy 
consumption of the protocol a different picture appeared.  The energy consumed by the participants 
differs by less than 10% from the energy consumed by either node and the total energy consumed 
was nearly twice the energy consumed by the protocol presented in this section. 

82 



NAI Labs Technical Report #00-010  

 
Total Energy Consumption (mJ) Processor RSA XTR 

Comm. 236 116 
Comp. 36 17 MIPS R4000 
Total 272 133 

Comm. 236 116 
Comp. 32 16 SA-1110 “StrongARM” 
Total 269 132 

Comm. 236 116 
Comp. 7,923 3,884 Z-180 
Total 8160 4,000 

Comm. 236 116 
Comp. 1,807 886 MC68328 "Dragon Ball" 
Total 2,043 1,002 

Comm. 236 116 
Comp. 1,667 817 MC68328 “ColdFire” 
Total 1,904 933 

Comm. 236 116 
Comp. 296 145 MMC2001 

“M-Core” Total 532 261 
Comm. 236 116 
Comp. 2 1 ARC-3 
Total 239 117 

Table 29 - Energy Consumption of Pairwise Public Key Protocol 

5.4.2 Group Keying Protocols 

In this section we will look at the effectiveness of techniques for establishing a shared group key 
among a group of DSN sensor nodes without using a special trusted third party (such as a super 
node).  These methods, like the pairwise methods in the previous section, are all based on public key 
cryptography techniques, primarily the use of modular exponentiation over ZN (RSA) or a finite field 
such as ZP (Diffie-Hellman). 

5.4.2.1 (Elected) Simple Key Distribution Center 

This protocol is designed to support small groups of nodes using only unicast messages. It is 
designed for efficiency and does not provide perfect forward secrecy (break back protection). If an 
adversary compromises a group leader node he can read past traffic and obtain past group keys for 
those groups for which the compromised node acted as the group leader. However, for DSN 
operations such as routing this limitation is tolerable.  In this protocol we utilize a pairwise key 
establishment protocol to distribute the group key securely and bootstrap the distribution of the 
(initial) group key.  

The Protocol   

Each sensor node, such as Node A, has a public-key certificate certA which provides a copy of Node 
A’s public key and provides a binding between the key and Node A’s identity, IDA. The public-key 
signature contained within the certificate provides this binding.  The Mission Authority using its 

83 



NAI Labs Technical Report #00-010  

private key, KMA-private, generates this signature. Each sensor node has embedded within it during the 
pre-deployment phase the correspond public key, KMA-public , which it uses to verify certificates signed 
by the Mission Authority. We also assume that each nodes know a DSN wide key Key(Ni,Nj). 
Before the protocol begins, we assume that the membership of the group has been established and 
that each node in the group knows that a particular node, Node J, will act as the group leader. 

The protocol begins with Node J sending its certificate to the other group members. 

Round 1  

Node J  Node * (all other group members): 

  ID* || IDJ || CertJ 
Each recipient node (Node I) verifies Node J’s certificate (i.e. verifies the signature generated by the 
Mission Authority).   

Each Node I generates a shared key Key(Ni,Nj) and a random nonce NI. Node I encrypts NI and 
Key(Ni,Nj) so that the key and the nonce will be communicated to Node J privately.  Node I generates 
Sig(KI-private, Hash(NI || Key(Ni,Nj) || IDI )) or MAC(Key(Ni,Nj) ,  NI || KeyM || IDI || H(membership) ).  
The encrypted value and the signature or MAC  will provide Node J with an authenticated copy of 
the shared key and the nonce. H(membership)  is a hash of a list of the members of the group with the 
group leader’s ID first followed by the other member’s IDs in ascending numerical order (and 
perhaps including a group specific counter). 

If Node J has been the group leader before for every node in the group then Round 2 can be 
skipped. 

Node I then sends either of the following Round 2 messages (depending on the security policy of the 
DSN) to Node J. 

Round 2  

Node I  Node J: IDJ || IDI || E(KJ-public, NI || [ Key(Ni,Nj) ||] IDI ||H(membership) ) || 
MAC(Key(Ni,Nj) ,  NI || Key(Ni,Nj)  || IDI || H(membership) )  

or 
Round 2’  

Node I  Node J: IDJ || IDI || E(KJ-public, NI || [ Key(Ni,Nj) ||] IDI||H(membership) ) || [ 
CertI ||] Sig(KI-private, H(NI || Key(Ni,Nj) || IDI || H(membership) ))  

Round 2 continues with Node J decrypting E(KJ-public, NI || [ Key(Ni,Nj) ||] IDI ||H(membership) )  and 
verifying IDI  and  H(membership). Node J then uses Key(Ni,Nj)  to verify MAC(Key(Ni,Nj) ,  NI || 
Key(Ni,Nj)  || IDI || H(membership) ). Node J then determines that the sender of the message is a valid 
sensor node (assuming that KeyM  has not been compromised) but cannot be sure that the sender is 
Node I.  

Alternatively in Round 2’ Node J verifies each Node I’s certificate, decrypts E(KJ-public, NI || [ 
Key(Ni,Nj) ||] IDI ||H(membership) ) using its private key KJ-private, and checks its contents. Node J also 
verifies the signature using each Node I’s public key, KI-public.. The verification process includes 
checking H(membership).  Node J can be sure that the message sender is Node I (unless Node I’s 
private key has been compromised). Now only each Node I and Node J know the shared key 
Key(Ni,Nj) and the nonce NI.  

Multiple groups may be formed involving the same pair of nodes, (Node I and Node J) with the 
same node as group leader. In such a situation the optional portions of this message can be 

84 



NAI Labs Technical Report #00-010  

eliminated from later runs of the protocol. Also note that once Round 2’ has been performed by a 
sender and a receiver Round 2 can be used later, with the same key Key(Ni,Nj) or a symmetric key 
encryption function can be used to replace E(KJ-public, … ). Section 5.3.5.1(Energy Consumption) 
demonstrates how this can be done. 
Node J now can generate the group key, KeyG. The key generation process is not part of the 
protocol, one approach would be for Node J to generate a random nonce NJ and use all of the 
nonces as inputs to some key generation function, (e.g. KeyG = F(NJ, NA || NB || … || NE || NF ) ).  
Node J then distributes the group key to the other group members. 

Round 3   

Node J  Node I (for each group member other than J): 

  IDI || IDJ || E(Key(Ni,Nj), NI ||  KeyG. || H(membership))  

Each Node I decrypts “its” message and checks that the nonce NI and the hash of the group 
membership are correct.  

At this point each group member should know the group key but the other group members have not 
confirmed this fact.  The simplest approach is for each group member to tell the group leader that it 
has received the group key and for the group leader to inform the entire group when all the members 
have confirmed having the group key. Each node confirms to the group leader that it has received 
the group key by encrypting the nonce NI  and a hash of the group key the membership and nonce to 
the group leader. 

Round 4   

(each) Node I  Node J: IDJ || IDI || E(Key(Ni,Nj), NI || H(NI || KeyG || 
H(membership) ) )  

Node J decrypts each message and determines that each Node I received the key for the proper 
group.  Node J can inform the group that the group key is in place by generating and sending either: 

Round 5   

Node J  Node I*: 

ID* || IDJ || E(KeyGroup, N’J ||  H(N’J ||  KeyG || 
H(membership)) )  

or 

Round 5’   

Node J  Node I*: 

ID* || IDJ || N’J || Sig(KI-private, Hash(N’I || KeyG || 
H(membership)) )  

to the other group members who can decrypt and verify the message contents. The Round 5 message 
is cheaper to generate, transmit, receive, and verify. Using the Round 5’ message prevents any of the 
group members from spoofing the other group members into believing than Node J says that the 
group key is in place.  Round 5’ should not be used with Round 2.  

Like the Pairwise Public Key protocol this protocol can be realized using a number of different 
public-key algorithms such as RSA, ElGamal encryption or signature, Elliptic Curve encryption, XTR 
encryption or signature, or DSA. The energy cost of this protocol and how the energy cost of the 
protocol is distributed between the participating sensor nodes varies with the choice of processor, 
communication subsystem and crypto-algorithm and the protocol “variant” chosen. 

85 



NAI Labs Technical Report #00-010  

The following tables present energy consumption of the two variants of the protocol using RSA both 
public-key encryption and for signatures.  Under these assumptions: 

• The group size is 6. 
• The node ID sizes are 32 bits. 
• The symmetric keys are 128 bits. 
• All nonces are 64 bits. 
• RSA modulus size is 1024 bits. 
• The node certificate size is 2500bits. 
• MAC and hash sizes are both 128 bits. 
• The Round 1 message is 2664 bits. 
• The Round 2 / 2’ messages are 576 / 3972 bits. 
• The Round 3 message is 448 bits. 
• The Round 4 message is 320 bits.  
• The Round 5 / 5’ messages are 320 / 1088 bits. 

In the “lightweight” version of the protocol the group leader consumes 4 times as much energy as do 
each of the ordinary nodes (3 times as much in the “heavy weight” version) performing 
communications. The lightweight protocol leader also consumes nearly 50 times as much energy 
performing computations (5 times as much in the “heavy weight” version) for this group size.  The 
total energy consumed by all of the participants in the heavy weight version of the protocol is 
between 2 1/5 and 2 1/3 times larger than that consumed by the participants in the lightweight 
version of the protocol. 

 
Energy Consumption (mJ) 

Processor Standard 
Node Leader Node Total 

Comm. 65 170 498 
Comp. 2 84 92 MIPS R4000 
Total 67 254 590 

Comm. 65 170 498 
Comp. 2 75 83 SA-1110 “StrongARM” 
Total 67 245 580 

Comm. 65 170 498 
Comp. 372 18,431 20,291 Z-180 
Total 438 18,601 20,789 

Comm. 65 170 498 
Comp. 84 4201 4624 MC68328 "Dragon Ball" 
Total 150 4372 4268 

Comm. 65 170 498 
Comp. 78 3879 4269 MCF5204 “ColdFire” 
Total 143 4048 4765 

Comm. 65 170 498 
Comp. 14 688 757 MMC2001 “M-Core” 
Total 79 858 1254 

Comm. 65 170 498 
Comp. 0 6 6 ARC-3 
Total 66 176 503 

Table 30 - Energy Consumption of (Elected) Simple Key Distribution Center      
(Using Rounds 2 and Round 5) 

86 



NAI Labs Technical Report #00-010  

 

 
Energy Consumption (mJ) 

Processor Standard 
Node Leader Node Total 

Comm. 148 424 1162 
Comp. 19 104 200 MIPS R4000 
Total 167 529 1362 

Comm. 148 424 1162 
Comp. 17 94 180 SA-1110 “StrongARM” 
Total 165 518 1341 

Comm. 148 424 1162 
Comp. 4240 23,035 44,235 Z-180 
Total 4387 23,460 45,397 

Comm. 148 424 1162 
Comp. 968 5253 10,087 MC68328 "Dragon Ball" 
Total 1114 5677 11,248 

Comm. 148 424 1162 
Comp. 892 4847 9308 MCF5204 “ColdFire” 
Total 1040 5271 10,470 

Comm. 148 424 1162 
Comp. 158 860 1651 MMC2001 “M-Core” 
Total 306 1284 2812 

Comm. 148 424 1162 
Comp. 1 7 14 ARC-3 
Total 150 431 1175 

Table 31 - Energy Consumption of (Elected) Simple Key Distribution Center        
(with Rounds 2’ and 5’) 

5.4.2.2 Cliques Group Diffie-Hellman Protocols 

The Cliques Group Diffie-Hellman keying protocols are a set of key agreement protocols (each 
groups provably contributes to the value of the group key) that have been developed since the early 
1990’s.  We focus on those methods that include authentication (since we assume the presence of 
active adversaries) and we have inserted certificate exchange into the protocols to better model the ad-
hoc nature of DSN’s. 

The setting 

Assume that a group of neighboring DSN forms a group to efficiently protect message amongst 
themselves (e.g. for collaborative signal processing) and for distributing / forwarding traffic from 
sources outside the group and therefore the group key will be put into use shortly after creation. 
Furthermore assume that some other (previously executed) protocol allows the members of the 
group to know the “identity” of the other members of the group (this is not a trivial point). Each 
member of the GDH protocol we will describe below needs to know who to send the its output to 
(i.e. who goes first, second … last) and in the case of two of the nodes the complete membership of 
the group. Assume that each participant has a public key of the form αxi (mod p) signed using the 
RSA key of the “owner” of the DSN. Each node provides its certificate, as part of the protocol, to 
the group leader who is trusted by the others with the function of controlling access to the group.  

