
Toward Better Understanding and Documentation of Rationale for
Code Changes

Khadijah Al Safwan

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science and Applications

Francisco Javier Servant, Chair

Eli Tilevich

Na Meng

Muhammad Ali Gulzar

Thomas D LaToza

July 28, 2023

Blacksburg, Virginia

Keywords: Software Engineering, Software Evolution and Maintenance, Revision Control

Systems, Software Changes Rationale, Applied Machine Learning.

Copyright 2023, Khadijah Al Safwan

Toward Better Understanding and Documentation of Rationale for
Code Changes

Khadijah Al Safwan

(ABSTRACT)

Software development is driven by the development team’s decisions. Communicating the

rationale behind these decisions is essential for the projects success. Although the software

engineering community recognizes the need and importance of rationale, there has been a lack

of in-depth study of rationale for code changes. To bridge this gap, this dissertation examines

the rationale behind code changes in-depth and breadth. This work includes two studies and

an experiment. The first study aims to understand software developers’ need. It finds that

software developers need to investigate code changes to understand their rationale when

working on diverse tasks. The study also reveals that software developers decompose the

rationale of code commits into 15 separate components that they could seek when searching

for rationale. The second study surveys software developers’ experiences with rationale. It

uncovers issues and challenges that software developers encounter while searching for and

recording rationale for code changes. The study highlights rationale components that are

needed and hard to find. Additionally, it discusses factors leading software developers to

give up their search for the rationale of code changes. Finally, the experiment predicts the

documentation of rationale components in pull request templates. Multiple statistical models

are built to predict if rationale components’ headers will not be filled. The trained models

are effective in achieving high accuracy and recall. Overall, this work’s findings shed light on

the need for rationale and offer deep insights for fulfilling this important information need.

Toward Better Understanding and Documentation of Rationale for
Code Changes

Khadijah Al Safwan

(GENERAL AUDIENCE ABSTRACT)

Software developers build software by creating and changing the software’s code. In this

process, developers make decisions and other developers need to understand these decisions.

The rationale behind code changes is an important piece of information that leads to de-

velopment success if well explained and understood. In this work, we study the developers’

need for rationale by conducting two studies and an experiment. In the first study, we found

that software developers often need to look into the rationale behind code changes to un-

derstand them better while working on different tasks. We identified 15 different parts of

rationale that developers seek when searching for rationale for code changes. The second

study focused on the experiences of software developers when looking for and recording ra-

tionale. We discovered some challenges that developers face, like difficulty in finding specific

rationale parts and the factors that make developers give up searching for rationale. The

experiment predicts if developers would document rationale in specific templates. We built

models to predict if certain parts of rationale would be left empty, and the models were ef-

fective. Overall, this research provides a better understanding of software developers’ need,

and it provides valuable insights to help fulfill this important information need.

Dedication

To my husband, for always believing in me and supporting me.

iv

Acknowledgments

First and foremost, my deepest gratitude is to my advisor, Dr. Francisco Servant, whose

guidance has been instrumental in my success throughout my Ph.D. journey. His support

and mentorship have been invaluable, and I am deeply indebted to him for the knowledge

and skills I have gained under his supervision.

I extend my appreciation to my Ph.D. committee members, Dr. Eli Tilevich, Dr. Na Meng,

Dr. Muhammad Ali Gulzar, and Dr. Thomas LaToza, for generously volunteering their time

and expertise to review my work and provide feedback. Their thoughtful participation in

my milestones presentation and my documents review have contributed to my work quality.

I would like to express my gratitude to my fellow lab mates, both past and present, for

creating an inspiring and collaborative environment that has fostered the exchange of inno-

vative ideas and exciting projects. The challenges posed by COVID-19 have only reinforced

my appreciation for the intellectual conversations and knowledge I have gained from being

a part of this remarkable research community.

I am deeply appreciative of the distinguished professors at Virginia Tech, who have played

a pivotal role in shaping my professional development. Their dedication to teaching and

mentorship has been a privilege to experience, and the transition from student to teaching

assistant to instructor has been a transformative journey enriched by their support.

v

I must acknowledge that my Ph.D. journey was marked by its share of difficulties, but I

am immensely grateful for the transformative growth it has brought into my life. It is with

profound appreciation that I extend my thanks to my loving husband, Dr. Mohammed

Alaboalirat, whose unwavering love and support have been my constant pillar of strength

throughout this academic pursuit. His belief in me has been a driving force behind my

achievements, and I am truly fortunate to have him by my side.

Last but not least, I would like to extend my heartfelt gratitude to my parents, siblings,

family, and friends for being my supporters from the outset. Their love and encouragement

have been a constant source of motivation and inspiration. My accomplishments, including

the completion of my Ph.D., are a testament to their belief in me, and I am forever grateful

for their presence in my life.

Once again, I express my sincere appreciation to everyone who has played a part in my

journey, as your support and encouragement have been indispensable to my success.

vi

Contents

List of Figures xii

List of Tables xiii

1 Introduction 1

1.1 Thesis Statement . 1

1.2 Understanding developers’ need . 2

1.3 Surveying developers’ experiences . 3

1.4 Predicting rationale components’ documentation 3

1.5 Results and Contributions . 4

1.6 Outline . 6

2 Understanding developers’ need for rationale of code changes 7

2.1 Background and Motivation . 7

2.2 Research Questions . 8

2.3 Approach . 9

2.3.1 Developer Interviews . 10

2.3.2 Survey I . 13

2.3.3 Survey II . 13

vii

2.3.4 Participants’ Recruitment . 13

2.4 Tasks for which rationale is needed . 16

2.4.1 Research Method . 16

2.4.2 Results . 18

2.5 Seeking rationale of internal code vs. external code 25

2.5.1 Research Method . 25

2.5.2 Results . 25

2.6 Components of rationale . 30

2.6.1 Research Method . 30

2.6.2 Results . 31

2.7 Threats to validity . 35

2.8 Summary . 37

3 Surveying developers’ experiences with rationale of code changes 38

3.1 Background and Motivation . 38

3.2 Research Questions . 39

3.3 Approach . 40

3.4 Experience with rationale . 41

3.4.1 Research Method . 41

3.4.2 Results . 41

viii

3.5 Experience with individual components . 45

3.5.1 Research Method . 45

3.5.2 Results . 46

3.6 Factors leading to give up rationale search 49

3.6.1 Research Method . 49

3.6.2 Results . 50

3.7 Experience comparison . 58

3.7.1 Research Method . 58

3.7.2 Results . 58

3.8 Threats to validity . 60

3.9 Conclusion . 61

4 Predicting Rationale Components Documentation in PRT 62

4.1 Background and Motivation . 63

4.2 Research Questions . 64

4.3 Approach . 65

4.3.1 Data Preparation . 65

4.3.2 Correlation analysis . 67

4.3.3 Statistical Modeling . 70

4.3.4 Models Evaluation & Analysis . 71

ix

4.4 PRT rationale header correlation analysis 72

4.5 Predicting PRT rationale header fill . 74

4.6 Comparing features groups performance . 75

4.7 Threats to validity . 76

4.8 Summary . 77

5 Discussion and Implications 78

5.1 Rationale of code commits vs. rationale in other contexts 78

5.2 Providing a better understanding of rationale need 79

5.3 Our vision: practitioners documentation of rationale 80

5.4 Our vision: tools support in documenting rationale 82

5.5 Our vision: rationale documentation automation 85

5.6 Our vision: benefits of good documentation 86

6 Related Work 88

6.1 Rationale Management in Software Requirements, Design, and Architecture 89

6.2 Rationale in Software Evolution and Maintenance 90

6.2.1 Components of the Rationale of Code Changes 90

6.2.2 Tasks that need the Rationale of Code Changes 90

6.2.3 Experience with the Rationale of Code Changes 91

6.3 Rationale Documentation Support . 92

x

6.3.1 Rationale documentation in code review context 93

6.3.2 Tools to support software changes documentation 93

7 Conclusions 95

Bibliography 97

xi

List of Figures

2.1 Demographics of our interview and survey participants 15

2.2 Tasks for which rationale for code commits is needed 27

3.1 Experience of developers needing rationale 42

3.2 Experience of developers finding rationale 43

3.3 Experience of developers recording rationale 44

3.4 Experience of developers with individual components of the rationale 47

3.4 Experience of developers with individual components of the rationale (cont.) 48

3.5 Give up factor . 52

3.6 Cross-dimensional analysis of developers’ experience with the individual com-

ponents of rationale of code commits . 59

4.1 Classification results of classifiers trained using 10-fold cross-validation . . . 74

4.2 Classification results of Random Forest classifier trained with different set/-

groups of features . 75

xii

List of Tables

2.1 Preliminary model of rationale of code commits 12

2.2 Tasks for which rationale for code commits is needed 18

2.3 Resulting model of the rationale of code commits 32

3.1 Factors leading developers to give up the search for rationale of code changes 51

4.1 Features extracted for each pull request . 68

4.2 Correlation between features and PRT rationale header fill 73

xiii

Chapter 1

Introduction

Software development is driven by decisions from various stakeholders, following some ra-

tionale, at every stage of the software development life-cycle [1]. Given the complexity of

software and its development teams, the effective communication of development decisions’

rationale is expected to play an important role in software project success [2]. Multiple stud-

ies involving software history and developers’ information needs establish a strong demand

for rationale [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Our work is motivated by these

empirical studies that highlight the importance of rationale.

Although the software engineering community recognizes rationale need and importance,

there is a lack of in-depth study of rationale for changes. To bridge this gap, this thesis aims

to better understand and document the rationale for code changes.

1.1 Thesis Statement

To achieve a better understanding and documentation of rationale for code changes, we

devise the following hypothesis:

Thesis Statement: The rationale of code changes can be needed in many software

development tasks and involve many components, which can often be hard to find, and

automatic classification could be utilized to assist developers in documenting rationale.

1

2 Chapter 1. Introduction

To address our hypothesis, we perform a series of studies and experiments that we describe

in detail in the following chapters. Each chapter addresses one of the three hypotheses we

divided the thesis statement into. The following sub-sections enumerate those studies, draw-

ing up the specific hypothesis that needs to be validated for each research study alongside

the corresponding research questions.

1.2 Understanding software developers’ need for ratio-

nale of code changes

Rationale of code changes is informally defined as the answer to the question: “why was

this code implemented this way?” [3, 7]. However, this informal question could be easily

interpreted in many different ways. We aim to understand what developers mean by the

rationale of code changes and the context of their need in practice.

For this study, we apply a developer-centric mixed-methods approach. We interviewed soft-

ware developers and distributed two surveys to study software developers’ perspectives on

rationale for code changes. This study investigates the following hypothesis:

Sub-Hypothesis H1: The rationale of code changes can be needed in many software

development tasks and involve many components.