We now describe and analyze the cost of Ateniese, Steiner and Tsudik’s A-GDH.3 protocol 
[Ateniese99], an authenticated Group Diffie-Hellman Keying protocol that was designed to minimize 

87 



NAI Labs Technical Report #00-010  

computational cost and total bandwidth, modified with the addition of public key certificates.  A-
GDH.3 is an extension (providing authentication) of the GDH.3 / IKA.2 protocol by the same 
authors.  

The protocol 

The protocol consists of n rounds; n is the size of the group.  Each node i has a certificate certi, 
which contains the identity of the node and its public key αxi (mod p) signed using the network’s 
owner RSA key.  Let p be a prime and q a prime divisor of p-1. G is a cyclic subgroup of ZP – {0} 
of order and α is a generator of G.  The values p, q and α are known (and known to be authentic) to 
all of the nodes of the DSN.  This can be done efficiently by installing these values in each DSN 
node prior to deployment.  These values do not need to be kept confidential. 

Round i (0 < i < n-1)  

Node i  Node i+1:   IDI || IDI+1|| α(r1…ri) (mod p) 

Each node takes a value (node 1 starts with α) in ZP-{0} provided by its predecessor and raises it by a 
unique random value ri in G chosen by that node.  That node sends the result to the next node. 

Round n-1    

Node n-1  Node i:   IDN-1 || ID*|| α(r1…rn-1) (mod p)  

In this round Node n-1 takes the values provided by Node n-2 and raises it by a unique random value 
in G chosen by Node n-1 and sends the result to Node 1, Node 2, … Node n-2. 

 

Round n    

Node i (0 < i < n)  Node n:  IDI || IDN || α(r1…rn-1)/ ri (mod p) || Certi  

 

In this round Node 1, Node 2, … Node n-1 each take the value received in Round n-1 and raises it by 
the inverse of their unique random value ri.  That result and the certificate of the node are sent to 
Node n.  

Round n + 1    

Node n  Node i: IDN-1 || ID*|| {α((r1…rn)/ ri)Kin (mod p) | 1 ≤ i ≤ n-1} 
|| Certn 

In this round Node n verifies each certificate and raises each value received by a unique random value 
rn in G chosen by Node n and by Kin = F(αxixn (mod p) ).  F is a lightweight bijection function 
mapping elements of G into Zq.  Note that Node n alone of all the DSN nodes knows xn and uses 
that value and the public keys of the other nodes to determine each Kin. 

After they receive their message from Node n. Node 1, Node 2, … Node n-1 each independently 
verifies the certificate of Node n.  Each node then takes the value provided to it by Node n and raises 
the value by Node i’s unique random value ri in G chosen earlier and the inverse of Kin.  Node i 
alone of all the DSN nodes knows xi and uses that value and Node n’s public key (αxi (mod p)) to 
determine Kin and its inverse. The result α(r1…rn) is the shared group key. 

The following table provides estimated energy cost of this protocol for a group of 6 nodes when only 
unicast messages are available. These calculations again assume that a WINS transceiver is used and 
the inter-node distance is 100 meters. 

 

88 



NAI Labs Technical Report #00-010  

Energy Consumption (mJ) Processor Nodes 1-4 Node 5 Node 6 Total 
Comm. 179 232 643 1575 
Comp. 64 33 99 390 MIPS R4000 
Total 243 265 743 1965 

Comm. 179 232 643 1575 
Comp. 59 30 91 357 SA-1110 

“StrongARM” Total 238 262 734 1933 
Comm. 179 232 643 1575 
Comp. 14,725 7455 22,735 89,092 Z-180 
Total 14,904 7687 23,378 90,668 

Comm. 179 232 643 1575 
Comp. 3,358 1700 5185 20,319 MC68328 

"Dragon Ball" Total 3537 1933 5828 21,895 
Comm. 179 232 643 1575 
Comp. 3099 1569 4784 18,748 MC68328 

“ColdFire” Total 3278 1801 5427 20,324 
Comm. 179 232 643 1575 
Comp. 550 278 848 3325 MMC2001 

“M-Core” Total 728 510 1492 4901 
Comm. 179 232 643 1575 
Comp. 5 2 7 27 ARC-3 
Total 183 234 650 1603 

Table 32 - Energy cost of A-GDH.3 including certificates with unicast messages only 

The energy burden on the nodes is unevenly distributed in this protocol. Both the computational 
energy and communication energy are unevenly distributed so switching from the WINS transceiver 
to the MuRF transceiver would not change this imbalance.  

Compared to the unauthenticated version of this protocol (IKA.2) this protocols is significantly more 
expensive for most processors when using the WINS transceiver.  For the MIPS R4000 there is a 
84% increase in total energy cost when using the authenticated version of the protocol (with 
certificate transport), whereas for the ARC-3 processor there is more than a 125% increase in the 
energy consumed.   

This protocol provides key agreement, no group member can control the value of the group key, 
each group member can influence the value of the key.  In situations where key agreement is not 
needed, the group leader is trusted by the other nodes to generate and distribute the group key, and 
the group size is small, it is more energy efficient for each group member to establish a pairwise key 
with the leader, as in Section 5.4.2.1, and have the group leader generate and distribute the key. A 
significant advantage of this protocol over the protocol from the previous section is that this 
protocol provides perfect-forward secrecy, see Section 3.4, and is better suited for establishing keys 
that protect long-term secrets. 

The following table provides estimated energy cost of this protocol for a group of 6 nodes when 
both multicast and unicast messages are available. These calculations again assume that a WINS 
transceiver is used and the inter-node distance is 100 meters. 

89 



NAI Labs Technical Report #00-010  

 

 
Energy Consumption (mJ) Processor Nodes 1-4 Node 5 Node 6 Total 

Comm. 240 224 418 1602 
Comp. 64 33 99 390 MIPS R4000 
Total 304 257 517 1991 

Comm. 240 224 418 1602 
Comp. 59 30 91 357 SA-1110 

“StrongARM” Total 299 254 509 1959 
Comm. 240 224 418 1602 
Comp. 14,725 7455 22,735 89,092 Z-180 
Total 14,965 7680 23,153 90,694 

Comm. 240 224 418 1602 
Comp. 3358 1700 5185 20,319 MC68328 

"Dragon Ball" Total 3598 1925 5603 21,921 
Comm. 240 224 418 1602 
Comp. 3099 1569 4784 18,748 MC68328 

“ColdFire” Total 3339 1793 5202 20,350 
Comm. 240 224 418 1602 
Comp. 550 278 848 3325 MMC2001 

“M-Core” Total 789 503 1266 4927 
Comm. 240 224 418 1602 
Comp. 5 2 7 27 ARC-3 
Total 244 227 425 1629 

Table 33 - Energy cost of A-GDH.3 including certificates with both unicast and multicast 
messages 

The use of multicast messages is slightly more expensive than only using unicast, with an increase of 
approximately 25 mJ for the WINS transceiver. However, the latency of this mixed message type 
approach is considerably lower, for example if all of the nodes in the group are one hop or less away 
from Node 5 and Node 6 then the latency of the unicast method is approximately 60% greater than 
the protocol that uses both unicast and multicast messages.    

5.4.2.3 Burmester-Desmedt Conference Keying 

The Burmester-Desmedt conference key protocols first appeared in [Burmester94].  In that paper a 
number of techniques were presented for forming a group key.  The most efficient of them was 
designed to work best in a broadcast environment and offers better performance (energy cost) in a 
DSN multicast environment as well. This protocol like the GDH protocol discussed above assumes 
that the global parameters (p, q and α) for the underlying Diffie-Hellman method have been 
properly distributed to the DSN nodes by the network’s owner. We also assume that each node i has 
a certificate certi, which contains the identity of the node and its public key, signed using the 
network owner’s private RSA key. As in the A-GDH.3 analysis, the Mission Authority’s public RSA 
key is known to all the DSN nodes and each node initially only knows its own certificate.  Unlike the 

90 



NAI Labs Technical Report #00-010  

GDH analysis we assume that each group member knows all of the nodes that should make up the 
group.29 

An Authenticated Protocol 

The protocol consists of only two rounds if multicast communications are used, where n is the size 
of the group.  Each node takes α and raises it by a unique random value ri in G chosen by that node 
obtaining zi = αri (mod p)i. Each node signs the hash of the result using its public key and sends the 
result, the signature, and its certificate to the other nodes. 

Round 1  
Node i  Node *: IDi || ID* || zi  || SigPubKi (IDi, zi) || certi  

Each node i verifies the certificate and the signature the messages from its neighbors, i-1 (mod n) and 
i+1 (mod n), and constructs Xi = (α(ri+1) /α (ri-1)) ri (mod p) signs it and sends Xi and the signature to 
the other nodes. The transmission of the certificate is optional in Round 2, if the Round 1 messages 
are sent by Node i to its two neighbors then the certificate is required in Round 2, if Node i sends its 
Round 1 message to the entire group then the certificate is not needed in Round 2. 

Round 2    

Node i  Node *: IDi || ID* || Xi || SigPubKi (Idi, Xi) [ || certi  ] 

Each node, upon receiving the necessary Xi ’s (one X from each of the other group members) 
verifiers their signatures and constructs Ki as follows:    

   Ki = (zi-1 ) nri  Xi n-1 Xi+1 n-2  Xi+2 n-3  … Xi-2
   (mod p) 

Which for each node should be equal to: 

   αr1r2+ r1r2+ r2r3+…+rnr1 (mod p) 

The following tables provide estimated energy cost and latency of this protocol for a group of 6 
nodes when only unicast messages are available. These calculations again assume that a WIN 
transceiver is used and the inter-node distance is 100 meters. 

   

                                                      
29 This notion of needing to know the entire group membership may be a non-issue at least from 
an authentication point of view.  If a node has a valid certificate and the signature “corresponds” 
with the certificate then the node is automatically accepted.  If a node shows up in too may 
groups then action will be taken later. 

91 



NAI Labs Technical Report #00-010  

 
Energy Consumption (mJ) Processor Per Node Total 

Comm. 955 5730 
Comp. 88 521 MIPS R4000 
Total 1042 6251 

Comm. 79 5730 
Comp. 207 473 SA-1110 

“StrongARM” Total 1034 6203 
Comm. 955 5730 
Comp. 19,568 117,407 Z-180 
Total 20,523 123,136 

Comm. 955 5730 
Comp. 4463 26,777 MC68328 "Dragon 

Ball" Total 5418 32,507 
Comm. 955 5730 
Comp. 4117 24,707 MC68328 

“ColdFire” Total 5073 30,436 
Comm. 955 5730 
Comp. 730 4382 MMC2001 

“M-Core” Total 1685 10,111 
Comm. 955 5730 
Comp. 6 36 ARC-3 
Total 961 5766 

Table 34 - Energy Consumption of Authenticated Burmester-Desmedt including certificate 
transport with unicast messages only 

The Burmester-Desmedt protocols are perfectly fair to each group member in terms of energy 
consumption and for the DragonBall, ColdFire, and Z-180 processors the energy consumption of 
nodes performing the Burmester-Desmedt protocol (augmented with signatures) is less than the 
energy consumption of the leader node (Node N) in the A-GDH.3 protocol. However, the 
authenticated Burmester-Desmedt–UNICAST is more expensive than authenticated GDH-
UNICAST this size group. (In the case of the ARC-3 authenticated Burmester-Desmedt is 2 1/2 
times more costly). For inefficient processors such the Z-180 is authenticated Burmester-Desmedt is 
about 35% more expensive.   

The following tables provide estimated energy cost and latency of this protocol for a group of 6 
nodes when only multicast and unicast messages are available. These calculations again assume that a 
WIN transceiver is used and the inter-node distance is 100 meters. 

92 



NAI Labs Technical Report #00-010  

 
Energy Consumption (mJ) Processor Per Node Total 

Comm. 742 4455 
Comp. 87 521 MIPS R4000 
Total 829 4976 

Comm. 742 4455 
Comp. 79 473 SA-1110 

“StrongARM” Total 821 4928 
Comm. 742 4455 
Comp. 19,568 117,407 Z-180 
Total 20,301 121,862 

Comm. 742 4455 
Comp. 4463 26,777 MC68328 "Dragon 

Ball" Total 5205 31,232 
Comm. 742 4455 
Comp. 4118 24,707 MC68328 

“ColdFire” Total 4860 29,162 
Comm. 742 4455 
Comp. 730 4382 MMC2001 

“M-Core” Total 1473 8837 
Comm. 742 4455 
Comp. 6 36 ARC-3 
Total 749 4491 

Table 35 - Energy Consumption of Authenticated Burmester-Desmedt including certificate 
transport with unicast and multicast messages 

The energy efficiency of the authenticated Burmester-Desmedt protocol compared to authenticated 
A-GDH.3 (both with certificate transport) with both protocols using both unicast and multicast 
messages and the WINS transceiver and is similar to the situation when only unicast messages are 
used. The A-GDH.3 leader consumes more energy than the Burmester-Desmedt nodes but the total 
energy consumption of A-GDH.3 protocol is much lower for groups of this size. 

The results for the unauthenticated versions of these protocols are much closer; Burmester-Desmedt 
using both unicast and multicast is outperformed by GDH.3 using both unicast and multicast by 
about 3% on the MIPS-R400 with the WINS transceiver and for the very efficient ARC-3 by 20%.   

The Cliques protocol and Burmester-Desmedt protocols both provide perfect-forward secrecy. The 
latency of the mixed message type Burmester-Desmedt is the same as the unicast only protocol. 
However, neither protocol confirms that the group key is known to all other the group members. 

5.4.2.4 Just-Vaudenary Multi-Party Key Agreement 

Just and Vaudenary [Just96] developed a multi-party key agreement protocol by developing a 
generalization of the Burmester-Desmedt conference key protocols. They developed a generic 
construction for establishing group wide key agreement, which uses any pair-wise authenticated 
Diffie-Hellman key agreement protocol as a basis. 

The Just-Vaudenary protocol assumes that the global parameters (p, q and α) for the underlying 
Diffie-Hellman method have been properly distributed to the DSN nodes by the network’s owner.  

93 



NAI Labs Technical Report #00-010  

Each node i has a certificate certi, which contains the identity of the node and its public key pi = αxi 
(mod p) signed using the network’s owner RSA key.  The Mission Authority’s public RSA key is 
assumed to be known to all the DSN nodes and each node initially only knows its own certificate.   

Protocol 

The protocol consists of a pair-wise key agreement phase and the group phase. The authors present 
two candidate protocols for the pair-wise phase. Here we use the protocol that does not require that 
the nodes know their neighbor’s (in the group) certificates.  The size of the group is n.   

Pairwise Phase 

Round 1  
Node i  Node i+1: IDi || IDi+1 || (yi = αxi (mod p)) || certi  

Each node takes α and raises it by a unique random value xi in G chosen by that node.  Each node 
sends this result and its certificate to the next highest number group member (modulo group size). 
The receiver takes α and raises it by a unique random value x’i+1 in G chosen by that node and 
calculates K’i+1 = yi

(x’i+1+Si+1) pi
x’i+1 and the keyed hash (MAC) z’i+1 = hK’i+1(y’i+1|| yi || IDi || IDi+1). 

Node i+1 then sends the following message to Node i. 

Round 2    

Node i+1  Node i: IDi+1 || IDi || (y’i+1 = α(x’i+1) (mod p)) || certi+1|| z’i+1    

Node i computes Ki = y’i+1
(xiSi-1) and checks that z’i+1 = hKi(y’i+1|| yi || IDi || IDi+1). Node i then 

generates the following messages and sends it to Node i +1. 

Round 3 (optional)    

Node i  Node i+1: IDi || IDI+1 || (zi = hKi(yi || y’i+1|| IDi+1|| IDi))    

After the pairwise phase is completed the group-wide phase begins. 

 

Group-wide Phase 

Node i computes Wi and sends it to the other nodes. 

Round 1  

Node i  Node *:   IDi || ID* || ( Wi = Ki / Ki -1) 

Each node, Node i upon receiving the Wi ’s calculates:    

   K = Ki -1
t  Wi t-1 Wi+1

t-2  Wi+2 t-3  … Wi-2
   (mod p) 

Which for each node should be equal to: 

   K = K1 K2
  K3 … Kt

   (mod p) 
The following table provides estimated energy cost of this protocol (with the optional Round 3 
message in the Pairwise Phase) for a group of 6 nodes when only unicast messages are available. 
These calculations again assume that a WIN transceiver is used and the inter-node distance is 100 
meters. 

   

94 



NAI Labs Technical Report #00-010  

 
Energy Consumption (mJ) Processor Per Node Total 

Comm. 1154 6,926 
Comp. 227 1,360 MIPS R4000 
Total 1,381 8,256 

Comm. 1154 6,926 
Comp. 207 1,243 SA-1110 

“StrongARM” Total 1,361 8,169 
Comm. 1154 6,926 
Comp. 51,545 309,269 Z-180 
Total 52,699 316,195 

Comm. 1154 6,926 
Comp. 11,756 70,535 MC68328 "Dragon 

Ball" Total 12,910 77,461 
Comm. 1154 6,926 
Comp. 10,847 65,082 MC68328 

“ColdFire” Total 12,001 72,008 
Comm. 1154 6,926 
Comp. 1,924 11,542 MMC2001 

“M-Core” Total 3,077 18,468 
Comm. 1154 6,926 
Comp. 16 95 ARC-3 
Total 1,170 7,021 

Table 36 - Energy Consumption of the Just-Vaudenary Protocol including certificates with 
unicast messages only 

The Just-Vaudenary protocol like the authenticated Burmester-Desmedt protocol is perfectly fair to 
each group member and in terms of energy consumption Just-Vaudenary is more efficient but is 
inferior to the A-GDH.3 protocol. Even when the signature and certificate are removed from Round 
2 of the Burmester-Desmedt protocols the Just-Vaudenary has lower energy consumption. 

The following table provides estimated energy cost of this protocol (with the optional Round 3 
message in the Pairwise Phase) for a group of 6 nodes when both multicast and unicast messages are 
available. These calculations again assume that a WINS transceiver is used and the inter-node 
distance is 100 meters 

95 



NAI Labs Technical Report #00-010  

 
Energy Consumption (mJ) Processor Per Node Total 

Comm. 828 4,966 
Comp. 227 1,360 MIPS R4000 
Total 1,054 6,326 

Comm. 828 4,966 
Comp. 207 1,243 SA-1110 

“StrongARM” Total 1,035 6,209 
Comm. 828 4,966 
Comp. 51,545 309,269 Z-180 
Total 52,373 314,235 

Comm. 828 4,966 
Comp. 11,756 70,535 MC68328 "Dragon 

Ball" Total 12,584 75,501 
Comm. 828 4,966 
Comp. 10,847 65,082 MC68328 

“ColdFire” Total 11,675 70,048 
Comm. 828 4,966 
Comp. 1,924 11,542 MMC2001 

“M-Core” Total 2,751 16,509 
Comm. 828 4,966 
Comp. 16 95 ARC-3 
Total 844 5,061 

Table 37 - Energy Consumption of the Just-Vaudenary Protocol including certificates with 
both multicast and unicast messages 

The energy efficiency of the authenticated Just-Vaudenary protocol with both multicast and unicast 
messages versus significantly better than the authenticated Burmester-Desmedt protocol but is 
inferior to the A-GDH.3 protocol. The Just-Vaudenary protocol does not confirm that the group key 
is known to all other the group members. 

 

 

5.4.3 Attribute-Based Keying  

Attribute-based keying uses one-way functions in a manner similar to Clueless Agents [Schneier2], 
where only nodes that have attributes matching a sender’s query would be capable of decrypting a 
given message.  Attributes include distinguishing characteristics such as sensor capabilities or 
location.  Energy-efficient hash algorithms, not energy-consumptive public key algorithms, perform 
the one-way functions of attribute-based keying. 

For instance, a sensor node could construct a message that could only be correctly decrypted if the 
recipient was located within a square 100 meters on a side.  The recipient’s location would be used as 
a variable in the computation.  The following example message could be constructed and sent: 

 E (K, Message) || LocationAttributeID || Resolution || Checksum || Nonce 
where 

96 



NAI Labs Technical Report #00-010  

 E (K, Message) is the message encrypted using the location-based key, 

 LocationAttributeID and Resolution indicate the receiving node’s location should be used 
to compute the key as follows: 

 K = H(Nonce || Location rounded to Resolution) 
A receiving node can check that if it is in a location intended by the sender by computing: 

 Checksum = H(Location rounded to Resolution) 
Such a method would be effective at establishing a key with all nodes within a given area, such as 
within a single hop away. 

Unfortunately, such a method does not provide much cryptographic protection.  An adversary likely 
knows the location of the sensor if it can receive the transmission.   Even if it doesn’t know its exact 
location, an adversary will know the location with sufficient accuracy to “brute force” guess 
proximate location values until the correct position is found.  Similarly, other distinguishing 
characteristics do not provide sufficient entropy to attain a significant amount of cryptographic 
protection. 

5.5 Preliminary Techniques Comparison  

Key establishment techniques must be compared on the basis of their ability to satisfy distributed 
sensor network functionality and security requirements, while efficiently overcoming battlefield 
constraints.  Table 38 highlights the benefits and deficiencies of the techniques examined in this 
report. 

97 



NAI Labs Technical Report #00-010  

 

Technique Type of 
Authentication 

Type of Key 
Computation 

Arbitra-
ted? Benefits Deficiencies 

Network-wide pre-
deployed Secret-key Secret-key No Simple, energy-

efficient 
All data disclosed w/ 
single compromise 

Node-specific pre-
deployed Secret-key Secret-key No Simple, energy-

efficient, granular keys 
Limited to small 

groups, inflexible 

J-Secure pre-
deployed Secret-key Secret-key No Energy-efficient, 

granular keys 

Limited by group size 
vs. number of 

colluding 
compromised nodes 

Key distribution 
center-based Secret-key Secret-key Yes Energy-efficient, may 

have granular keys 

Vulnerable to KDC 
compromise or many 

keys needed, inflexible 

Symmetric key 
certificates Secret-key Secret-key Yes Energy-efficient, may 

have granular keys 

Vulnerable to KTC 
compromise or many 
certificates needed 

Identity-based 
symmetric Secret-key Secret-key Yes Energy-efficient, 

granular keys 

Can’t support 
unanticipated network 

merges or growth  

Logical key 
hierarchy 

Secret-key or 
public key Secret-key Yes/No 

Computationally-
efficient re-keying of 

large groups 

Only useful for very 
large single hop 

groups 

One-way function 
trees 

Secret-key or 
public key Secret-key Yes/No 

Computationally-
efficient re-keying of 

large groups 

Only useful for very 
large single hop 

groups 

Rich Uncle Public key / 
secret-key 

Public key/ 
secret-key Yes 

Energy-efficient near 
super nodes, granular 

keys 

Not energy-efficient 
more than two hops 
from super nodes 

unless symmetric key 
extensions are used 

Pairwise w/ 
signature Public key Public key No Simple, granular keys Not energy-efficient 

Pairwise w/ MAC Secret-key Public key No 
Simple, granular keys, 
more energy-efficient 
than Pairwise w/ sign 

Not energy-efficient, 
active attacks possible 
with single auth. key 

compromise  

“Elected” Simple 
Key Distribution 
Center 

Public key / 
secret-key Public-key No 

Simple, granular keys, 
best average energy-

efficiency for small 
groups 

Group leader 
consumes more 

energy than other 
members 

Cliques Group 
Diffie-Hellman w/ 
signature 

Public key Public key No 
Granular keys, more 
energy-efficient than 
Pairwise for groups 

Only more energy-
efficient in groups of 

six or more 

Group Diffie-
Hellman w/ MAC Secret-key Public key No 

Granular keys, more 
energy-efficient than 

GDH w/ sign 

Active attacks possible 
with single auth. key 

compromise 
Burmester-
Desmedt w/ 
signature 

Public key Public key No 
Granular keys, more 
energy-efficient than 

GDH for multicast 

Only more energy-
efficient in multicast 

groups 

Burmester-
Desmedt w/ MAC Secret-key Public key No 

Granular keys, more 
energy-efficient than 

BD w/ sign 

Active attacks possible 
with single auth. key 

compromise 

Just-Vaudenary Public key Public key No 
Granular keys, more 
energy-efficient than 

BD  

Consumes more 
energy than ESKDC 

Attribute-based Secret-key Secret-key No Granular keys, energy-
efficient 

Does not provide 
strong cryptographic 

protection 

Table 38 - Comparison of Key Establishment Techniques 

The use of special nodes by certain protocol limits their flexibility.  They are not useful during initial 
network self-configuration. These protocols pay a high energy-consumption price if large numbers of 
bits are transmitted to and from the special node(s). 