To verify our hypothesis, we investigate the following questions:

• What are the tasks in which developers need to find the rationale for code commits?

• How often do developers seek rationale of their team’s internal code vs. others’ code?

• Which components do software developers decompose the rationale of code commits into?

1.3. Surveying developers’ experiences 3

1.3 Surveying software developers’ experiences with ra-

tionale of code changes

Many research studies about information needs convey the importance of understanding the

rationale of code changes. Rationale is the most common [3] and important [5] information

need to understand from code-change history. Unfortunately, it can also be quite challenging

to find an answer for rationale of code changes [5, 7]. We aim to understand the developers’

efforts and issues associated with rationale of code changes needing, finding, and recording.

For this study, we use the same developer-centric mixed-methods approach as the first study.

We interviewed software developers and distributed two surveys to study software developers’

experiences. This study investigates the following hypothesis:

Sub-Hypothesis H2: The rationale of code changes can often be hard to find.

To verify our hypothesis, we investigate the following questions:

• What is the experience of developers needing, finding, and recording the rationale of code commits?

• What is the experience of developers needing, finding, and recording the individual components of the

rationale of code commits?

• Would comparing the experience of developers needing, finding, and recording the individual components

of the rationale of code commits with each other reveal areas for improvement?

• What makes software developers give up their search for rationale of code commits?

1.4 Predicting the documentation of rationale compo-

nents in pull request templates

Rationale of code changes is frequently sought in code review [9, 10, 13, 14]. Open Source

GitHub repositories prescribe Pull Request Templates (PRT) [16] to guide software developers

4 Chapter 1. Introduction

in describing their code changes for code review. Multiple rationale components were present

in recent empirical studies of pull request templates’ content [17, 18]. Although rationale

components are requested in prescribed PRT headers, the components may not be suited

for every Pull Request (PR). We aim to streamline the documentation of rationale for code

change components by predicting if a PRT rationale header will not be filled in individual

PRs.

For this study, we take a data-centric analysis approach. First, we mine software repositories

for PRs information. Then, we perform correlation analysis between PRT rationale compo-

nents headers being filled and PRs characteristics. Finally, we build statistical models to

predict if a PRT header of rationale components will not be filled in individual PRs. This

study investigates the following hypothesis:

Sub-Hypothesis H3: An automatic classification could be utilized to assist developers

in documenting rationale.

To verify our hypothesis, we investigate the following questions:

• How are different pull request characteristics correlated with filling a pull request template rationale

header?

• To what extent can classification algorithms predict if a pull request’s template rationale header will be

filled?

• How effective are different feature groups in predicting if a pull request’s template rationale header will

be filled?

1.5 Results and Contributions

The first two studies of this thesis provide scientific contributions, they advance the knowl-

edge about software developers need of rationale for code changes. The first study establish-

1.5. Results and Contributions 5

ing a common understanding of software developers need of rationale for code changes. The

results of this study highlight eight tasks for which rationale for code commits is needed:

programming, working on bugs, communication, tools, documentation, project management,

testing, and specifications. The software engineering community can benefit from knowing

the context of rationale need. For example, open-source tools or libraries could consider that

some users might need to find the rationale of code changes before installing or using their

tool. In addition, the results decompose rationale for code commits into 15 different com-

ponents: goal, need, benefits, constraints, alternatives, selected alternatives, dependency,

committer, time, location, modifications, explanation of modifications, validation, maturity

stage, and side effects. The decomposition of rationale into components is a step toward

improved communication of rationale for code changes.

The second study results bring awareness to developers’ efforts and issues associated with

rationale for code commits need, finding, and recording. For example, the results highlight

components of rationale that are needed but really hard to find: alternatives, constrains,

and side effects. Those components are also rarely recorded and are the ones that our study

participants struggled most to find. Additionally, the study results present eight factors

leading software developers to give up their search for rationale of code commits: codebase

state, documentation, effort management, developer knowledge, interpersonal (emotions),

impact on productivity, personnel, and time management.

The third study serves as a demonstration to how possible it is to assist software developers

in documenting the rationale of code changes. In this study we built a machine learning

approach to predict if a rationale header in pull request templates is likely to be empty. The

recommended approach for predicting if a rationale component will not be filled could help

save developers’ time and effort.

6 Chapter 1. Introduction

1.6 Outline

The body of this dissertation, Chapters 2-4, presents experiments’ methods and results to

provide evidence to support the thesis statement. Chapter 5 discuss the dissertation findings

and their implications. Chapter 6 describes this dissertation’s related work. Chapter 7

outline future work directions and concluding remarks.

Chapter 2

Understanding developers’ need for

rationale of code changes

In this chapter, we aim to understand what developers mean by the rationale of code changes

and their need for it in practice. First, we study the context in which software developers

need the rationale for code changes. We set out to discover the tasks and the target code for

which developers need the rationale for code changes. Second, we study the specific pieces

of information in which developers decompose the rationale of code changes.

2.1 Background and Motivation

The rationale of code commits is informally defined as the answer to the question: “why was

this code implemented this way?” [3, 7]. However, software developers could easily interpret

this informal question in many different ways, potentially as disparate as: “what is the

purpose of this code?” [6]; “why where [these changes] introduced?” [4]; or “why was it done

this way?” [7] — all of which request different answers. In past studies, software developers

mentioned all these different interpretations when asked about rationale. Thus, we formed

our intuition that it could be decomposed into multiple components, each addressing different

aspects of the question.

7

8 Chapter 2. Understanding developers’ need for rationale of code changes

Efforts to study rationale in-depth have been carried out in the design context, decomposing

it into various more-specific components [19]. In the context of software maintenance, Burge

et al. [1] prescriptively propose some questions that may answer rationale [1]. We, instead,

take a descriptive approach, i.e., we aim to discover how developers decompose the rationale

of code changes — as opposed to conceptually and rigorously decomposing the concept.

We take a developer-centric approach to discover decomposition of the rationale of code

changes by the rationale of code changes and their need for it in practice. We used a mixed-

methods approach in our study, involving interviews and surveys of software developers. The

decomposition of the rationale of code changes provides: (1) a common language to use when

discussing rationale, which practitioners can use to (2) assess and (3) strengthen the quality

of their rationale sharing and documentation processes.

2.2 Research Questions

To understand some of the contexts under which the rationale of code commits is needed,

we ask the following two research questions:

• RQ: What tasks do software developers need to find the rationale for code

commits? Discovering the more extensive set of tasks in which rationale for code

commits is needed will enable researchers to tailor their support to the context of each

task. While the rationale for code commits has been identified as a need in previous

task-specific studies (e.g., during code review [13]), an exhaustive list of tasks in which

developers needed it is still unknown.

2.3. Approach 9

• RQ: How often do developers seek rationale of their team’s internal code

vs. others’ code? Our intuition is that developers may seek the rationale for code

commits of internal and external code outside their team. If our intuition is validated,

future research efforts (e.g., rationale retrieval support) should accommodate for the

fact that developers may or may not own the code for which they seek rationale.

To discover an extensive set of rationale for code commits components that developers believe

would compose a high-quality detailed description, we ask the following research question:

• RQ: Which components do software developers decompose the rationale of

code commits into? A model of rationale for code commits will inform developers

wanting to improve their documentation of rationale of code commits — whether they

aim to document it fully or more thoroughly.

2.3 Approach

Our study uses a mixed-methods approach, combining developer interviews and a survey.

Mixed methods have been successfully employed in other studies of software developers, e.g.,

[3, 5, 20, 21]. The developer interviews allowed us to qualitatively discover details about mul-

tiple aspects of the rationale of code commits through rich one-on-one conversations with

developers. The surveys enabled us to reach more participants and extend our quantitative

findings. In the following text, we present the design of our interview, surveys, and partici-

pant recruitment. This chapter and the following chapter’s studies share the interview and

surveys.

10 Chapter 2. Understanding developers’ need for rationale of code changes

2.3.1 Developer Interviews

We designed and refined our interview script through five pilot sessions. We ran a first pilot

interview at the early stages of designing our interview script, in which we asked general

open questions about the rationale of code changes. After the first pilot, we improved the

interview script, making it more structured, making the questions more specific, and adding

a preliminary model of rationale (Table 2.1) to the script. Then, we ran a second pilot to test

these improvements. After it, we changed some questions’ wording to make them explicit.

We ran the third and fourth pilots with experienced and beginner developers. We aimed to

test the new improvements and check the time required for our interview. After the fourth

pilot, we finalized the interview kit (available in the research artifacts package) by adding

introductions to the different sections of the interview script. Finally, we ran a fifth pilot

to check for the entire interview process. The process included: advertisement, screening

survey, scheduling, interview session, and analysis of responses. After this pilot, we were

ready to recruit and interview participants.

Our interview consisted of three parts. The first part focused on finding the tasks in which

rationale of code commits is needed. The second part focused on discovering the components

that form the rationale of code commits. The third part aimed to understand the experiences

of developers needing, finding, and recording rationale of code commit and its components,

and to understand when developers give up searching for it.

Part 1: Tasks with Rationale Need. We started our interviews by giving our partici-

pants the definition of rationale of code that is most common in the research literature, i.e.,

the answer to “why is the code this way?” [3, 7]. We did this to ensure that all participants

had a uniform definition of the concept we discussed. Next, we asked them to describe real

situations in which they investigated a code commit to understand its rationale. This way,

2.3. Approach 11

they grounded their answers in real experiences. We used their answers to identify the tasks

in which they needed rationale. We provide more details about this analysis in Section 2.4.2.

Part 2: Components of Rationale. Right after giving our participants the definition of

rationale of code commits and asking them to describe real situations in which they needed it,

we asked them to decompose the rationale of code commits into components. By asking this

question after they had been thinking about their own experiences searching for the rationale

of code commits, we intended to stimulate the participants’ memories and set them in the

proper context, as well as to maximize the number of components that they would report.

Then, we showed them a preliminary model (see Table 2.1) of components of the rationale of

code commits that we created by studying the research literature — including components

to which researchers have referred as rationale [1, 4, 6, 7, 22]. We used this preliminary

model as a probe to prime our participants and get them in the right frame of reference. We

asked participants to critique and extend the preliminary model — considering their previous

decomposition — to the extent that they believed necessary to build a final model of all the

components of the rationale of code commits. For any component added by participants,

we asked them to describe it with a name, question, and example answer. We presented the

same preliminary model to all participants — i.e., we did not show the modified models to

other interview participants.

Using the preliminary model as a probe served multiple purposes. The preliminary model

clarified the scope of our study. It also allowed developers to discuss an extensive set of

components. We also believe that it allowed us to reach saturation of answers much faster

(interviewing fewer participants) than if we had only relied on our participants’ experiences

and decompositions — since situations in which many components are needed simultaneously

may be rare or because people’s memory is generally unreliable.