98 



NAI Labs Technical Report #00-010  

From a security perspective, granular keys are desirable for the authentication of key exchange 
information during the keying protocol.  Similarly, the application data keys established should have 
limited scope.  The latter goal is more important than the former, however, since compromise of an 
authentication key can only be exploited by an active adversary, whereas compromise of a data 
encryption key can be exploited by a passive adversary. 

Although secret-key algorithms are more energy-efficient than public key algorithms, the scope of 
keys used in most secret-key-based protocols is relatively large, more readily exposing the network to 
compromise.  Exceptions to this key scope issue include the node-specific and identity-based 
symmetric keying protocols.  Although they both have scalability and flexibility limitations, their 
energy-efficiency and use of granular keys make these protocols attractive for small sensor networks. 

Public key algorithm-based keying protocols generally provide greater security than secret-key-based 
protocols by limiting the scope of generated keys.  However, the amount of energy consumed by 
public key-based protocols, both through communications and computation, is of great concern. 

The generally least energy-efficient, but most secure public key-based keying protocol is pairwise key 
establishment.  Pairwise is relatively inefficient, but most secure, due to the fact that it establishes 
keys between only two sensor nodes.  As the number of nodes that need to establish keys increases, 
the number of pairwise keys needed increases by the square of the number of nodes.  Due to multi-
hop routing, most nodes will not need to directly communicate with a large number of other nodes.  
However, even small groups such as six nodes can benefit greatly from some form of group keying. 

Using secret-key-based authentication of the exchanged key management information, rather than 
public key certificate-based authentication, can reduce pairwise keying energy consumption.  
Although using a network-wide secret-key for key management authentication raises security 
concerns, the risk/reward benefits are acceptable for many scenarios.  The average sensor node 
energy benefit of using secret-key-based authentication is shown in Table 39. 

 
Pairwise RSA Average Sensor 

Node Energy Consumption (mJ) Processor 
Public Key 
Signature 

Secret-key-
based MAC 

Percent 
Reduction in 
Energy for 
Secret-key 

MIPS R4000 132 123 6.8 
SA-1110 "StrongARM" 130 122 6.1 
Z-180 4200 2100 50 
MC68328 "DragonBall" 1040 580 44 
MCF5204 "ColdFire" 970 540 44 
MMC2001"M-Core" 270 190 30 
ARC 3 30 115 114 0.9 

Table 39 - Benefits of Secret-key-Based MAC Authentication for Pairwise RSA31 

An alternative method for establishing keys between two nodes is through use of an energy-endowed 
super node.  The Rich Uncle protocol uses the asymmetric energy consumption characteristic of 
RSA to reduce the energy consumed by the sensor nodes at the expense of a super node.  The 
benefit of using the Rich Uncle protocol over Pairwise RSA with signature authentication is shown in 
Table 40. 

                                                      
30 Simulation results. 
31 Does not include optional third pass for Pairwise RSA. 

99 



NAI Labs Technical Report #00-010  

 
Average Sensor Node Energy 

Consumption (mJ) 
Node Composition 

Pairwise RSA, 
Signature 

Rich Uncle, 
Pairwise, 
One-hop 

Energy Ratio, 
Pairwise/Rich 

Uncle 

R4000 Processor w/ 
WINS Communications 132 96 1.89 

R4000 Processor w/ 
MuRF Communications 49 27 1.81 

Dragonball Processor w/ 
WINS Communications 620 179 3.45 

Dragonball Processor w/ 
MuRF Communications 530 110 4.88 

Table 40 - Comparison of Pairwise RSA32 and Rich Uncle Energy Consumption 

If a group of sensor nodes are connected via a single hop, group keying protocols such as Group 
Diffie-Hellman and Burmester-Desmedt without public key authentication may reduce energy 
consumption as shown in Table 41. 

 
Average Sensor Node Energy Consumption per 

Pairwise Keying Relationship33 (mJ) Node Composition Pairwise RSA, 
MAC 

Group Diffie-
Hellman 

Burmester-
Desmedt 

R4000 Processor w/ 
WINS Communications 123 72 110 

Dragonball Processor w/ 
WINS Communications 580 2700 2100 

Table 41 - Comparison of Pairwise RSA and Group Keying using Unicast Messages 

If a multicast messaging is available within the sensor network, Table 42 shows that the benefits of 
using the Burmester-Desmedt group keying protocol without public key authentication become even 
greater. 

                                                      
32 Does not include optional third pass for Pairwise RSA. 
33 Group Diffie-Hellman and Burmester-Desmedt computations are based on using six node 
groups. 

100 



NAI Labs Technical Report #00-010  

 
Average Sensor Node Energy Consumption per 

Pairwise Keying Relationship (mJ) Node Composition 
Pairwise RSA, 

MAC 
Group Diffie-

Hellman 
Burmester-
Desmedt 

R4000 Processor w/ 
WINS Communications 123 79 52 

Dragonball Processor w/ 
WINS Communications 580 2700 2000 

Table 42 - Comparison of Pairwise RSA and Group Keying using Multicast Messages 

The various key management protocols described in Section 5 can be compared over many different 
dimensions, for various scenarios.  However, a more useful methodology for further study is to 
evaluate the performance of these protocols over an entire distributed sensor network simulated 
using real-world mission and environmental parameters. 

  

101 



NAI Labs Technical Report #00-010  

6 Network-wide Approaches 

The first phase of our research has analyzed and compared various key establishment protocols for 
use in distributed sensor networks.  Our results have shown that a single keying protocol will likely 
not be optimal in all scenarios, nor for the entire duration of a distributed sensor network mission.  
The second phase of our research has begun to simulate and analyze approaches to efficiently use the 
various keying protocols in a coordinated manner throughout the sensor network. 

We discuss our recent research in the context of the following areas: 

• the Sanders simulation upon which our simulation is based, 

• self-organization steps in a distributed sensor network, 

• group determination, 

• hybrid keying approaches, and 

• energy-aware keying approaches. 

6.1 Sensor Network Simulation 

Our simulation of keying protocols within a distributed sensor network is dependent on, and tightly 
integrated with, a distributed sensor network simulation developed by Dr. Diane Mills and Melissa 
Chevalier of Sanders, a Lockheed Martin Company.  The Sanders MATLAB-based simulation 
provides the capability to perform several fixed or randomized sensor field laydowns for a wide 
variety of different parameters including topology determination, link cost determination, 
communications range, sensor range, and number of nodes. 

NAI Labs has added several capabilities to the Sanders simulation including the ability to perform 
candidate hybrid and energy-aware keying protocols over the sensor array for various topologies, link 
costs, and communications ranges.  These simulation additions generate both energy consumption 
data and figures that display pairwise and group node interconnections.  The NAI Labs simulation 
additions were used to generate the data and figures that are shown and analyzed in the following 
sections. 

Although we tested our simulation implementation on randomized sensor field laydowns, for 
consistency and relevancy reasons we present our figures and analysis based on the Group A sensor 
positions shown in Table 4.1.1-1 of the SensIT August ’00 Test Plan Version 1.0.  Figure 17shows 
these positions and corresponding node numbers graphically: 

102 



NAI Labs Technical Report #00-010  

 
Figure 17 - SensIT August '00 Planned Group A Sensor Positions 

6.2 Integrating Key Establishment with Network Self-Organization 

While integrating our keying protocols with the steps of sensor network self-organization, we 
encountered an issue in determining what stage of self-organization is best to perform key 
establishment.  Without security, sensor nodes self-organize by first discovering their neighbors, and 
then performing some protocol to determine the routing paths to destinations such as gateways.  
Only after routing paths have been established may application messages be exchanged. 

When security is added to a sensor network, key establishment must be performed prior to the 
exchange of application messages in order to protect these messages.  The issue we have identified is 
whether key establishment requires information from the routing path determination protocol, and 
whether the routing protocol requires cryptographic protection furnished by security services 
supported by key establishment.  If key establishment is dependent upon or occurs after routing, 
then key establishment must also be performed upon each re-routing.  Conversely, if key 
establishment occurs before routing, re-routing may occur independently of key establishment. 

Whether to perform key establishment before or after routing determination may be influenced by 
sensor node density.  In a dense sensor network, routing protocols will be less constrained in 
choosing routing paths.  With fewer constraints, the network will be able to optimize and re-optimize 
for a variety of different factors such as remaining battery energy.  With more options, a dense 
network is more amenable to re-routing.  Thus, performing key establishment once before routing 
avoids the cost of rekeying after each re-routing. 

A dense sensor network is also more able to use energy-saving group keying protocols.  Group 
keying protocols such as Group Diffie-Hellman and Burmester-Desmedt require groups of at least 
five singly-hop-connected nodes before their efficiency gains surpass those of simple pairwise keying.  
Dense sensor networks are more likely to have the required number of singly-hop-connected nodes 
to allow group keying protocol efficiencies to be garnered. 

103 



NAI Labs Technical Report #00-010  

A sparse sensor network is more constrained in choosing routing paths than a dense one, and thus 
less likely to perform re-routing.  Since re-routing will occur less often, and group key protocols will 
likely not be advantageous, performing a simple pairwise scheme between only routing path nodes 
may be more energy-efficient.  Therefore, a sparse sensor network may more efficiently establish 
keys after routing determination than before. 

A multi-hop-connected keying protocol requires that routing occur before key establishment.  We 
have currently focused on singly-hop-connected protocols since communications energy 
consumption is often our greatest constraint, but some scenarios may benefit from multi-hop-
connected keying. 

However, if the routing determination protocol itself requires cryptographic protection, some type of 
key establishment must occur prior to routing.  We expect routing protocols will require 
confidentiality, integrity, and/or authentication protection, and will therefore require some keys 
establishes apriori. 

Furthermore, there may be a benefit to integrating key establishment protocols directly with routing 
determination protocols.  Key establishment protocols often have a few rounds, the initial rounds of 
which may be amenable to inclusion with portions of the routing determination protocol.  At this 
time we recommend against integration, since the wide variety of key establishment and routing 
determination protocols causes the number of integration possibilities to grow by the product of the 
number of keying and routing protocols.  As noted later, however, this is an interesting area for 
additional research. 

In this document we have chosen to examine key establishment prior to routing.  Although there is a 
need to examine the possibility of performing key establishment during or after routing, we suggest 
this be deferred to future research. 

6.3 Group Determination 

The first step of a network-wide key establishment approach is determination of any and all keying 
groups.  Following the discovery step of sensor network self-organization, the key establishment 
phase will identify all singly-hop-connected groups, all star groups, and potentially multi-hop-
connected groups. 

A singly-hop-connected group is defined as a group of sensor nodes that can each transmit and 
receive to every other sensor node in the group.  Since the Group Diffie-Hellman and Burmester-
Desmedt keying protocols require all group members to be interconnected, our simulation required 
these protocols to use singly-hop-connected groups.  Our algorithm for finding singly-hop-
connected groups requires groups to have at least five members and not have more than one 
member in common with another singly-hop-connected group.  For the SensIT August ’00 Group A 
sensor positions, three singly-hop-connected groups are created when the maximum sensor node 
communications range was set to 60 meters as shown in Figure 18.  The three groups are of sizes 5, 
8, and 13 with nodes 1, 8, and 20 members of two groups each.  Links that are pairwise connected 
only are shown via red lines.  

104 



NAI Labs Technical Report #00-010  

 

Figure 18 - Singly-Hop-Connected Groups with Communications Range of 60 Meters 

We define a star group as a group of sensor nodes that can each transmit and receive to a single 
“leader” node within the group.  The Simple Key Distribution Center protocol requires a star group.  
Since nodes in a star group need only all connect to a single node, unlike singly-hop-connected 
groups that must interconnect each and every node, star groups will generally be larger than singly-
hop-connected groups for the same sensor field laydown.  Using the SensIT August ’00 Group A 
sensor positions as an example, the entire 25-node sensor field forms a star group when the 
maximum sensor node communications range is 60 meters as shown in Figure 19. 

105 



NAI Labs Technical Report #00-010  

 

Figure 19 - Star Group with Communications Range of 60 Meters 

A multi-hop-connected group is defined as a group of sensor nodes that are interconnected via two 
or more hops.  Provided nodes are not isolated, multi-hop-connected groups may always be formed.  
However, some type of routing must be performed prior to multi-hop-connected group formation.  
Multi-hop-connected groups are generally not attractive for key establishment due to the large 
amount of communications energy they consume.  Although there may potentially be some 
application of multi-hop-connected groups for key establishment, we have chosen to defer such 
investigation. 

6.4 Hybrid Approaches 

Since a single keying protocol will not be optimal for all nodes and all scenarios, sensor nodes must 
be capable of performing multiple keying protocols.  We have analyzed various approaches to using 
multiple keying protocols in a single distributed sensor network. 

6.4.1 Pairwise and Group Diffie-Hellman Hybrids 

We examined establishing keys within a distributed sensor network using a combination of the 
Pairwise and Group Diffie-Hellman protocols.  Our approach was to first find all of the singly-hop-
connected groups within the sensor network field.  Next, we significantly pruned this list by finding 
the largest, the next largest, etc., provided each successively smaller group had at least five members 
and did not have more than one member in common with a previous group.  The five-member 

106 



NAI Labs Technical Report #00-010  

minimum is necessary since groups with less than five members are more efficiently keyed using fully 
interconnected pairwise rather than Group Diffie-Hellman.  The overlapping restriction prevents 
inefficiencies of forming two groups that have almost entirely identical membership.  Although our 
approach is likely overly conservative of forming more groups and thus sub-optimal, we expect the 
resulting energy consumption values to be close enough to optimal for our simulation purposes. 

We examined two GDH techniques that we call Naïve GDH and GDH.  Naïve GDH performs the 
GDH keying protocol on each group, assigning roles arbitrarily based on ascending node number.  
GDH performs the GDH keying protocol in a more intelligent fashion, assigning the two 
communications-intensive roles to the two nodes that are closest, in a communications range^4 
fashion, to the other group nodes.  Both GDH simulation implementations use the IKA.3 protocol 
scheme. 

Furthermore, we examined these two GDH techniques for two different types of RF transmit power 
control.  First, we examined the energy consumption under the assumption that each node knows 
exactly the right amount of radiated power it must transmit to be received by the receiver with the 
desired minimum bit-error-rate.  A comparison of Naïve GDH, GDH, and pairwise only for various 
communications ranges and per transmission control is shown in Table 43. 

 
Key Management Energy Consumption 

(Joules / node) Communications 
Range 

(meters) Pairwise Only 
Pairwise-

‘Naive’ GDH 
Hybrid 

Pairwise-GDH 
Hybrid 

Singly-hop-
connected 

Group Sizes 

30 .55 .58 .58 5 - - 
35 .82 .87 .87 6 5 - 
40 1.26 1.22 1.21 8 6 5 
45 1.73 1.65 1.62 9 6 5 
50 2.28 2.03 1.95 9 8 6 
60 4.42 3.54 3.39 13 8 5 
70 6.63 4.93 4.78 15 7 6 
80 9.67 6.34 6.11 18 6 - 
90 13.42 7.07 6.53 21 5 - 

Table 43 – Pairwise-GDH Energy Consumption, Per Transmission Power Control 

Although a benefit of optimizing GDH roles is apparent from the fact that the energy consumption 
values for GDH are lower than Naïve GDH, the differences are relatively small.  Also apparent from 
Table 43 is the fact that increasing communications range results in increased energy consumption 
per node.  The energy consumption increase is due to at least two factors: more nodes are now 
connected to one another, and the distance between additional nodes is greater and requires more RF 
transmission power. 

The benefit of using a pairwise-GDH hybrid over pairwise-only appears to be realized when the 
average group size is greater than six.  This threshold group size is achieved at a communications 
range of 40 meters in the scenario we analyzed in this simulation.  Further group size increases 
provide additional reductions of energy consumption. 

We examined this same scenario in Table 44 with the exception of fixing the transmit power to the 
maximum communications range at all times.  Fixing the transmit power to the maximum increases 
the energy consumption for all trials, but also further increases the benefit of using a pairwise-GDH 
hybrid over pairwise-only. 

 

107 



NAI Labs Technical Report #00-010  

Key Management Energy Consumption 
(Joules / node) Communications 

Range 
(meters) Pairwise-Only 

Pairwise-
‘Naive’ GDH 

Hybrid 

Pairwise-GDH 
Hybrid 

Singly-hop-
connected 

Group Sizes 

30 .67 .70 .70 5 - - 
35 1.14 1.15 1.15 6 5 - 
40 1.98 1.80 1.80 8 6 5 
45 3.21 2.78 2.78 9 6 5 
50 4.95 3.98 3.98 9 8 6 
60 11.80 8.19 8.19 13 8 5 
70 23.27 14.84 14.84 15 7 6 
80 42.24 23.13 23.13 18 6 - 
90 70.80 28.96 28.96 21 5 - 

Table 44 – Pairwise-GDH Energy Consumption, No Transmit Power Control 

6.4.2 Pairwise and Burmester-Desmedt Hybrids 

We examined establishing keys within a distributed sensor network using a combination of the 
Pairwise and Burmester-Desmedt protocols.  As with the pairwise-GDH hybrid, we found a pruned 
list of singly-hop-connected groups with at least five members and no more than one member node 
in common.  To highlight the potential advantages of Burmester-Desmedt, we simulated the 
exchange of key management information via multicast communication.  Per transmission RF power 
control for multicast was simulated as the amount of radiated RF power required to communicate 
with all of the recipients of a multicast transmission at the minimum bit-error-rate.  The key 
management energy consumption results of our simulation are shown in Table 45. 

 
Key Management Energy Consumption 

(Joules / node) Communications 
Range 

(meters) Pairwise-Only Pairwise-BD Hybrid 

Singly-hop-connected 
Group Sizes 

30 .55 .42 5 - - 
35 .82 .59 6 5 - 
40 1.26 .79 8 6 5 
45 1.73 1.05 9 6 5 
50 2.28 1.30 9 8 6 
60 4.42 2.28 13 8 5 
70 6.63 3.32 15 7 6 
80 9.67 4.29 18 6 - 
90 13.42 5.33 21 5 - 

Table 45 – Pairwise-BD Energy Consumption, Per Transmission Power Control 

The pairwise-BD hybrid is more energy-efficient than pairwise-only for all simulated 
communications ranges, and even in the 30 Meter communications range trial where only a single 
five member group is created within the 25-node sensor network. 

When the RF transmission power control is fixed to maximum, the benefits of the pairwise-BD 
hybrid, as shown in Table 46, become even more dramatic.  The energy consumption reduction 

108 



NAI Labs Technical Report #00-010  

provided by the pairwise-BD hybrid ranges from about 31% at the 30 Meter communications range 
to a whopping 85% at the 90 Meter communications range. 

 
Key Management Energy Consumption 

(Joules / node) Communications 
Range 

(meters) Pairwise-Only Pairwise-BD Hybrid 

Singly-hop-connected 
Group Sizes 

30 .67 .46 5 - - 
35 1.14 .66 6 5 - 
40 1.98 .93 8 6 5 
45 3.21 1.35 9 6 5 
50 4.95 1.80 9 8 6 
60 11.80 3.38 13 8 5 
70 23.27 5.76 15 7 6 
80 42.24 8.60 18 6 - 
90 70.80 10.65 21 5 - 
Table 46 – Pairwise-BD Energy Consumption, No Transmit Power Control 

6.4.3 Pairwise and Simple Key Distribution Center Hybrids 

We examined establishing keys within a distributed sensor network using a combination of the 
Pairwise and Simple Key Distribution Center (SKDC) protocols.  Unlike the pairwise-GDH and 
pairwise-BD hybrids, we developed a pruned list of star groups with at least six members and no 
more than two member nodes in common.   Despite the more restrictive group size requirements, 
star group sizes were generally larger, thus accentuating the benefit of the SKDC protocol.  For the 
sensor network scenario we simulated, the entire 25-node field is a member of a single star group for 
communications ranges of 60 meters and greater.  The key management energy consumption results 
of our pairwise-SKDC simulation are shown in Table 47. 

 
Key Management Energy Consumption 

(Joules / node) Communications 
Range 

(meters) Pairwise Only Pairwise-SKDC 
Hybrid 

Star Group Sizes 

30 .55 .36 10 8 6 
35 .82 .52 13 - - 
40 1.26 .69 16 - - 
45 1.73 .77 17 - - 
50 2.28 .69 22 - - 
60 4.42 .50 25 - - 
70 6.63 .50 25 - - 
80 9.67 .50 25 - - 
90 13.42 .50 25 - - 

Table 47 – Pairwise-SKDC Energy Consumption, Per Transmission Power Control 

When the RF transmission power control is fixed to the maximum, the benefits of SKDC as shown 
in Table 48 remain significant, although not as great as in the per transmission control trials shown in 
Table 47. 

109 



NAI Labs Technical Report #00-010  

 
Key Management Energy Consumption 

(Joules / node) Communications 
Range 

(meters) Pairwise Only Pairwise-SKDC 
Hybrid 

Star Group Sizes 

30 .67 .45 10 8 6 
35 1.14 .71 13 - - 
40 1.98 1.05 16 - - 
45 3.21 1.46 17 - - 
50 4.95 1.44 22 - - 
60 11.80 1.58 25 - - 
70 23.27 2.77 25 - - 
80 42.24 4.59 25 - - 
90 70.80 7.24 25 - - 

Table 48 – Pairwise-SKDC Energy Consumption, No Transmit Power Control 

We note that in this version of the protocol, we do not provide perfect forward secrecy, unlike the 
GDH and BD versions described in this section.  If perfect forward secrecy is required, SKDC could 
be modified to provide this service, at a cost to energy efficiency.  Although perfect forward secrecy 
may not be required for secrecy of routing information, it would likely be required for the 
confidentiality protection of application-layer messages. 

6.4.4 Comparison of Approaches 

We compare the three hybrid approaches Pairwise-GDH, Pairwise-BD, and Pairwise-SKDC against 
the conventional pairwise-only scheme.  Our analysis examines both average and maximum energy 
consumption of each scheme.  We also examine the effect of node density on group size. 

6.4.4.1 Average Per Node Energy Consumption 

Table X49 compares the average per node key management energy consumption for the pairwise-
only baseline with three dual-protocol hybrid schemes when the radiated RF transmission power 
control is controllable on a per transmission basis.  For the majority of communications ranges, the 
dual-protocol hybrid schemes are significantly more energy-efficient than pairwise-only, with the 
Pairwise-SKDC hybrid being most efficient. 

110 



NAI Labs Technical Report #00-010  

 

Key Management Energy Consumption (Joules / node) Communications 
Range 

(meters) Pairwise Only Pairwise-GDH 
Hybrid 

Pairwise-BD 
Hybrid 

Pairwise-
SKDC Hybrid 

30 .55 .58 .42 .36 
35 .82 .87 .59 .52 
40 1.26 1.21 .79 .69 
45 1.73 1.62 1.05 .77 
50 2.28 1.95 1.30 .69 
60 4.42 3.39 2.28 .50 
70 6.63 4.78 3.32 .50 
80 9.67 6.11 4.29 .50 
90 13.42 6.53 5.33 .50 

Table 49 - Hybrid Keying Average Energy Consumption, Per Transmission Power Control 

As shown in Table X50, when the sensor node’s RF transmission power is not controllable, the 
Pairwise-BD hybrid is most energy-efficient at lower communications ranges, whereas the Pairwise-
SKDC hybrid is most energy-efficient at greater communications ranges.  However, the Pairwise-BD 
hybrid benefit only occurs when multicast transmission is available, thus demonstrating the 
importance of this capability to key management energy efficiency. 