12 Chapter 2. Understanding developers’ need for rationale of code changes

Table 2.1: Preliminary model of rationale of code commits

Component Component Expressed as a Question Literature
References

Goal What do you want to achieve? [1, 6]
Need Why do you need to achieve that? [4, 22]
Location What artifacts were changed? [1]
Modifications What specific changes were performed in the artifacts? [6, 22]
Alternatives What other alternatives did you have? [7]
Selected alternative Why did you make those specific changes and not others? [6, 7]
Validation How do those specific changes achieve the goal? [1, 7]
Benefits What is the benefit of what you want to achieve? [1, 6]
Costs What risks could come from these changes? [1, 6]

However, using a preliminary model, we had the risk of introducing confirmation bias [23].

We took multiple measures to reduce this potential bias. first, we presented the preliminary

model neutrally, as “this model” — avoiding potentially-biasing adjectives, such as “ours” or

“preliminary”. Second, we built it from the research literature, reducing the risk of inserting

our own opinions. Third, we presented the preliminary model to participants only after they

had produced their own decomposition without having seen it. Fourth, we asked participants

to consider their own decomposition when critiquing and extending the preliminary model.

We believe that we were successful with these efforts since our final model of rationale of code

commits (see Table 2.3) is much more extensive than the preliminary model (see Table 2.1).

The preliminary model had only nine components, whereas the final model have 15.

Part 3: Experience with Rationale. Next, we asked participants to rate their expe-

riences needing, finding, and recording rationale of code commits and its components in

Likert-scale-style questions. We also asked an open question about what makes developers

give up their search for rationale.

2.3. Approach 13

2.3.2 Survey I

Once we had identified the components of the rationale of code commits through our in-

terviews, we used a survey to obtain more answers about developers’ experiences needing,

finding, and recording rationale of code commits and its components. We refined our survey

through four pilot versions, improving its clarity and the time required to complete it. Our

survey included the same Likert-scale-style questions we asked our interview participants

about their experiences. However, the reference model of rationale of code commits we gave

survey respondents was the final model resulting from our analysis of the rationale compo-

nents. Our experiences’ results include the answers we obtained from our interviews and the

survey.

2.3.3 Survey II

Once we had analyzed our interviews to identify the tasks for which rationale is needed and

the factors leading our participants to give up their search for the rationale of code commits,

we created a short survey to obtain more responses. We ran two pilots to test the new

survey. The pilots provided positive feedback and an understanding of the time required to

complete the survey. Our survey included an introduction and the same open questions we

asked our interview participants about the tasks and factors. We obtained results for the

tasks and factors by analyzing the answers from our interviews and Survey II.

2.3.4 Participants’ Recruitment

We used snowball sampling [24] to recruit participants for our study, i.e., we asked them to

refer our study to their contacts. We advertised our study in mailing lists in our university

14 Chapter 2. Understanding developers’ need for rationale of code changes

that covered software developers of diverse experience, e.g., developing various university

software systems, and graduate students with professional software development experience.

We also advertised it through public channels and social media, e.g., developers’ communities

on Slack. We compensated interview participants with a $20 Amazon gift card and encour-

aged survey participation by raffling a $50 gift card. figure 2.1 represents the demographics

of our interview, survey I, and survey II participants.

We interviewed 20 participants after having discarded three other interviews for various

reasons: one participant could not describe an example of seeking rationale of code commits,

another voluntarily expressed lack of experience throughout the interview, and we found out

that the last one knew our interview materials.

We analyzed 26 survey I responses after having discarded two responses. We discarded two

surveys we deemed done carelessly, taking less than 10 minutes. We determined this cut-

off point through our pilot surveys; we asked one pilot participant to complete the survey

carelessly, which took 10 minutes. We specifically asked the interview participants not to fill

out the survey, eliminating the chance of including duplicates in our results.

For this survey, we did not have a target number of responses. We kept the survey open for

a month, resulting in 28 total responses (before filtration).

We analyzed 26 survey II responses after having discarded 60 spam responses. We identified

those spam responses since the spammers did not address the asked open questions. Instead,

the spammers submitted the same spam text answer with different contact information for

each response. We believe a large number of spam responses resulted from the compensation’s

raffle odds of winning (1 in 50 chance). For this second survey, the advertisement emphasized:

“not to fill the survey if you have participated in the study before”. Our target was to reach a

similar number to the previous survey I. We also kept the survey open for a month, resulting

2.3. Approach 15

in 86 total responses (before filtration). Although we received/analyzed the same number

of responses as survey I, the participants are different, which can be observed from the

demographics figure (figure 2.1).

(A) Years of Experience
How many years of experience do you have with

software development?
.

(A-i) Software development

How many years of experience do you have with
version control systems?

(eg. Git, Github)

(A-ii) Revision control

(B) Types of experience
Select all that apply; your

software development experience
is:

(B-i) Software development

Select all that apply; your
experience with version control

systems is:

(B-ii) Revision control

What version control systems
have you used for software

development?

(B-iii) Version control systems

Figure 2.1: Demographics of our interview and survey participants

16 Chapter 2. Understanding developers’ need for rationale of code changes

2.4 RQ: What are the tasks in which software devel-

opers need to find the rationale for code commits?

2.4.1 Research Method

We asked our (20) interview and (26) survey participants to describe a situation in which

they needed to understand the rationale of a code commit. We analyzed their responses

qualitatively, using closed coding to extract the task they performed when they needed

rationale for code changes. Three coders were involved in the coding. We reached saturation

in our observed tasks in interview 6 (of 20) and in our observed subtasks in survey 14 (of

26).

Analysis data: To base our observations on real developer experiences, we asked our

participants (with an open-ended question) to describe an actual situation in which they

needed to understand the rationale of code commits. Then, we analyzed their descriptions

of these real-world experiences to identify the tasks they were performing, in which they

experienced the need to know the rationale of code commits. We specifically asked our

participants: “Tell me about one time in which you investigated a code commit to understand

its rationale. Why did you need to find the rationale for that specific code commit? What

was the rationale for that specific code commit?”

Analysis method: We analyzed our participants’ answers using closed coding [25] (also

used in grounded theory [26]) — i.e., we coded our participants’ answers, labeling them

with categories according to a pre-existing set of codes (a codebook). Studies of the tasks

developers perform at their job already exist in the research literature. So, we used a closed

codebook containing the list of developer tasks that Begel and Simon [27] captured when

observing software developers at work [27]. We analyzed our participants’ responses and

2.4. Tasks for which rationale is needed 17

labeled them with the task(s) from our codebook that we identified they were performing.

We allowed multiple labels for each response, since our participants sometimes mentioned

being involved in multiple tasks when needing the rationale of code changes.

First, two coders held a code discussion session to reach a common understanding of the

scope of each developer task and subtask in the codebook. In this session, the two coders

provided a detailed description for each task to better delineate their difference. Then, the

two coders performed their coding. They labeled participant responses with multiple labels

in two scenarios: if multiple tasks were mentioned (e.g., “debugging” during “code review”),

or when the response could fit multiple tasks (i.e., if it was not clear which one of the many

was being described). In both situations, they had discussions to agree on the labels that

better fit each response, i.e., the superset of tasks that were either mentioned or would easily

fit the description in the text. They also allowed the addition of new tasks and subtasks if

they still needed to be added to the codebook. The two coders coded about 52% of the tasks

similarly, and they coded about 59% of the subtasks similarly. Next, the two coders held

a joint focused-coding session and resolved disagreements. After this joint coding session,

the two coders resolved most disagreements but still disagreed on coding two participants’

responses. Therefore, a third coder provided additional independent coding for these two

responses. Finally, after a final discussion that reviewed all three codings, all coders agreed

on how to label these two responses.

Analysis evaluation: We reached saturation [28, 29] in our identified set of tasks; our

participants mentioned no new tasks after the sixth interview (out of 20) and in our subtasks

after the 14th survey (out of 26).

18 Chapter 2. Understanding developers’ need for rationale of code changes

2.4.2 Results

We show the list of tasks (and subtasks) during which our participants needed to understand

the rationale of code commits in Table 2.2. Table 2.2 also contains a description and example

(abstracted from our participants’ responses) that we created to clarify the scope of each

task during our coding sessions. Finally, we report in figure 2.2A the relative frequency with

which each task and subtask was mentioned.

Table 2.2: Tasks for which rationale for code commits is needed

Task Subtask Description Example (abstracted from participants’ re-
sponses)

Pr
og

ra
m

m
in

g

Reading Reading source code to un-
derstand various aspects of
it, like design and features.

A Developer navigates through the commits of a
project to understand how a specific feature was im-
plemented. The feature spans multiple classes, and
the developer finds the commit that introduced the
feature. The developer reads and investigates the
rationale of the changes.

Writing Writing source code to im-
plement, refactor, improve,
and maintain the codebase.

A developer tries to break down a big function in a
previous commit to improve code reuse and testing.
This leads the developer to ask questions about the
rationale of the changes.

Proofreading Reading source code to
look for and solve issues
before submitting the code
for review or boarding.

A developer proofreads code to ensure that vari-
able names are clear and informative before com-
mitting. This verification of variable names leads
the developer to ask questions about the rationale
of the changes.

Code Re-
viewing

Reviewing source code as
part of the code review pro-
cess.

A reviewer assesses the correctness and quality of the
commit under review, which requires understanding
the rationale of the changes.

Sp
ec

ifi
ca

tio
ns

Writing Writing specifications
for functional or non-
functional requirements.

A development team wants to write a new speci-
fication document to improve the functionality of
a system. The team decides to assign the task to
a new team member, to obtain a fresh perspective.
While considering possible improvements, the devel-
oper also studies old code commits to understand
how the system evolved. This effort takes the de-
veloper to ask questions about the rationale of the
changes.

2.4. Tasks for which rationale is needed 19

Table 2.2: Tasks for which rationale for code commits is needed (cont.)
Task Subtask Description Example (abstracted from participants’ re-

sponses)

W
or

ki
ng

on
B

ug
s

Reproducing Reproducing the situation
in which a previously re-
ported bug was observed.

A developer tries to reproduce a race condition that
happens occasionally. The developer investigates
the edge cases introduced in a previous commit to
guess when the race condition emerges, which leads
the developer to ask questions about the rationale
of the changes.

Reporting Reporting the existence
of a bug through for-
mal/informal communica-
tion methods to inform the
team members.

A developer discovers a bug in the codebase. To
write a bug report, the developer wants to refer to
a particular commit as a suspect of introducing the
bug. In the effort to find the suspect commit, the
developer needs to understand the rationale of the
investigated commits.

Triaging Evaluating a reported bug
in terms of validity, sever-
ity, urgency, and needed
work, before assigning a
developer and a due fix
time.