 

Key Management Energy Consumption (Joules / node) Communications 
Range 

(meters) Pairwise Only Pairwise-GDH 
Hybrid 

Pairwise-BD 
Hybrid 

Pairwise-
SKDC Hybrid 

30 .67 .70 .46 .45 
35 1.14 1.15 .66 .71 
40 1.98 1.80 .93 1.05 
45 3.21 2.78 1.35 1.46 
50 4.95 3.98 1.80 1.44 
60 11.80 8.19 3.38 1.58 
70 23.27 14.84 5.76 2.77 
80 42.24 23.13 8.60 4.59 
90 70.80 28.96 10.65 7.24 

Table 50 - Hybrid Keying Average Energy Consumption, No Transmit Power Control 

6.4.4.2 Maximum Energy Consumption 

Table X51 compares the maximum key management energy consumption for the pairwise-only 
baseline with three dual-protocol hybrid schemes when the radiated RF transmission power control 
is controllable on a per transmission basis.  For the majority of communications ranges, the pairwise-
BD hybrid protocol is most efficient due to its symmetric nature.  Conversely, the asymmetric nature 
of the pairwise-SKDC hybrid protocol results in the largest maximum energy consumption for most 
of the evaluated communications ranges. 

111 



NAI Labs Technical Report #00-010  

 

Maximum Key Management Energy Consumption (Joules) Communications 
Range 

(meters) Pairwise Only Pairwise-GDH 
Hybrid 

Pairwise-BD 
Hybrid 

Pairwise-
SKDC Hybrid 

30 1.19 1.49 1.06 1.63 
35 1.90 1.84 1.34 2.30 
40 2.52 2.37 1.70 3.38 
45 3.36 3.13 1.69 4.19 
50 4.79 4.27 2.45 6.41 
60 6.66 5.66 2.92 9.42 
70 8.29 8.13 5.60 9.42 
80 14.60 12.47 8.30 9.42 
90 23.98 23.14 13.76 9.42 

Table 51 – Maximum Energy Consumption, Per Transmission Power Control 

Table X52 shows that when the RF transmission power is not controllable per transmission, the 
advantage of a symmetric protocol such as pairwise-BD is more striking.  Similarly, the disadvantage 
of using a pairwise-SKDC protocol where a single node incurs much of the energy consumption is 
also shown. 

 

Maximum Key Management Energy Consumption (Joules) Communications 
Range 

(meters) Pairwise Only Pairwise-GDH 
Hybrid 

Pairwise-BD 
Hybrid 

Pairwise-
SKDC Hybrid 

30 1.41 1.62 1.08 1.89 
35 2.43 2.15 1.34 3.08 
40 3.66 3.41 1.74 4.92 
45 5.65 5.27 1.87 7.33 
50 8.78 8.40 2.58 12.09 
60 17.42 16.66 5.67 24.63 
70 29.42 29.04 12.58 42.44 
80 47.76 46.88 19.45 69.76 
90 74.25 73.75 26.98 109.50 

Table 52 - Maximum Energy Consumption, No Transmit Power Control 

6.4.4.3 Node Density vs. Group Size vs. Group Type 

Since group sizes have such a dramatic effect on hybrid keying benefits, we more closely examine the 
relationships between node density, group sizes, and group types.  We use the term node density to 
describe the ratio between communications range and the average minimum per node neighbor 
distance.  For the sensor node field laydown that was analyzed in our simulation, the average 
minimum per node neighbor distance was 14.69 meters.  This sensor node field is fully connected 
when communications ranges are at least 25 meters or a node density of about 1.7. 

The advantage of referring to node density instead of communications range is that node density is 
dimensionless and can used in a wider variety of environments.  For instance, if communications 
ranges are in the 100 meter range and the average  

112 



NAI Labs Technical Report #00-010  

The plot of pairwise, singly-hop-connected group, and star group connections for a communications 
range of 30 meters and node density ratio of 2.04 is shown in Figure 20.  Note, only one five-
member singly-hop-connected group is formed, whereas three star groups of sizes 10, 8, and 6 are 
formed.  Consequently, the greater key management energy consumption reductions are found with 
the star-group-based SKDC scheme, rather than the singly-hop-connected-based GDH and BD 
schemes. 

 
Figure 20 - Pairwise and Group Connections, Communications Range = 30 Meters 

Increasing the communications range to 35 meters and the node density to 2.38 results in an 
additional six node singly-hop-connected group being formed as shown in Figure 21.  Also, a single 
13-node star group is formed at this node density. 

 
Figure 21 - Pairwise and Group Connections, Communications Range = 35 Meters 

With a communications range of 40 meters, larger singly-hop-connected groups and a larger star 
group are formed within the sensor field as shown in Figure 22. 

113 



NAI Labs Technical Report #00-010  

 
Figure 22 - Pairwise and Group Connections, Communications Range = 40 Meters 

These groups become larger still when the communications range is increased to 45 meters as shown 
in Figure 23.  

 
Figure 23 - Pairwise and Group Connections, Communications Range = 45 Meters 

A parallel effect of the larger group sizes is the reduction of the number of pairwise connections that 
must take to interconnect the remaining links of the sensor node field.  This is quite apparent in the 
Figure 23 hybrid pairwise-star group connections plot where nodes 7 and 8 require only one 
additional pairwise connection each. 

6.5 Energy-Aware Approaches 

6.5.1 Key Protocol Roles 

Some public key algorithms, such as RSA, provide a difference in computational energy consumed of 
as much as a factor of twenty.  Such an asymmetric relationship can be exploited by an energy-aware 
network-wide approach that identifies nodes that need to conserve their battery energy.  An energy-
aware approach may identify energy-depleted nodes by exchanging battery energy-remaining values.   

With more sophistication, protocols could be designed to identify nodes that will be energy-depleted 
a priori.  Routing configurations, such as that shown in Figure 24, identify likely communications 
choke points, which are likely candidates for battery energy depletion.  

114 



NAI Labs Technical Report #00-010  

 

Figure 24 - Routing to Node 1 Plot 

Similarly, group key management protocols such as Group Diffie-Hellman and SKDC offer role-
dependent energy consumption.  Energy-depleted (or to-be-depleted) nodes, such as Nodes 1, 20, 21, 
and 23 should not perform the “controller” role for group key management protocols. 

6.5.2 Parasite Protocol 

Yet another key management approach available to energy-depleted nodes is the Parasite protocol.  
As was earlier shown in the Rich Uncle protocol, nodes can use the asymmetric energy consumption 
characteristics of RSA to minimize their energy consumption.  Rather than establish a keying 
relationship with just one other node as is done in the Rich Uncle protocol, a parasite would establish 
the keying relationship as a first step toward obtaining a nearby group’s common key.  By obtaining 
the group’s key, the parasite has established a keying relationship with all of the group’s nodes, 
without participating in the potentially expensive group key management protocol. 

In Figure 25, Node 25 is a potential benefactor from the parasite protocol.  Any one of Nodes 22, 
23, or 24 can establish a pairwise relationship with and send the group key to Node 25.  By doing so, 
Node 25 shares common keys with each of Nodes 22, 23, and 24.  Although the routing plot of 
Figure 24shows that Node 25 is only connected to Node 24, subsequent re-routing may require 
Node 25 to be connected to Nodes 22 or 23. 

115 



NAI Labs Technical Report #00-010  

 

Figure 25 - Pairwise and Connections, Communications Range = 35 Meters 

6.5.3 Time Varying Approaches 

In addition to varying techniques based on locations within the network, key management techniques 
may also vary over time.  Network-wide pre-deployed keys could potentially be used to support 
establishment of initial keying relationships, but using such keys throughout the lifetime of a sensor 
network increasingly risks compromise over time.  Instead, a timely transition to more granular keys 
is advised.  Similarly, since sensor nodes expend battery energy over time, trading off security for 
energy efficiency may also be warranted in the later stages of a sensor network’s lifetime. 

6.6 Specialization 

In situations where the density of sensors exceeds the sensing requirements, some sensors may 
“specialize” in certain roles.  Since all sensors can perform sensing, communications, and security 
functions, it may be beneficial to the entire sensor network to have some sensors perform mostly 
sensing, others concentrate on communications, and still others concentrate on security functions.   

Specifically for key management, a sensor node may self-elect to take on the energy-consumptive role 
of key distribution center or Rich Uncle, to spare its surrounding sensor nodes from expending a 

116 



NAI Labs Technical Report #00-010  

great deal of energy on security.  A sensor node that self-elects to serve in the super node role of the 
Rich Uncle protocol we call a Pseudo Rich Uncle.34 

                                                      
34 Ken Theriault of BBN Technologies suggested this concept in a conversation at the Sensor IT 
Workshop on April 4, 2000. 

117 



NAI Labs Technical Report #00-010  

7 Next Steps 

Although our research has identified key management energy-efficiency improvements for a number 
of scenarios, further improvements are possible.  We have identified the following areas were 
additional research would enhance key management performance: 

• Development of an optimized group determination algorithm – The algorithm we are 
currently using is sub-optimal since it simply finds the largest group available, whereas a 
smaller group may provide a greater reduction in energy consumption depending on the 
relative positions of the group members.  Furthermore, the optimal amount of overlapping 
between groups has not been determined. 

• Finding GDH-optimized groups and optimizing member roles – Finding singly-hop-
connected groups is an overly restrictive simplified approach towards performing hybrid 
keying using a Group Diffie-Hellman protocol.  A stricter approach would not require all 
members to interconnect, but rather simply require the controllers to connect to all 
members and require all non-controlling nodes be connected to their protocol “next-door 
neighbors”.  Moreover, selection of member roles can be further optimized to minimize the 
communications energy by having protocol “next-door neighbors” to match with the actual 
physical “next-door neighbors”. 

• Multiple group keying protocols in a single hybrid protocol – Thus far, we have examined 
hybrid protocols that included a group keying protocol and a pairwise keying protocol.  We 
believe there are scenarios, especially with much larger sensor networks, where two or more 
different group keying protocols in addition to a pairwise keying protocol may provide a 
better hybrid protocol than just one group keying protocol alone. 

• Multi-hop keying – Although establishing keys via protocols that require multiple hops 
appears to be less energy efficient, we believe there may be scenarios in densely populated 
sensor networks where multi-hop keying may be effective. 

• Parasite keying – We have qualitatively identified scenarios where Parasite keying is 
advantageous, but have not yet shown these benefits quantitatively.  These benefits are best 
shown via simulation in the near-term, building upon our existing hybrid keying protocols. 

• Per-node group determination and role determination algorithms – As we transition from 
research and simulation to integration and demonstration, it is important we appropriately 
transform our algorithms as well.  Currently, our algorithms assume a degree of 
omnipotence regarding the locations of neighboring sensor nodes, the possible 
interconnections, the groups to be formed, and each node’s given group role.  Our 
algorithms must assume less to handle the asynchronous nature of self-assembling networks, 
including making determinations with limited information that may result in sub-optimal 
configurations. 

• Integration of routing and keying protocols – Despite the additional complexity of 
integrating routing and key establishment protocols, there may be significant advantages in 
combining some aspects of these protocols.  For instance, some key establishment 
protection is necessary to protect routing determination protocols.  However, some multi-
hop key establishment protocols require routing to already be determined.  Integrating 
portions of both protocols together may provide energy reductions not possible with these 
functions separated.  

• Further protocol exploration – As we develop increasingly more sophisticated simulations 
and development demonstrations, new issues with the protocols will become important.  

118 



NAI Labs Technical Report #00-010  

Different communication channel models will have varying impact on the latency of 
different cryptographic protocols and on the ability of the network to run multiple protocols 
concurrently. The effect of sensor node dozing on different keying protocols must be 
examined and deficiencies addressed.  Asymmetric communication links between nodes 
seriously impact the use of certain key management protocols. Further development of 
amortization techniques and simulating / testing is needed in order to minimize energy 
consumption and latency.  

• Key management during post routing-establishment and network re-seeding phases – Once the 
routing infrastructure has been established sensor nodes can utilize (at a cost) remote resources. 
During network re-seeding (or during significant network disruptions) the network may 
consist of regions that for a moment completely lack routing, regions that have well 
established routing, and mixed regions with only partial, highly irregular routing in place. The 
chaotic nature (and potentially low latency tolerance) of such situations will be especially 
challenging to energy efficient key establishment. The joining of two sensor networks also 
presents similar challenges to key management. Both of these phases will require different 
key management protocol mixes than the mixes used during the pre-routing and routing 
establishment phases  

• Port simulation from MATLAB to ‘C’ – MATLAB is an excellent platform for simulation 
and research that can easily generate useful figures and graphics, but it is not easily integrated 
into a prototype development.  As we transition towards developing a security 
implementation to validate and progress our research, we should first take the intermediate 
step of porting our MATLAB-based algorithms to the ‘C’ programming language.  Not only 
will porting to ‘C’ allow us to more easily develop on prototype sensor nodes later, the 
improved performance of ‘C’ allows us to simulate larger sensor networks to determine how 
well our approaches scale. 

• Researching other security services – Key management is but one of the many security 
services that must be supported by the distributed sensor network.  Our research should 
additionally examine other security services, such as integrity, authentication, and non-
repudiation, to determine efficient and secure methods of providing these services. 

• Implementation of security services – Finally, we must validate our research via sensor 
prototype-based experiments.  The challenges of implementation and the many real world 
issues such as energy, latency, and network self-assembly provide an excellent environment 
for identifying the critical elements of the research.  In addition to the key management, a 
prototype implementation must include basic security services such as confidentiality, 
integrity, and authentication.  An independent red-team security analysis of our design and 
implementation will also provide great value to this security research. 

 

119 



NAI Labs Technical Report #00-010  

References35 

[Aether95] Aether Wire Location, Corp., “Low-Power, Miniature, Distributed Position Location and 
Communication Devices Using Ultra-Wideband, Nonsinusoidal Communication Technology”, 
AEther Wire Location, Corp., Semi-Annual Technical Report, ARPA Contract J-FBI-94-058, 
July 1995. 

[Agre99] Agre, J., L. Clare, G. Pottie and N. Romanov, “Development Platform for Self-Organizing 
Wireless Sensor Networks”, Proceedings of SPIE AeroSense ’99. 

[Agre00a] Agre, J., et al, “Sensing Positioning Integrated Network (SPIN): Providing Situational 
Awareness to the Warfighter”, Proceedings of the ARL Federated Laboratory 4th Annual 
Symposium, 21-23 March 2000, College Park, MD. 

[Agre00b] Agre, J. and L. Clare, “An Integrated Architecture for Cooperative Sensing Networks”, 
IEEE Computer, May 2000. 

[Anderson97] Anderson, R. and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices”, 
Security Protocols 5th Annual Workshop, Paris, France, 7-9 April, 1997. 

[Aoki00]  Aoki, K., and Lipmaa, H., “Fast Implementations of AES Candidates”, Proceedings of the 
Third AES Candidate Conference, 13-14 April 2000, New York, New York. 

[Ateniese99] Ateniese, G., M. Steiner and G. Tsudik, “New Multi-party Authentication Services and 
Key Agreement Protocols”, in submission (February 5, 1999), 19 pages. 

[Balenson00] Balenson, D., D. Branstad, D. Carman, P. Kruus and B. Matt, “Key Management for 
Distributed Sensor Networking”, Brief presented at the DARPA Sensor IT Workshop, April 4-5, 
2000.  

[Barrett98] Barrett, M., M. Little, A. Poylisher, M. Gaughan and A. Tardif, “Intelligent Agents for 
Vulnerability Assessment of Computer Networks”, Proceedings of the ARL Federated Laboratory 
2nd Annual Symposium, 1998. 

[Bellare93] Bellare, M. and P. Rogaway, “Entity Authentication and Key Distribution, “in Advances in 
Cryptology: Proceedings of Crypto93, LNCS 773, Springer-Verlag (1993), 232-249.  

[Beller93] Beller, M. and Y. Yacobi, “Fully-fledged two-way public key authentication and key 
agreement for low cost terminals”, Electronics Letters, 29 (May 27, 1993), 999-1001.  

[Bosselaers93] Bosselaers, A., R. Govaerts, and J. Vandewalle, “Comparison of three modular 
reduction functions”, Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT, 25 
October 1993.  

[Boyd93] Boyd, C. and W. Mao, “On a Limitation of BAN Logic,” Advances in Cryptology: 
Proceedings of – EUROCRYPT’93, LNCS 765, Springer-Verlag (1994), 240-247. 

[Blundo92] Blundo, C., A. de Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung, “Perfectly-
secure key distribution for dynamic conferences,” in Advances in Cryptology: Proceedings of Crypto92, E. F. 
Brickell, ed., LNCS 740, Springer-Verlag (1992), 471–486. 

[Burmester94] Burmester, M. and Y. Desmedt, “A Secure and Efficient Conference Key Distribution 
System”, in Advances in Cryptology – EUROCRYPT’94 (May 1994), 275-286. 

                                                      
35 Not all references are cited in this report. 

120 



NAI Labs Technical Report #00-010  

[Canetti97] Canetti, R., “Toward Realizing Random Oracles: Hash Functions That Hide All Partial 
Information,” in Advances in Cryptology: Proceedings of Crypto97, B. S. Kaliski, ed., LNCS 1294, Springer-
Verlag (1997), 455–469.  

[Common99] “Common Criteria for Information Security Evaluation”, version 2.1, CCIMB-99-031, 
August 1999.  

[Davis90] Davis, D. and R. Swick, "Network Security via Private-key Certificates", ACM Operating 
Systems Review 24(4), Oct 1990, 64-67. Also appeared in Proceedings of USENIX UNIX Security III 
Symposium, Sept. 1992 14-17, 239-242. 

[Davis95] Davis, D., “Kerberos Plus RSA for World Wide Web Security,” In Proceedings of the 
USENIX Workshop on Electronic Commerce,  July 1995. 

[Denning81] Denning, D. and G. Sacco, “Timestamps in Key Distribution,” Communications of the 
ACM, 24(8) August 1981, 533-536. 

[DoD85] “Department of Defense Trusted Computer System Evaluation Criteria”, DOD 5200.28-
STD, December 1985. 

[Dumas99] Dumas, D. S. Jacobs, W. Booth and M. Little, “Security Architecture for Intelligent 
Agent Based Vulnerability Analysis”, February, 1999. 

[Ephremides99] Ephremides, A., A. Michail and D. Ayyagari, “Hierarchical Scheduling with Route 
Sensitivity in Wireless Ad-Hoc Networks”, Proceedings of the ARL Federated Laboratory 4th Annual 
Symposium, 21-23 March 2000, College Park, MD. 

[Ephremides00] Ephremides, A. and A. Michail, “Energy-Efficient Routing for Connection-Oriented 
Traffic in Ad-Hoc Wireless Networks”, Proceedings of the ARL Federated Laboratory 4th Annual 
Symposium, 21-23 March 2000, College Park, MD. 

[Estrin99a], Estrin, D., R. Govindan, J. Heidemann and S. Kumar,  “Next Century Challenges: 
Scalable Coordination in Sensor Networks”, Mobicom ’99, August 1999. 

[Estrin99b] Estrin, D., “SCADDS Recent Progress”, SensIT PI Meeting, Marina Del Rey, October 
1999. 

[Estrin99c] Estrin, D., “Scalable Coordination Architectures for Deeply Distributed Systems”, 
SensIT KickOff Meeting, Arlington VA, July 1999. 

[Falco00] Falco, J., S. Scalera, B. Nelson, N. Srour and A. Filipov, “A Reconfigurable Computing 
Architecture for Microsensors”, Proceedings of the ARL Federated Laboratory 4th Annual 
Symposium, 21-23 March 2000, College Park, MD. 

[FIPS140-1] “Security Requirements for Cryptographic Modules”, Federal Information Processing 
Standards Publication, FIPS PUB 140-1, 11 January 1994. 

[Ford94] Ford, W., “Computer Communications Security: Principles, Standard Protocols and 
Techniques”, Prentice-Hall, Englewood Cliffs, NJ, 1994. 

[Geraniotis00] Geraniotis, E. and J. Thomas, “Antijam Capability of Iterative Multiuser Detection in 
DS-SSMA”, Proceedings of the ARL Federated Laboratory 4th Annual Symposium, 21-23 March 
2000, College Park, MD.  

[Govindan99] Govindan, R., T. Faber, J. Heidemann and D. Estrin, “Ad-hoc Smart Environments”, 
In Proceedings of the DARPA/NIST Workshop on Smart Environments, Atlanta, June 1999. 

[Imielinski98] Imielinski, T., B.R. Badrinath and J. Freebersyer, “1998 Project Summary: Dataman 
Project – Information Services for Low-Powered Wireless-Mobile Clients”, DARPA ATO 
Sponsored Research, Rutgers University. 

121 



NAI Labs Technical Report #00-010  

[Joint99] “Joint Technical Architecture”, Department of Defense, version 3.0, 15 November 1999. 

[Just96] Just, M. and S. Vaudenay, “Authenticated Multi-Party Key,” in Advances in Cryptology – 
ASIACRYPT’96 (May 1996). 

[Kaiser00] Kaiser, W. and G. Pottie, “The Balance Between Local Computation and 
Communications in Widely Distributed Wireless Embedded Systems”, Sensoria Corporation 
Corporation, 15 January 2000. 

[Kelly00a] Kelly, J. and R. Klingeman, “Development of a Notional Man Machine Interface for 
Interaction between Distributed Sensors and Handheld Devices”, Proceedings of the ARL Federated 
Laboratory 4th Annual Symposium, 21-23 March 2000, College Park, MD. 

[Kelly00b] Kelly, J., J. Agre, and L. Clare, “On the Need for Data Standardization in Interactive 
Sensor Networks”, Proceedings of the ARL Federated Laboratory 4th Annual Symposium, 21-23 
March 2000, College Park, MD. 

[Kommerling99] Kommerling, O. and M. Kuhn, “Design Principles for Tamper-Resistant Smartcard 
Processors”, Proceedings of the USENIX Workshop on Smartcard Technology (Smartcard ’99), 
Chicago, Illinois, May 10-11, 1999. 

[Kurkoski00] Kurkoski, B., “Design Embedded Systems for Low Power”, 
http://www.edtn.com/embapps/emba002.htm, 2000.  

[Laneman00] Laneman, J. and G. Wornell, “Distributed Spatial Diversity Techniques for Improving 
Mobile Ad-Hoc Network Performance”, Proceedings of the ARL Federated Laboratory 4th Annual 
Symposium, 21-23 March 2000, College Park, MD.  

[Lenstra00]  Lenstra, A., and E. Verheul, “Efficient and compact subgroup representation”, to be 
published in the Crypto 2000 Proceedings. 

[Lorch95] Lorch, J., “A Complete Picture of the Energy Consumption of a Portable Computer”, 
EECS Master’s Thesis, 1995, UC Berkley. 

[Lorch98] Lorch, J. and A. Smith, “Software Strategies for Portable Computer Energy Management”, 
IEEE Personal Communications Magazine, vol. 5, no. 3, pp. 60-73, June, 1998. 

[Lowe95] Lowe, G., “An Attack on the Needham-Schroeder Public Key Authentication Protocol.” 
Information Processing Letters, 56:131-133, 1995. 

[Lowe95] Lowe, G. and B. Roscoe, “Using CSP to Detect Errors in the TMN Protocol” IEEE 
Transications on Software Engineering, 23(10), 659-669, 1997. 

[MC68328] “MC68328 Users Manual”, Motorola, Preliminary, 6 November 1997. 

[McGrew98]  McGrew, D., and A., Sherman, “Key establishment in large dynamic groups using one-
way function trees,” TIS Report No. 0755, TIS Labs at Network Associates, Inc., Glenwood, MD 
(May 1998). 

{Newman94] Newman, B. and T. Ts’o, “Kerberos: an Authentication Service for Computer 
Networks”, IEEE Communications Magazine, 32 (September 1994), 33-38. 

[Menezes97]  Menezes, A., Oorschot, P., and Vanstone, S., “Handbook of Applied Cryptography”, 
CRC Press, New York, 1997. 

[Mills00] Mills, D., “Low Energy Communications and Routing for Microsensor Networks”, 
Proceedings of the ARL Federated Laboratory 4th Annual Symposium, 21-23 March 2000, College 
Park, MD.  