A Project Manager (PM) uses git blame to figure
out who introduced code associated with a newly
reported bug. In this effort, the PM needs to un-
derstand the rationale of the multiple code changes
that introduced the buggy code.

Debugging finding the source code
that contains the bug and
fixing it.

A developer investigates his/her assigned bug, re-
turns to the previous commits, reads their code, re-
flects on their rationale, understands how the bug
was introduced, and writes a fix.

Postmortem
Analysis ∗

Exploring and analyzing
bugs, which might have al-
ready been resolved, for re-
search or to improve pro-
ductivity.

A PM studies the history of bugs to take preventive
measures in the future. In this effort, the PM needs
to understand how these bugs were introduced and
the rationale behind the commits introducing them.

Te
st

in
g

Writing Writing test code that
checks the behavior of the
software against its specifi-
cations.

A developer wants to write several tests for new
functionality. The developer studies the latest
code commits to design his/her test strategy, which
also involves understanding the rationale of those
changes.

Running Running tests to compare
the behavior of the soft-
ware with its specifica-
tions.

Before a developer runs a test suite for a system,
the developer looks at the code commits to design
his/her test strategy. In this effort, the developer
tries to understand the rationale behind the changes
performed to the code under test.

20 Chapter 2. Understanding developers’ need for rationale of code changes

Table 2.2: Tasks for which rationale for code commits is needed (cont.)
Task Subtask Description Example (abstracted from participants’ re-

sponses)

C
om

m
un

ic
at

io
n

Learning Learning software best
practices, conventions,
technologies, skills, and
tools.

A researcher looks at the commits in the repository
of an open-source ML library to learn the undoc-
umented mathematics of the ML approach. This
leads the developer to ask questions about the ra-
tionale of the changes in the commits..

Coordinat-
ing

Coordinating with mem-
bers of the same or another
team to achieve a smooth
integration.

Team A and Team B are developing intersecting
functionality. A developer in Team A looks at the
commits of Team B to avoid redundancy, sees how
Team A can leverage parts of Team B’s code, and
builds a shared vision of the two teams. In this
process, developer A requires understanding the ra-
tionale for some of the code changes by team B.

Mentoring Advising, guiding, and
one-to-one teaching an-
other software developer.

A mentor looks at the mentee’s code and commits
to checking how well the mentee practiced the de-
sign process, which leads the mentor to ask questions
about the rationale of the mentee’s changes.

D
oc

um
en

ta
tio

n

Searching Searching for reference
documentation, tutorials,
commit messages, or any
other sources of knowledge
that can help accomplish a
task.

A developer looks for the documentation of a par-
ticular piece of code. Because inline comments in
the code are unclear, the developer runs git blame
to look for related commits. The developer reads
the related commit messages and asks about the
rationale of the code changes.

Writing Writing documentation of
software artifacts (e.g., tu-
torials, inline code com-
ments, or user-generated
JavaDoc) or the software
process (e.g., commit mes-
sages, process documents,
or meeting minutes).

A developer works on writing a tutorial on using
a library that the team newly migrated to. Since
the library documentation is incomplete, the devel-
oper looks at commits from the library repository
to understand the rationale behind some of its func-
tionality.

Reading Reading documentation of
software artifacts or soft-
ware processes.

A developer reads the project changelog and figures
out where the support for a library was added. The
developer reads the commit to understand the ratio-
nale of this change.

2.4. Tasks for which rationale is needed 21

Table 2.2: Tasks for which rationale for code commits is needed (cont.)
Task Subtask Description Example (abstracted from participants’ re-

sponses)

To
ol

s

Discovering Discovering various aspects
of a tool or library before
adoption, such as its sup-
ported features, popular-
ity, and version history.

A software team is assessing whether to replace an
existing component with a new tool that is not fully
documented yet. A developer goes through the com-
mits in the repository of the new tool to discover its
capabilities and to look for what the team needs. In
this effort, the developer needs to understand the
rationale of the historical changes to the tool.

Installing Installing tools for develop-
ers to use for their tasks.

A developer tries to install Docker Composer, and
finds it incompatible with other installed tools. The
developer finds another repository that was previ-
ously encountered and solves the same problem. The
developer then tries to understand the rationale be-
hind the changes that solved the compatibility issue.

Using Using external tools that
are not part of the de-
fault API libraries, either
by calling from code or
by impacting the execution
environment.

A developer wants to use some GUI controls for their
website. The developer looks at a similar code repos-
itory that uses these controls and goes through its
commits to learn how to use the GUI controls. In
this effort, the developer needs to understand the
rationale of code commits.

Building Compiling the source code
for the software to launch
and execute correctly.

A developer’s code is not building successfully. The
developer goes back to an older code version to de-
termine why the build was successful then. The
developer reads commits related to the problematic
code and reflects on the rationale behind the changes
before the build starts failing.

Pr
oj

ec
t

M
an

ag
em

en
t

Checking
out

Checking out a software ar-
tifact to a separate ma-
chine to work on it inde-
pendently.

A developer pulls the changes made to an existing
branch. The developer looks at the pull commits
to understand their impact on his/her tasks and
eventually needs to understand the rationale behind
these changes.

Reverting Reverting to an older ver-
sion of the software reposi-
tory.

A developer inserts an incorrect commit on the
project. The team does not know exactly which
commit is the problematic one. A developer goes
through the changed files for each commit to back-
track the problem. The developer needs to under-
stand the rationale of various code changes in the
history to revert those inserted after the incorrect
one.

22 Chapter 2. Understanding developers’ need for rationale of code changes

Table 2.2: Tasks for which rationale for code commits is needed (cont.)
Task Subtask Description Example (abstracted from participants’ re-

sponses)
Deploying ∗ Moving software from one

controlled environment to
another, e.g., merging the
development branch into
the production branch, re-
leasing the software to
users, moving the software
to a different environment
on the customer end, or
staging to test the software
using real data.

Some tests fail after moving the project from the
development branch to the production branch. A
developer investigates the commits in the repository
and finds a configuration change that might affect
the deployment. The developer reads the commit
thoughtfully to find out the goal of each configura-
tion flag and why they were introduced.

∗ Subtasks observed in this study that were not originally in the codebook (i.e., that were not observed
in Begel and Simon’s study of developer tasks [27]).

Our participants reported needing to understand the rationale of code changes in a wide di-

versity of software development tasks: programming, working on bugs, communication, tools,

documentation, project management, testing, and specifications. Their responses covered all

(8) tasks in the codebook and the majority of subtasks (23 out of 34). Another signal of the

wide diversity of tasks requiring understanding the rationale of code changes is the fact that

a good portion of our participant responses (35%) described multiple tasks.

For many of the reported tasks and subtasks, it is intuitive that developers would need to

understand the rationale of code changes for them, e.g., in code review, or when reading

documentation. Others are initially surprising (e.g., when installing or discovering tools)

but become less surprising after hearing our participants’ examples (column 4 in Table 2.2).

For example, when a tool is poorly documented, some practitioners resort to understanding

its code changes to understand its behavior. Another possibility is that the tool is well

documented, but software developers are discovering the tool through unofficial search en-

gines. Liu, Li, and Tilevich [30] recent study of the practice of code search discovered that

developers use various tools rather than specialized code search engines.

2.4. Tasks for which rationale is needed 23

Our main takeaway from these observations is that when the rationale of code changes is well

documented, it could help software developers in many different situations. The help could

even be in less intuitive situations, such as when they need to understand the rationale of

code changes in other codebases they do not own (e.g., to understand the behavior of external

tools). Good documentation of the rationale of code changes should consider the fact that

developers seeking it may be involved in a wide diversity of tasks, which could cause them

to search for it in different places and search for different dimensions of it under different

contexts. Furthermore, it would also be beneficial if the documentation of the rationale

of code changes could be understood even by people outside the development team of the

software project (24% of responses mentioned seeking the rationale of code changes outside

their project).

We hope this new understanding of how many tasks can benefit from a well-documented

rationale of code changes encourages developers to document it well and appropriately for

a wide diversity of tasks (i.e., in adequate locations and levels of detail suitable for many

contexts).

We also learned from the tasks and subtasks our participants reported but were not initially

included in the codebook: postmortem analysis of bugs, and software deployment. We

believe that these tasks were not observed initially by Begel and Simon [27] because they

are intuitively performed less regularly and are therefore harder to observe. However, our

participants reported these tasks in their experiences of needing to understand the rationale

of code changes: they needed it to understand why an old bug was introduced in the first place

(to avoid similar ones in the future), and they needed it to have a stronger understanding

of the new changes that they were deploying. We learn from these observations that the

rationale of code changes is needed for both frequent and infrequent tasks.

Similarly, our participants did not mention some developer tasks from the codebook. Some of

24 Chapter 2. Understanding developers’ need for rationale of code changes

them were tasks that do not necessarily involve code changes: tools (finding), specifications

(reading), and communication (finding people). Others are tasks that are more focused

on providing information than requesting it: communication (persuasion, meeting prep,

interacting with managers, and teaching). The remaining ones are tasks that we believe

practitioners may be more likely to think of them as part of a broader task (and thus may

not mention them specifically): programming (commenting), project management (check

in), communication (asking questions, email, and meetings). Overall, there are more tasks

and subtasks that require understanding the rationale of code changes than those that may

not.

Finally, we also measured the ratio of times our participants mentioned any task or sub-

task (figure 2.2A). The tasks that our participants most often reported were programming

(32% of mentions), followed by working on bugs (22%), and communication (14%). Within

them, the most popular subtasks were debugging, code reading, code review, learning, and

documentation search.

Most often reported tasks teach us that the most typical scenarios for practitioners needing

to understand the rationale of code changes are those that involve debugging code or reading

it to learn something about it, often during code review, and by also searching for its docu-

mentation. Therefore, developers documenting the rationale of code commits to help other

developers in the most typical scenarios should document the aspects of the code change

that could be informative for these tasks.

However, in addition to those scenarios, there is a long tail of tasks that were much less

often mentioned in our practitioners’ scenarios but still required understanding the rationale

of code commits. Therefore, developers aiming to provide extensive documentation of the

rationale of code changes should document all the aspects of rationale that could be relevant

for all those tasks and subtasks.

2.5. Seeking rationale of internal code vs. external code 25

2.5 RQ: How often do developers seek the rationale of

code commits within their team’s internal code vs.

external code?

2.5.1 Research Method

We used the same method to answer this research question as we did for the previous tasks

research question (see Section 2.4.1). We again analyzed our participants’ descriptions of

their experiences investigating the rationale of code commits, this time looking for whether

they were investigating internal or external code. As with the tasks research question, two

coders performed open coding individually and resolved disagreements afterward in a joint

focused-coding session.

2.5.2 Results

We display in figure 2.2B the breakdown of how often our participants reported investigating

internal code vs. external code. Internal code refers to code changes owned by our partici-

pants or developers in the development team for which our participants are contributors to

the team’s project. External code refers to code changes owned by developers from external

projects’ teams to our participants. As we did for the previous research question, when it

was unclear which source code was being investigated, we coded the answer as “unspecified”.

Our participants mostly investigated the rationale of internal code changes (53%), but they

also investigated it for external code changes (24%). The external code could be code

changes to open-source libraries or external projects in the same organization related to the

participant’s current project. An example of external code changes, as one of our participants

26 Chapter 2. Understanding developers’ need for rationale of code changes

mentioned, is “I was trying to look at forks of that repository and how other people solved

those issues.” In most cases, our participants were investigating code changes that were

written by other members of their team— internal code (team code) (41%); However, in

other situations, the investigated code change was written by the same person investigating

it — internal code (own code) (12%). Some of our participants had forgotten the rationale

of their own code changes after some time had passed. One participant said, “It was just

a decision made by the person who wrote that who also happened to be me.” We also

connected our participants’ targeted code change to the software development task they

mentioned performing when seeking the rationale. We report targeted code change per task

in figure 2.2A.

In figure 2.2A, we observe three types of tasks. The first type includes tasks for which our

participants reported needing to understand only the rationale of internal code. Examples

of these are: code review and debugging. This observation supports an intuitive guess that

this type of tasks would only need rationale of code commits in internal code, since they

often only involve internal code.

2.5. Seeking rationale of internal code vs. external code 27

Tell me about one time in which you investigated a code commit to understand its rationale. Why did you

need to find the rationale for that specific code commit? What was the rationale for that code commit?

(A) Targeted code change per task

(B) Targeted code change

Figure 2.2: Tasks for which rationale for code commits is needed

28 Chapter 2. Understanding developers’ need for rationale of code changes

Other types of tasks are those for which our participants reported needing to understand

only the rationale of external code. Examples of these are several tasks under the tools and

the documentation categories. We were less surprised that our participants would need to

understand the rationale of code changes to external code when the developers investigate

tools since tools can often be developed externally. One participant was reading the changelog

of a tool he/she was using.

“ ...one of the software that I work with is called MXNet. It is a machine learning, deep learning

library, and I saw in the changelog for MXNet that they added support for one of the libraries it

depends on, open CV, which is a computer vision library. It changed how they loaded JPEG, and they

included support in MXNet ... In the MXNet changelog, they made reference to the commit in open

CV where this occurred. So I looked at that commit and in the detailed commit message... ”

we were more surprised that they also needed to understand the rationale of code changes to

external code when writing documentation. However, our participants often created internal

documentation about external code to better keep track of the external code’s behavior. For

example, one of the participants was trying to write a tutorial for his team about a specific

tool, and so he had to discover the tool in various ways, which led to multiple questions

about the rationale of code changes to the tool.

Finally, for other tasks, our participants mentioned the need to understand the rationale

of both internal and external code changes. Examples of these tasks are learning and code

writing. It is more intuitive to understand why learning could require understanding the

rationale of external code changes to learn from external projects. However, we learned

that our participants also often have that need when writing code. For example, when they

are trying to port or incorporate external code into their internal project. One participant

mentioned:

2.5. Seeking rationale of internal code vs. external code 29

“ I worked on a derivative of the Bitcoin codebase for two years (named LBRYcrd). There were many

occasions when I had to trace the history of some lines of suspicious code. Often I would find bugs

in the LBRY-specific portion, but rarely in Bitcoin... Just recently, as I was working on the Golang

version of that, I had to understand where the UPnP code portion came from to see if the author had

created a newer version (that might have fixed some bugs I was seeing with it). ”

These observations may explain why other studies observed that finding the rationale of

code changes was sometimes easy, sometimes hard [3, 5]. It would be harder to find when

the developer is seeking rationale for external code changes, since they would have access

to fewer documentation resources for external code changes than for internal code changes.

The fact that our participants need rationale of external code could explain the challenge

of finding rationale and its consistent occurrence as information need in information needs’

studies like [3, 5].

More generally, our participants needed to understand the rationale of external code changes

most of our studied development tasks (all but “specification design” in Table 2.2). This

observation motivates the creation of external-facing tools and practices to improve the docu-

mentation and explanation of the rationale of code changes, not only to internal stakeholders

but also to external ones. We discuss ideas for how to achieve this in Section 5.4.

30 Chapter 2. Understanding developers’ need for rationale of code changes

2.6 RQ: Which components do software developers de-

compose the rationale of code commits into?

2.6.1 Research Method

Data: The data for this research question is a large set of rationale for code commits’

components. We proposed nine components based on the literature references to rationale.

In addition, our participants proposed 18 different components of rationale for code commits.

Analysis method: Our goal is to create a mental model and derive a taxonomy of the com-

ponents. Therefore, we used card sorting [31] to discover the components of rationale for

code commits. Card sorting is a widely used inexpensive method with three phases: prepa-

ration (participants selection and cards creation), execution (cards sorting into meaningful

groups), and analysis (hierarchies formation).

For the card sorting preparation phase, we prepared the cards of all the components from

the preliminary model and the participants proposed final model. Then, for the execution

phase, we (two coders) performed individual open card sorting. We individually sorted the

cards without using predefined groups. During the individual sorting, we aggregated those

cards that described similar components. For example, we aggregated into “Side Effects”:

the preliminary component “Costs”, and the “Merge Conflict/Success”, “Limitation”, and

“Impact” components that were mentioned by different participants. After that, both the

two coders collaboratively consolidated the two sets of individually-aggregated components,

comparing them and deciding on disagreements. Then, we characterized each of the resulting

aggregated components with a name, a question, and an example answer to the question

based on a hypothetical commit. Finally, we categorized the resulting components into

themes for the analysis phase.

2.6. Components of rationale 31

Analysis evaluation: Our discovered model of rationale for code commits (Table 2.3) is

of 15 different components. The fact that many participants added and some removed com-

ponents suggest that our participants were not strongly biased towards simply agreeing with

the preliminary model (Table 2.1). Also, although we interviewed 20 software developers,

we reached saturation in the 15th interview.

2.6.2 Results

We display in Table 2.3 the model of rationale of code commits that we discovered. It

represents the union of all the models that our participants reported. As we discussed in

Section 2.3.1, we obtained this model aggregating all the components that were mentioned

by at least one participant in their final interview model of rationale of code commits. Each

participant built their final model by adding and removing components to the preliminary

model, while also considering their own rationale decomposition. Altogether, our participants

reported 27 components of the rationale of code commits, adding 18 components to the nine

components in the preliminary model. Since many of those components reported very similar

concepts, we aggregated them using card sorting to obtain the final model that we show in

Table 2.3. This resulting model of rationale of code commits includes 15 components into

which developers decompose it. We categorized the resulting components into four themes.

Our goal with this rationale model was to gather an extensive set of specific components of

the rationale of code commits, which developers may be looking for when they need it. For

that reason, when a participant removed a component from the preliminary model, we still

kept it in our resulting final model (in Table 2.3). Besides, only a few participants removed

components.

32 Chapter 2. Understanding developers’ need for rationale of code changes

Table 2.3: Resulting model of the rationale of code commits

Theme Component Component Expressed
as Question

Example Answer

C
ha

ng
e

O
bj

ec
tiv

e

∗Goal What did the developer
want to achieve?

The code is this way because the developer wants
to modify the usage of try/catch blocks to account
for unexpected Exceptions.

∗Need Why did the developer
need to achieve that?

The code is this way because the developer needs
to improve Exception handling by June 1st as per
the new company demand to eliminate exceptions
before release.

∗Benefits What is the benefit of what
the developer wants to
achieve?

The code is this way because handling exceptions
that were not considered before will benefit in in-
creasing the system’s quality.

C
ha

ng
e

D
es

ig
n

(p
re

-im
pl

em
en

ta
tio

n
as

se
ss

m
en

t)

Constraints What were the constraints
limiting the developer im-
plementation choice?

The code is this way because the developer choices
are limited by the team development guidelines
that prohibit hard-coded String use.

Alternatives What other alternatives
did the developer have?

The code is this way because the alternative bucket
sort implementation option is not feasible since the
maximum value is unknown.

∗Selected Al-
ternative

Why did the devel-
oper make those specific
changes and not others?

The code is this way because heap sort has the
advantage of being space efficient and has a pre-
dictable speed. Other sorting algorithms options
are not as efficient and predictable.

Dependency What other changes does
this change depend on?

The code is this way because it depends on the API
response format, which needs to be updated to pro-
vide JSON format.

C
ha

ng
e

Ex
ec

ut
io

n

Committer Who changed the code? The code is this way because it was introduced by
Developer X, who was our short-term consultant
hired to improve the security of our software system.

Time Why were the changes
made at that time?

The code is this way because it was introduced four
months ago to meet 3.0 release cycle.

∗Location What artifacts were
changed?

The code is this way because, in our MVC architec-
ture, the model, view, and controller are updated
together when introducing a new data field.

∗Modifica-
tions

What specific changes were
performed in the artifacts?

The code is this way because the developer altered
the user interfaces’ look and feel, including color
and layout.

2.6. Components of rationale 33

Table 2.3 Resulting model of the rationale of code commits (cont.)
Theme Component Component Expressed

as Question
Example Answer

Explanation
of Modifica-
tions

What are the details of the
implementation?

The code is this way because the look and feel are
altered by: (1) Changing all interfaces colors to
match color palettes provided by web accessibility
guidelines and (2) Changing all interfaces’ layouts
to be responsive to screen size.

C
ha

ng
e

Ev
al

ua
tio

n
(p

os
t-

im
pl

em
en

ta
tio

n
as

se
ss

m
en

t)

∗Validation How did those specific
changes achieve the goal?

The code is this way because the goal is to account
for an edge case, which newly added test cases show
the edge cases examples and verify code success in
handling the edge case.

Maturity
Stage

How mature is this code? The code is this way because it is an experimental
hack created to explore ways to fix a persistent bug.

∗Side Effects What are the side effects of
the change?

The code is this way because of side effect mitiga-
tions; Temporary if statements are added to avoid
integration test failure until the API update.

∗ Components that were included in the preliminary model of rationale of code commits. We
extended the preliminary component Costs to Side Effects to include other side effects mentioned by
participants e.g., Impact.

When participants decided to remove components from the preliminary model, they men-

tioned two main reasons: overlap with other components, and the component being out

of scope. In terms of overlap among components, one participant thought that goal and

need could be the same most of the time and preferred to merge them, deleting the goal

component. Another thought that need is included in benefits and cost, deleting the need

component. Another participant deleted benefits because it is included in goal. Another one

considered location as part of modification.

We believe it is possible that different components’ answers can be the same in some cases.