[Needham78] Needham, R. and M. Schroeder, “Using Encryption for Authentication in Large 
Networks of Computers,” Communications of the ACM, 21(12) December 1978, 993-999. 

122 

http://www.edtn.com/embapps/emba002.htm


NAI Labs Technical Report #00-010  

[Newman98] Newman, M. and J. Hong, “A Look at Power Consumption and Performance on the 
3Com Palm Pilot”, UC Berkeley, CS252 Spring 1998.  

[OSI88] “OSI Basic Reference Model: Security Architecture”, International Standard, ISO 7498-2-
1988(E).  

[Otway87] Otway D, and O. Rees, “Efficient and Timely Mutual Authentication”, Operating Systems 
Review, 21 (1987), 8-10. 

[Park94] Park, C. K. Kurosawa, T. Okamoto and S. Tsujii, “On Key Distributation and 
Authentication in Mobile Radio Networks”, in Advances in Cryptology – EUROCRYPT’93 (May 1993), 
461-465. 

[Philsar00] Philsar Semiconductor Inc., “PT800 Multi-Purpose RF Transceiver (MuRF)” datasheet. 

[RFC2404] C. Madson and R. Glenn, “The use of HMAC-SHA-1-96 within ESP and AH,” RFC 
2404 (November 1998). ftp://ftp.isi.edu/in-notes/rfc2404.txt. 

[Sarneke98] Sarneke, B. and C. Chang, “Ultra-Low Power Communication Logic Circuits for 
Distributed Sensor Networks”, EECS 241, Spring 1998, UC Berkley. 

[Schneier96] Schneier, B., “Applied Cryptography”, John-Wiley and Sons, New York, 1996. 

[Schneier99] Schneier, B., J. Kelsey, D. Whiting, D. Wagner and C. Hall, “Performance Comparison 
of AES Submissions”, v. 2.0, 1 February 1999.  

[Singh98] Singh, S., M. Woo and C. Raghavendra, “Power Aware Routing in Mobile Ad-hoc 
Networks”, Mobicom ’98, August 98. 

[Simmons94] Simmons, G., “Cryptanalysis and Protocol Failures,” Communications of the ACM, 
37(11) November 1978, 56-65. 

[Sirbu97] Sirbu, M. and J. Chuang, “Distributed Authentication in Kerberos Using Public Key 
Cryptography,” Proceedings of the Internet Society 1997 Symposium on Network and Distributed 
System Security, February, 1997, San Diego, California, IEEE Computer Society (1997). 

[Srivastava99] Srivastava, M., “Dynamic Sensor Networks”, SensIT PI Meeting, Marina Del Rey, 
October. 99. 

[Stallings99] Stallings, W., “Cryptography and Network Security: Principles and Practice”, Prentice-
Hall, Upper Saddle River, New Jersey, 1999. 

[Stinson95] Stinson, D., “Cryptography Theory and Practice”, CRC Press, New York, 1995. 

[Tang99] Tang, Z. and J. Garcia-Luna-Aceves, “Hop-Reservation Multiple Access (HRMA) for Ad-
Hoc Networks”, IEEE INFOCON’99. 

[Tassiulas00a] Tassiulas, L and J. Chang, “Maximum Lifetime Routing in Wireless Sensor Networks”, 
Proceedings of the ARL Federated Laboratory 4th Annual Symposium, 21-23 March 2000, College 
Park, MD. 

[Tassiulas00b] Tassiulas, L and J. Chang, “Energy Conserving Routing in Wireless Ad-Hoc 
Networks”, Proceedings of the ARL Federated Laboratory 4th Annual Symposium, 21-23 March 
2000, College Park, MD.  

[Tate89] Tatebayashi, M., N. Matsuzaki and D. Newman. “Key Distribution Protocol for Digital 
Mobile Communications Systems,” in Advances in Cryptology: Proceedings of Crypto89, G. Brassard, ed., 
LNCS 435, Springer-Verlag (1989), 324-334.  

[Tayong00] Tayong, H., et al, “A Reduced Complexity Detector for Fast Frequency Hopping”, 
Proceedings of the ARL Federated Laboratory 4th Annual Symposium, 21-23 March 2000, College 
Park, MD.  

123 



NAI Labs Technical Report #00-010  

[Tung00a]  Tung, B., et al., R., “Public Key Cryptography for Initial Authentication in Kerberos,” 
Internet Draft (work in progress), draft-ietf-cat-kerberos-pk-init-12.txt, July 15, 2000.  

[Tung00b]  Tung, B., et al., R., “Public Key Cryptography for Cross-Realm Authentication in 
Kerberos,” Internet Draft (work in progress), draft-ietf-cat-kerberos-pk-cross-4.txt, July 15, 2000.  

[vanHook99] vanHook, D., “Dynamic Declarative Networking”, SensIT PI Meeting, Marina Del 
Rey, October. 99. 

[van Oorschot92] van Oorschot, “A Alternative Explanation of Two BAN-logic “Failures”,” 
Advances in Cryptology: Proceedings of – EUROCRYPT’93, LNCS 765, Springer-Verlag (1994), 
443-447. 

[Wang00a] Wang, A., W. Heinzelman and A. Chandrakasan, “Energy-Scalable Protocols for Battery-
Operated Microsensor Networks”, Proceedings of the ARL Federated Laboratory 4th Annual 
Symposium, 21-23 March 2000, College Park, MD. 

[Wang00b] Wang, M., “Control Scheme Gives Power Tune-Up”, Electronic Engineering Times, 1 
May 2000, p. 92. 

[WINS NG00] “WINS NG Power Usage Specification: WINS NG 1.0”, Sensoria Corporation, 
January 2000. 

[Wittman99] Wittman, A., “Feeding Moore’s Law”, Network Computing Magazine, Issue 1026, 27 
December 1999. 

124 



NAI Labs Technical Report #00-010  

Acronyms 
 
ACL  Access Control List 
AES  Advanced Encryption Standard 
AJ  Anti-Jam 
ARL  Army Research Laboratory 
ASIC  Application-Specific Integrated Chip 
ATIRP Advanced Telecommunications & Information Distribution Research Program 
BD Burmester-Desmedt 
BPSK  Binary Phase Shift Keying 
C  Capacitance 
C2  Command and Control 
CBC  Cipher Block Chaining 
CDMA  Code Division Multiple Access 
CFB  Cipher Feedback 
CKM  Cryptographic Key Management 
COMSEC Communication Security 
CONOPS Concept of Operations 
COTS  Commercial Off The Shelf 
CRC  Cyclic Redundancy Code 
CRL  Certificate Revocation List 
DARPA Defense Advanced Research Project Agency 
DF  Direction Finding 
DoD  Department of Defense 
DoS  Denial of Service 
DS  Direct Sequence 
DSN  Distributed Sensor Network 
ECB  Electronic Codebook 
EM  Electromagnetic 
EMF  Electromagnetic Frequency 
EPROM Erasable Programmable Read Only Memory 
EEPROM Electrically Erasable Programmable Read Only Memory 
f  clock frequency 
FHMA  Frequency Hopping Multiple Access 
FIPS  Federal Information Processing Standard  
FSRS  Functional Security Requirement Specification 
GDH  Group Diffie-Hellman 
GPS  Global Positioning System 
IETF  Internet Engineering Task Force 
IV  Initialization Vector 
J  Joule 
LAN  Local Area Network 
LPD  Low Probability of Detection 
LPI  Low Probability of Interception 
MAC   Medium Access Control 
MANET Mobile Ad-Hoc Networking 
MEMS  Microelectromechanical Systems 
MIPS  Million Instructions Per Second 
MOUT  Military Operations on Urbanized Terrain 
NAI  Network Associates Incorporated 

125 



NAI Labs Technical Report #00-010  

NG  Next Generation 
NSA  National Security Agency 
QoS  Quality of Service 
P  Power 
PDA  Personal Digital Assistant 
PLGR  Precision Lightweight GPS Receiver 
RAM  Random Access Memory 
RF  Radio Frequency 
RFC  Request For Comments 
ROM  Read Only Memory 
SensIT  Sensor Information Technology 
SHA  Secure Hash Algorithm 
SFA  Security Fault Analysis 
TCP  Transmission Control Protocol 
TEMPEST Thermal, Electro-Magnetic and Physical Equipment Stress Testing 
USNO  United States Naval Observatory 
UTC  Coordinated Universal Time 
V  Voltage 
W  Watt 
WINS  Wireless Integrated Network Sensor 

 

126 


	Executive Summary
	Introduction
	Background
	Sensor Node Technology
	Sensor Node Hardware
	Hardware Design
	Sensor Node Energy
	Sensor Node Mobility
	Sensing Capabilities
	Tamper Detection and Protection

	Software

	Sensor Network Missions
	Perimeter Defense or Area Denial
	Remote Surveillance

	Sensor Network Architecture
	Environment
	Data Types
	Communications Architecture
	Physical Layer
	Network Routing Layer
	Transport Layer
	Application Layer and Data Fusion


	Concept of Operations
	Manufacture
	Depot Storage
	Pre-Deployment
	Deployment
	Self-Organization
	Re-Organization

	Mission Completion

	Environment

	Requirements
	Confidentiality
	Authenticity
	Integrity
	Freshness
	Scalability
	Availability
	Accessibility
	Self-Organization
	Flexibility

	Constraints
	Sensor Node Constraints
	Battery Power/Energy
	Computational Energy Consumption
	Communications Energy Consumption

	Rechargeability
	Sleep Patterns
	Transmission Range
	Memory
	Program Storage and Working Memory
	Programmable Storage for Security Information

	Location Sensing
	Tamper Protection
	Time
	Unattended Operations

	Networking Constraints
	Ad hoc Networking
	Limited Pre-Configuration
	Data Rate/Packet Size
	Channel error rate
	Intermittent connectivity
	Unreliable communications
	Latency
	Unicast vs. multicast
	Unidirectional Communications
	Isolated subgroups
	Frequent Routing Changes
	Population Density
	Unknown Recipients


	Keying Protocols
	Background
	Key Establishment Steps
	Basic Keying Techniques
	Energy Consumption of Keying Primitives
	Energy Computations
	Public Key Computations
	Encryption/Decryption Computations
	Integrity/authentication

	Impact of Key Management Energy Costs on Routing


	Pre-deployed Keying
	Network-Wide Pre-deployed Keying
	Node-Specific Pre-deployed Keying
	J-Secure Pre-Deployed Keying

	Arbitrated Protocols
	Traditional Key Distribution Center-Based Methods
	Kerberos
	The protocol
	Analysis

	Otway-Rees
	The protocol
	Analysis

	KDC Database Update Cost

	Symmetric Key Certificate-Based Keying
	
	The protocol
	Analysis


	Identity-Based Symmetric Keying
	Arbitrated Group Keying Protocols
	Small Group Extensions of Arbitrated Pairwise Protocols
	The protocol
	Analysis

	Logical Key Hierarchy
	The Protocol
	Analysis

	One-way Function Tree
	The Protocol
	Analysis


	Energy Consumption Shifting Key Establishment Protocols
	The Rich Uncle Protocol(s)
	The Protocol
	Energy Consumption
	Protocol Extensions


	Public Key Based Kerberos Protocols

	Self-Enforcing Autonomous Keying Protocols
	Pairwise Asymmetric Keying
	Group Keying Protocols
	(Elected) Simple Key Distribution Center
	Cliques Group Diffie-Hellman Protocols
	Burmester-Desmedt Conference Keying
	Just-Vaudenary Multi-Party Key Agreement

	Attribute-Based Keying

	Preliminary Techniques Comparison

	Network-wide Approaches
	Sensor Network Simulation
	Integrating Key Establishment with Network Self-Organization
	Group Determination
	Hybrid Approaches
	Pairwise and Group Diffie-Hellman Hybrids
	Pairwise and Burmester-Desmedt Hybrids
	Pairwise and Simple Key Distribution Center Hybrids
	Comparison of Approaches
	Average Per Node Energy Consumption
	Maximum Energy Consumption
	Node Density vs. Group Size vs. Group Type


	Energy-Aware Approaches
	Key Protocol Roles
	Parasite Protocol
	Time Varying Approaches

	Specialization

	Next Steps
	References
	Acronyms