For a single code commit, components of the same theme (see Table 2.3) may have very

similar answers to their expressive question. However, they will be different in many other

cases, making it worthwhile to separate those components. We illustrate the differences

between components in Table 2.3 by including the components expressed as questions and

34 Chapter 2. Understanding developers’ need for rationale of code changes

different example answers for different ones.

Other participants removed components that they considered out of the scope of rationale.

From our 20 interview participants: two participants removed modifications because they

considered it too low-level; three participants removed location because it would not tell why

the changes were made; three participants removed alternatives, e.g., “alternatives is not

something that you actually implement!”; and one participant deleted validation, saying that

“validation answers why the code is correct, not the rationale”. Despite these disagreements,

the majority of our interview participants (18, 17, 17, and 19, respectively) considered that

these components do belong in the rationale of code commits.

Furthermore, our participants generally provided positive comments about the preliminary

model — describing it as e.g., “a good model,” “detailed,” “thorough,” “comprehensive,”

“holistic,” or “exhaustive.” They thought that the model “formally define[s] rationale”

and that “the components seem to be related to each other, but classified differently to each

other.” One participant said that the model is a

“logical framework for thinking through rationale because [it is] a sort of wide-open concept. It is a

little bit hard to know how to think about [rationale]. [The model] makes sense as a directed way to

understand a specific commit or a series of commits. Why they are the way they are.”

Many participants added components to the preliminary model. As we mentioned earlier,

we used card sorting to aggregate them into the preliminary model and with each other.

The 18 components proposed by participants were: technical requirement, timeliness, docu-

mentation, guidelines, non-feasible alternative, opinion selected alternative, constraints, de-

pendency, committer, time/date, explanation of modifications, result, environment, scope for

future development, quality, merge conflict/success, limitation, and impact. For each added

component, we also asked participants to describe them with a name, expressive question,

and example answer to the question.

2.7. Threats to validity 35

The fact that many participants added and some removed components suggest that our

participants were not strongly biased towards simply agreeing with the preliminary model.

More importantly, it also suggests that different developers seek different components at

different times. Our study throws light into this phenomenon. Thus, we posit that the

rationale of code commits would be much easier to comprehend, search for, and document

when expressed as its components– not necessarily all of them at all times, but the ones

relevant to each situation.

2.7 Threats to validity

To answer our research questions, we asked both open and quantitative questions. We

scheduled the interview sessions to be relatively long (two hours), ensuring that we gave the

participants enough time to express their ideas and share their thoughts. At the beginning

of each interview section, we asked the participants to “answer the questions in [their] own

words and provide as much detail as [they] feel is relevant to address each question”. We

also placed an open question at the end of the interview to allow the participants to share

any additional information about the topic.

The methods we used in our study, interviews and surveys, can be affected by bias and

inaccurate responses. This effect could be intentional or unintentional. We gave gift cards

to the interview participants and some survey participants, which could have biased our

results. We indicated that the compensation is for the time spent and not the answers

given to mitigate these concerns. We repeatedly and constantly used phrases to encourage

the participants to provide their own honest opinions, using the phrase “based on your

experience” in most of the questions. We also clearly indicated that the participants should

“feel free to change/add/delete components or not.” Sometimes, we also indicated that “there

36 Chapter 2. Understanding developers’ need for rationale of code changes

is no right or wrong answer; we are interested in what you think and your perspective.”

We also took multiple steps to reduce potential confirmation bias [23] resulting from using a

preliminary model. We asked participants to describe their own examples and decomposition

of rationale into components before they ever saw the preliminary model. We formed the

preliminary model based on knowledge from the research literature and presented it neutrally.

The fact that the preliminary was largely extended from 9 components into 15 validates that

potential confirmation bias was minimal in our study.

Another threat to the validity of our study is drawing conclusions based on recollected

memories [32]. We are interested in capturing developers’ opinions about what components

constitute rationale, independently of how accurate their recollection is. We encouraged par-

ticipants to take their time to recall situations and to report the components that mattered

in their experience.

Our studied developers may not fully represent the whole developer population. To mitigate

this threat, we recruited a diverse population with diverse types and amounts of experience

(figure 2.1). Our studied population was similar to the ones previously studied in the lit-

erature since we obtained similar answers for our two questions about rationale that were

already studied by Tao et al. [5]. Furthermore, we have reached saturation for qualitative

analysis of our open-ended interview questions.

2.8. Summary 37

2.8 Summary

Any efforts aiming to improve the process of discovering the rationale of code changes will

require a good understanding of the software developers’ need and its context. We applied a

qualitative study to establish a common understanding of developers’ need. We performed

a series of interviews with software developers to discover the tasks for which rationale for

code commits is needed, and the components into which developers decompose the rationale

of code commits. We found that software developers decompose rationale of code commits

into 15 components along four themes. We also found that they need rationale for code

commits to complete various software development tasks.

Our decomposition of rationale for code commits is a descriptive representation that prac-

titioners can use to improve their documentation and communication of rationale. Addi-

tionally, researchers and tool builders can support the management of the rationale of code

commits using our discovered components of rationale and the experiences of software de-

velopers with them. While we do not expect practitioners to document all components in all

situations, they now have an extensive list of components to judge which ones are relevant

for each situation.

Chapter 3

Surveying developers’ experiences

with rationale of code changes

In this chapter, we aim to explore software developers’ experiences needing, finding, and

recording rationale for code changes and its individual components.

3.1 Background and Motivation

In the specific scope of code changes, rationale is a major information need. Many research

studies about information needs convey the importance of understanding the rationale of

code changes. Rationale is the most common [3] and important [5] information need to

understand from code-change history, and it is very frequently sought in various software

development tasks including code review [9, 10, 13, 14]. Unfortunately, it can also be quite

difficult to find an answer for rationale of code changes [5, 7]. We build on those studies’

observations, aiming to provide an in-depth survey of developers’ experiences. We aim to

understand developers’ efforts and issues associated with rationale of code changes need,

finding, and recording.

We take a developer-centric approach to study software developers’ experiences when seek-

ing rationale for code changes and its individual components. We used a mixed-methods

approach in our study, involving interviews and surveys of software developers. We are set

38

3.2. Research Questions 39

out to discover imbalances in developers’ need, finding, and recording experiences, and the

factors leading developers to give up their search for rationale. Such understanding of de-

velopers’ efforts and issues will reveal areas of improvement in developers’ practices. Those

areas could be targeted by researchers to: (1) better document, (2) develop support tools,

and (3) automate documenting rationale for code changes.

3.2 Research Questions

To explore software developers’ experience needing, finding, and recording the rationale of

code commits, we ask the following research questions:

• RQ: What is the experience of developers needing, finding, and record-

ing the rationale of code commits? We investigated this research question to

understand the effort developers dedicate to seek and document the rationale of code

commits. Tao et al. [5] discovered that finding the rationale of code commits is very

important, and it is easy or hard to find depending on how well-documented it is [5].

We replicate those two questions of their study, and extend it by asking developers

five additional questions in three different contexts: needing, finding, and recording

rationale.

• RQ: What is the experience of developers needing, finding, and recording

the individual components of the rationale of code commits? We studied

how developers need, find, and record different components differently. This study will

enable developers to improve their documentation of rationale efforts, e.g., by focusing

on documenting the most needed or most hard-to-find components.

40 Chapter 3. Surveying developers’ experiences with rationale of code changes

• RQ: What makes software developers give up their search for rationale

of code commits? We wanted to discover issues that may limit software developers

from effectively finding rationale for code commits. Identifying these issues will inform

future research efforts that are targeted to support information needs’ finding

• RQ: Would comparing the experience of developers needing, finding, and

recording the individual components of the rationale of code commits with

each other reveal areas for improvement? We performed a cross-dimensional

study (i.e., comparing need vs. finding vs. recording components) to investigate areas

for improvement in current recording and finding practices of rationale of code commits.

Identifying gaps, e.g., between needed and recorded components, will provide valuable

recommendations for developers who want to improve their documentation of rationale

for code commits.

3.3 Approach

To understand these aspects of the rationale of code changes in depth, we used the same

mixed-methods approach of the previous study (Section 2.3), combining developer interviews

and a survey. Other methods (e.g., mining software repositories) could be applied to study

different aspects (e.g., the extent to which code commits fulfill the need for their rationale),

but our goal was to understand the developers’ need in depth from a developer perspective.

3.4. Experience with rationale 41

3.4 RQ: What is the experience of software develop-

ers needing, finding, and recording the rationale of

code commits?

3.4.1 Research Method

The data for this research question is quantitative. We asked both the interview and survey

participants the likert-scale-style question shown in figures 3.1, 3.2, and 3.3. To analyse the

participants’ experiences responses, we compare and report the responses’ statistics.

3.4.2 Results

figures 3.1, 3.2, and 3.3 show the interview/survey questions which we asked about the

developers’ needing, finding, and recording experiences along with the distribution of the

participants’ responses for each question.

Need: The participants of our study reported needing to seek rationale with diverse fre-

quencies (see figure 3.1A): multiple times per day (27%), multiple times per week (29%),

multiple times per month (27%), multiple times per year (13%), and a few times per year

(2%). Overall, the majority (56%) of our study participants need rationale relatively fre-

quently: multiple times per week or more often. The inconsistency of the need for rationale

for code commits is because of the diversity of the software developers’ roles and their work

activities. One participant said

“I do a lot more than just software engineering on a yearly basis. And so there are periods of time

when I am doing primarily software engineering, and there are large periods of my work time that I

am not.”

42 Chapter 3. Surveying developers’ experiences with rationale of code changes

During your software engineering activities, which
frequency best reflects how often you sought

rationale?

(A) Rationale frequency of need

How important is understanding the rationale of
code commits for the completion of your work?

(B) Rationale importance

Figure 3.1: Experience of developers needing rationale

When asked about how important it is to understand the rationale of code commits, 86%

of our participants reported needing the rationale of code commits (see figure 3.1B), from

which: 7% cannot complete their work without understanding it, 30% struggle to complete

their work without it, and 46% can complete their work without it but still need it. The

remaining 17% do not need the rationale of code commits, but 15% of the 17% report that

it still helps them complete their work. A very similar question was studied by Tao et al.

[5] [5], whose participants “generally considered knowing the rationale of a change as the top

priority in change-understanding tasks”. Our finding is aligned with theirs since a majority

of our participants reported needing the rationale of code commits, which validates that we

are studying a similar population of developers.

finding: Our participants’ responses in figure 3.2A indicate that the difficulty of finding

the rationale of code commits, in general, is not easy nor difficult. Software developers (on

average) selected neutral difficulty in finding the rationale of code commits. This finding also

generally agrees with Tao et al. [5]ś, since their participants reported that the rationale of

code commits was generally easy to find, but sometimes hard, depending on “the availability

and quality of the change description” [5].

3.4. Experience with rationale 43

How difficult is it to find rationale?

(A) Difficulty of finding

How often do you usually find rationale?

(B) Frequency of finding

How much time do you usually spend when
searching for the rationale of code commits?

(C) Usual search time

In the cases where it is hard to find the rationale of
code commits, how much time do you usually
spend when searching for the rationale of code

commits?

(D) Hard cases search time

Figure 3.2: Experience of developers finding rationale

Regardless of how hard it is, we were also interested in how often developers end up finding

the rationale of code commits altogether. For this aspect, our study participants’ responses

are positive (see figure 3.2B). Most software developers find the rationale of code commits

often or almost always. Only a few participants (11%) rarely or almost never find the

rationale of code commits.

In addition to studying whether software developers find the rationale of code commits, we

also studied how much time they spend searching for it. figure 3.2C and 3.2D shows the times

that our participants reported spending when searching for rationale. In the usual cases,

slightly more than half of our participants (55%) spend less than 10 minutes. However, in

the hard cases of searching for rationale, only slightly less than half of our participants (46%)

spend more than 30 minutes searching for the rationale of code commits. One participant

said about the time they spend searching for rationale in the hard cases that it “depends

how responsive the other person is.” A considerable amount of time, 68% of the participants

spend more than 20 minutes, is spent by software developers when it is hard to search for

44 Chapter 3. Surveying developers’ experiences with rationale of code changes

the rationale of code commits. When considering the relatively high frequency with which

developers search for rationale of code commits, it can be a rather time-consuming task.

Recording: Regarding the frequency of recording rationale in general, figure 3.3 shows

our participants’ responses. Our participants reported high involvement in recording the

rationale for their code changes.

During your software engineering activities, how often do you record rationale?

Figure 3.3: Experience of developers recording rationale

The majority of them (71%) reported recording the rationale of code commits often (31%) or

almost always (40%). These ratios are very similar to the frequencies with which they report

needing it and finding it. However, there may be multiple explanations for why these two

ratios are similar. It could be that the teams to which our participants belong are generally

diligent about documenting the rationale for their code changes, and that is why they report

finding it at similar frequencies when they need it. However, there could be more nuance to

this observation: our participants may sometimes find the rationale that was documented,

and other times find it after asking their colleagues (because it was not documented). Also,

the rationale found by our participants is a reflection of the documentation habits of their

teammates than theirs. Our observation motivates further study of the extent to which the

specific rationale that developers document is what ends up helping their teammates later

find it (e.g., with observational studies or mining of software repositories). We take one

further step in understanding the similarity between the frequency of recording and finding

the rationale of code changes in more depth (see Section 3.7), in which we observed that

such similarity is generally preserved for individual components of it.

3.5. Experience with individual components 45

3.5 RQ: What is the experience of developers needing,

finding, and recording the individual components

of the rationale of code commits?

3.5.1 Research Method

Just like the previous research question, the data for this research question is quantitative.

We asked a likert-scale-style question shown in figure 3.4. To analyze the participants’

experiences responses, we compare and report the responses’ statistics. For the individual

rationale components, the answers include only the interview participants that included

the components in their final model. Whenever we aggregated components through card

sorting, we also aggregated the responses about the experience. The reported experiences

with rationale components combine the aggregated interview and survey responses.

In addition to the responses’ statistics, we wanted to cluster components with similar ex-

periences. Clustering the components made it simpler for us to compare the experiences.

We used Scott-Knott [33] clustering algorithm to group the components which have simi-

lar software developers’ experiences. Scott-Knott is a hierarchical clustering algorithm that

serves in the Analysis of Variance (ANOVA) contexts. For the individual experiences (need,

finding, and recording), the algorithm compares the means of all component’s responses.

This comparison results in a non-overlapping grouping of rationale components. We present

the algorithm outputted groups by the red border lines in figure 3.4.

46 Chapter 3. Surveying developers’ experiences with rationale of code changes

3.5.2 Results

We plot the distribution of answers to our questions about individual components of the

rationale for code commits in figures 3.4A–3.4C. We cluster components into similar groups

according to the mean value of their responses using the Scott-Knott [33] algorithm. We

sort the components in our figures by the mean value of their responses, and we use red

horizontal lines to separate clusters. As a reference point, we also include in each figure the

responses that our participants gave for rationale in general.

Need: figure 3.4A-i shows the distribution of responses for how frequently developers

need each component of the rationale of code commits. Overall, the frequency with which

developers need different components of the rationale of code commits is highly similar

for all components and rationale itself in general. In this case, the Scott-Knott algorithm

returns only two very-similar clusters. While some of the most often needed components

(like modifications, location or committer) are normally automatically recorded by revision

control systems, many other components are similarly often needed and are not recorded

automatically (like need or dependency, or constraints). These results show that practitioners

would benefit from regularly recording these frequently-needed components.

figure 3.4A-ii shows the relative importance of each component to understand the rationale

of code commits reported by developers. These results show that most developers mentioned

that most components are important enough to understand the rationale of code commits

better if they knew that component. We also observe that developers wanting to document

the most important component of rationale should focus on documenting the goal of their

changes, since the other most-important components (modifications, location) are already

recorded by revision control.

3.5. Experience with individual components 47

(A) Experience of developers needing individual components of rationale
During your software engineering activities, which

frequency best reflects how often you sought

[Component]?

(A-i) Frequency of need

How important is finding each component (for

understanding the rationale of code commits)?

(A-ii) Components importance

(B) Experience of developers finding individual components of rationale
For the components of rationale of code commits

that you seek, how often do you usually find

[Component]?

(B-i) Rationale components frequency of finding

For the components of rationale of code commits

that you seek, how difficult is it to find

[Component]?

(B-ii) Rationale components difficulty of finding

Figure 3.4: Experience of developers with individual components of the rationale

48 Chapter 3. Surveying developers’ experiences with rationale of code changes

(C) Experience of developers recording individual components of rationale

During your software engineering activities,

how often do you record [Component]?

Figure 3.4: Experience of developers with individual components of the rationale (cont.)

finding: figure 3.4B shows the relative frequency and difficulty of finding reported by

developers for each component. Unsurprisingly, the most frequently found components (and

also the easiest to find) are those automatically tracked by revision control (committer, mod-

ifications, and location), followed by goal and time. However, the frequency (and easiness)

of finding drops quickly for all other components, bringing our attention to a clear problem

in finding the remaining components. These results highlight the need to improve documen-

tation for the other components since they are hard to find. This clear divide could also

explain why developers talking about rationale (in general) say that sometimes it is much

harder to find rationale than other times [5] and it takes longer (figure 3.2D).

Recording: figure 3.4C shows the relative frequency with which developers reported

to record components of the rationale of code commits. Again unsurprisingly, the most

frequently recorded components are those recorded automatically by revision control, but

again the frequency of recording drops dramatically for the remaining components (which

3.6. Factors leading to give up rationale search 49

probably explains why they are hard to find). These results show that, even if developers

claim to frequently record rationale in general, there are many components that they are not

recording frequently (even if they are relatively often needed).

3.6 RQ: What makes software developers give up their

search for rationale of code commits?

3.6.1 Research Method

We asked our (20) interview and (26) survey participants an open question about when they

give up their search for rationale of code changes. We analyzed their responses qualitatively,

using open coding to extract the factors that our participants reported. Multiple coders were

involved in the coding. We reached saturation in our observed tasks in response 20 of 46.

Data: For this research question, we asked our participants an open question: “When do

you give up the search for rationale of code changes?”. We asked this question during our

interviews and survey. We used a survey in addition to the interviews to reach saturation in

our observations — an initial analysis of the interview responses showed that we were still

making new observations in the last responses.

Analysis method: We analyzed our participants’ answers using open coding [25] (also

used in grounded theory [26]). We decided to apply open coding for this research question

(as opposed to closed coding) because it was not clear that any pre-existing list of “reasons

to give up tasks” would fit this context well. We decided that it would be more appropriate

to have our codebook emerge from our participants’ responses in this case. We labeled each

participant’s answer with one or multiple codes that best described the reported factor(s).

50 Chapter 3. Surveying developers’ experiences with rationale of code changes

First, two coders individually coded the interview responses. Then, they had a discussion

about merging their codebooks and reaching a common understanding of the scope of each

code. During this meeting, they also categorized the resulting codes under three broader

themes: project-centric, human-centric, and team-centric factors. Then, they individually

reviewed and updated the labels of each participant’s response according to the merged

codebook. After this step, the two coders reached an agreement ratio of about 85%. Then,

they held a joint focused-coding session where they resolved all disagreements.

This first effort did not allow us to reach saturation — the last response mentioned a new

factor that was not previously observed. Thus, we decided to obtain more responses to the

same question, running an additional survey that we described in Section 2.3.3.

Two coders individually coded the survey responses using the codebook obtained from their

analysis of the interview responses. They allowed the addition of new codes to the codebook

if new factors were observed. The coders coded about 46% of the survey responses similarly.

Then, they held a joint focused-coding session to compare their coding and resolved all

disagreements. After coding all the survey responses, no new codes were added to the

codebook.

Analysis evaluation: After coding all the interview and survey responses, we reached

saturation in our observed give-up factors —we observed no new factors after the 20th

response out of 46 (the last interview response).

3.6.2 Results

We present the results of this research question in Table 3.1 and figure 3.5. Table 3.1 shows

the factors that our participants reported for giving up the search for the rationale of code

changes. It also contains a description of each factor. figure 3.5 shows the ratio of how many

3.6. Factors leading to give up rationale search 51

Table 3.1: Factors leading developers to give up the search for rationale of code changes

Factor
Category

Give Up Fac-
tor

Give Up Factor Description

Project-
centric
Factors

Codebase state The codebase state includes (1) the repository state (e.g., the number
of commits in a pull request under review) and (2) the code aspects
(e.g., the code is/is not running, the code has design/readability issues,
the code is reviewed).

Documentation The documentation factor includes (1) artifacts documentation (e.g.,
Javadocs, inline comments) and (2) development process documenta-
tion (e.g., commit messages, log messages).

Human-
centric
Factors

Effort manage-
ment

Effort management involves the developers’ assessment of their work
activities in terms of the required (1) effort and (2) time. This assess-
ment is typically followed by a decision to possibly give more priority
to some of these activities, discard or replace some others.

Developer
knowledge

Developer knowledge involves the developer possessing/awareness of
(1) background knowledge to comprehend the code change under in-
spection (e.g., programming language, mathematics, technical knowl-
edge) or (2) project knowledge (e.g., project design aspects, implemen-
tation aspects, and testing aspects).

Interpersonal
(Emotions)

Interpersonal factor involves human sentiment or attitude in the situa-
tion (e.g., frustration, confusion, fear of obtrusion to the code review).

Team-
centric
Factors

Impact on pro-
ductivity

Impact on productivity includes the developers’ awareness of the im-
pact of their actions on the project progress (e.g., work progress stalls).

Personnel Personnel includes aspects related to the development team personnel
(e.g., developer is not around, project manager changed).

Time manage-
ment

Time management includes the team time-related aspects (e.g., time
crisis (deadline), team time-frame for the project).

times our participants reported each factor. Our eight observed factors were mentioned 69

times by our 46 participants since some of them (16) mentioned multiple factors.

figure 3.5 shows our three observed categories of factors being reported relatively similar

rates: the most often reported factors were project-centric factors (39%), followed by human-

centric (30%) and team-centric (19%) factors. The remaining 12% of responses form the

unspecified category: these either did not provide a valid specific answer to the question

(6%) or reported never giving up the search (6%). Next, we describe each category in more

detail.

52 Chapter 3. Surveying developers’ experiences with rationale of code changes

“When do you give up the search for rationale of code changes?”

Figure 3.5: Give up factor

Unspecified factors: An example of an invalid response stated why it is important to under-

stand rationale without mentioning giving up or giving up actions. Examples of participants

reporting not giving up either stated it explicitly or reported giving up only temporarily.

Sometimes, giving up temporarily meant switching to another task, leaving the rationale-

demanding task for a later time:

“ Essentially, if I cannot talk to the person who committed it, I will usually just postpone until they

are back online. ”

Other times, our participants paused to rest and returned to the task later with a fresh mind

or after acquiring more background knowledge.

“I usually do not give up. I mean, I just go run or sleep, and then I try again the next day. With a

clear mind, or something like that.”

3.6. Factors leading to give up rationale search 53

“Well, sometimes, if I want to do something and implement something math-intense, perhaps I will

go first and revise my math knowledge behind this. ”

Project-centric factors: Our participants most reported give up factor is codebase state (20%).

When the code base state is problematic (e.g., “commit is quite large”, “changes are too much

to be able to track them”, “variables are not properly named”), our participants may give

up their search for rationale of code changes. This observation shows that past efforts to aid

in the comprehension of source code, e.g., efforts to untangle large code changes [34, 35, 36],

have additional benefits. Any effort that helps improve the comprehension of source code

would also help developers not give up their search for the rationale of changes to that code.

Our participants also reported giving up due to poor/lack of documentation (19%). Lack of

good documentation here refers to both the source code documentation, e.g., JavaDocs, and

the documentation of the development process, e.g., commit messages.

Poor documentation in source code is a well-known problem [37], and we found that it affects

the search for rationale too. One participant mentioned:

“In well-documented code it is very rare that doing this is necessary.”

Our participants also highlighted the importance of documenting the change itself and not

only the code.

“ Committing with a summary might not be enough sometimes. It is better to add a broader description

to give a more detailed idea about the changes. ”

In general, our participants communicated giving up the search for rationale of code com-

mits when the “commit lacks description”, or “old documentation is not found on GitHub”.

They also give up when the commit message “is vague”, “not illustrative enough”, or “not

descriptive enough to help me understand what is going on”.

54 Chapter 3. Surveying developers’ experiences with rationale of code changes

Even when best practices are specified to document code well, they can be followed incon-

sistently or the granularity of the documentation can be too coarse.

“ I wish the commit messages were more granular so that they exist on each file level instead of the

whole commit event. ”

The automatic generation of commit messages has been proposed in multiple research ef-

forts [38, 39]. Our observed responses call for attention from the researchers working in the

commit message auto-generation area. Our observed responses call for designing techniques

that generate more granular commit messages, potentially documenting some of the rationale

components that we discovered.

Human-centric factors: These factors refer to the internal state of the developer, more specif-

ically to the developers’ sense of effort (17%), knowledge (9%), and interpersonal emotions

(4%).

Some of our participants evaluated the effort required to find the rationale of code commits.

We believe that effort management is an intuitive give-up factor since developers can spend

long hours or even days attempting to find the rationale for code changes. Developers often

have several tasks to do, and they want to move on. They can get frustrated if they spend

a long time and effort being blocked by a single task. Our participants commented on the

time spent search for rationale of code changes:

“If it takes half an hour, it is not worth spending more time [on the search]. Then, I will ask others

and interrupt their work”

“I would say at the hour mark, because at that point I would be like, “I just need to do something, and

I will make a best-case judgment call.””

“If it is taking me more than 30 minutes [to find the rationale of a code commit], I will start trying and

get in touch with the person who wrote the code, at which point it becomes an asynchronous process.

So I am no longer sitting there trying to figure out the rationale; I will email/message the person,

then I move on with whatever I was doing.”

3.6. Factors leading to give up rationale search 55

Other participants mentioned lack of knowledge as a reason to give up searching for ra-

tionale. Their responses referred to background knowledge and skills, or knowledge about

the project. Examples of the first case are when a developer is not fluent in a particular

programming language or not familiar with the underlying mathematical foundations of the

code. Examples of the second case are when a developer is responsible for certain project

areas (e.g., back/front-end) and lacks knowledge of other project areas. As a result, we see

the existence of this factor as a normal part of software development. Educating developers

could mitigate this factor, but in many cases, it is not an affordable option in terms of cost

and developer time. In other words, this specific give-up factor might be one of the main

prompts for documenting the code change rationale since it is inevitable on many occasions.

Furthermore, this factor, perhaps, encourages documenting rationale in a way that other

developers can understand regardless of their detailed knowledge of the project.

Finally, other participants expressed that interpersonal (emotions) play a role in giving up

their search for rationale of code changes. One participant answered:

“ No specific time cut-off, I would say. I would say it is more…how frustrated I am ”

Other emotions that we observed were confusion, fear of obtrusiveness, and anger. Soft-

ware developers’ sentiments and emotions are important aspects that could impact their

work [40, 41, 42]. Our findings suggest that negative emotions like frustration impact soft-

ware developers while searching for rationale for code commits. Therefore, we encourage

future studies of the relationship between sentiments and rationale. We also encourage fu-

ture studies of how to mitigate the impact of these sentiments while still satisfying developer

information needs.

Team-centric factors: Our participants expressed that changes in the project personnel (12%)

introduce obstacles to communication and could prevent them from finding the change own-

ers’ rationale. One participant described a give-up situation caused by personnel that left

56 Chapter 3. Surveying developers’ experiences with rationale of code changes

as

“[The change] was a decision made by [the previous project manager] that is not even here anymore.

We do not really understand the reason, but we make a new decision from this point forward.”

Personnel changes are common in software development teams. In such situations, we think

that standard documentation guidelines could make the search for rationale for code changes

easier. One participant described his/her company guidelines:

“At my company, typically we link each commit, branch, and PR to a ticket number, which should

include details and discussion about the change and why it is being made.”

Our participants also give up their search for rationale of code changes to accommodate

project-related time management. For example, in a rush to fix a bug before approaching a

software release, one participant said that he/she came up with some rationale for a buggy

code change to provide a temporary fix to the bug. One participant answered:

“When I have to, it could be when I am not getting other things done because I am searching for

this rationale. Working intimately with another partner, our progress was halted until I completed or

gave up. In other contexts that I have somewhat been associated with a large team, I do not need to

understand it as long as other people on the team do.”

Composite factors: Sixteen participants (34%) mentioned more than one give-up factor.

Twelve of them mentioned two factors in conjunction. For example:

“I will look at the commit (code and description) as well as the pull request, including the commit and

the ticket relating to that pull request. If the implementer can still be contacted, I will do so. If none

of this leads to any results, I will usually give up. ”

The remaining 4 participants mentioned two or more factors in disjunction. For example:

“ Usually, there are certain scenarios where I give up finding rationale, if I cannot run the code, or if

it is a language that I cannot understand, programming language. Or the code base is too big. ”

3.6. Factors leading to give up rationale search 57

When participants report factors in conjunction, they show that many factors need to co-

exist for them to give up. Most of the time, they mention the lack of documentation in

addition to another factor. The second factor is sometimes the codebase state (3 times),

showing that the commit is large or complicated, making the search for rationale a tedious

process. Some other times, the second factor besides the absence of documentation is the

absence of the author (3 times), which deprives the developer of seeking the rationale from,

possibly, the two most helpful information sources.

When our participants report factors in disjunction, they show multiple individual reasons

why they may give up (one of them is enough). For example, they may give up to save effort

(effort management factor) given the large size of the commit (Codebase state), or because

they were not sure they had the required project knowledge to understand the code change

(Developer knowledge) given the poor code readability state (Codebase state).

Another case that we found interesting is when the participants use a combination of factors

mixing negative and positive instances of them (3 times). For example, a participant’s

decision to give up seeking rationale was based on a close project deadline, but the decision

was eased by the fact that the code was running correctly, in which case seeking rationale

was not a pressing need.

“ ...Then, the main concern was to finish the project before the deadline. Sometimes in such a

situation, if the codes work, then I do not try to check the rationale. ”

We believe that the search time required to find the rationale of code commits is likely

connected with the difficulty of finding it (Section 3.4.2), i.e., the rationale for code commits

may be easy to find when it is available and well documented. When the components sought

by the developer are documented where the developer expects, the rationale for code commit

could be easy and fast to find.

The problems revealed by the team and project factors are the reliance on the availability of

58 Chapter 3. Surveying developers’ experiences with rationale of code changes

the change owner, the trade-off between searching for rationale and productivity/time, and

the quality of a project’s codebase and documentation. We discuss in Section 5.4 how future

tools could support developers in their search for the rationale of code commits, informed

by our observations.

3.7 RQ: Would comparing the experience of develop-

ers needing, finding, and recording the individual

components of the rationale of code commits with

each other reveal areas for improvement?

3.7.1 Research Method

The data for this research question is the same as Section 3.5. We performed a cross-

experience analysis to further investigate the developers’ experiences with rationale compo-

nents’ need, finding, and recording. We paired every two experiences (need-finding, need-

recording, and finding-recording) and then used the median responses of each component to

discover needed areas of improvement.

3.7.2 Results

figures 3.6A and 3.6B show that software developers are most frequently finding and record-

ing the most frequently needed components of rationale. Most of the components are in the

middle frequency of need and finding. However, this result reveals that many components

are not too frequently needed, but when they are needed, they are really hard to find. Devel-

3.7. Experience comparison 59

(A) Components need vs. finding (B) Components need vs. recording

(C) Components finding vs. recording

Figure 3.6: Cross-dimensional analysis of developers’ experience with the individual compo-
nents of rationale of code commits

opers most struggled to find side effects, alternatives, and constraints, even if they need to

find them on average multiple times per month and per year. In these cases, the difficulty of

finding these components may overcome their limited frequency of need. Thus, practitioners

may want to pay more attention to documenting these not-so-frequently-needed components.

The difficulty of finding rationale depends on many factors, e.g., the complexity of code com-

mits, the developers’ documentation of code changes, and the need to discover the rationale.

One of the participants said about giving up searching rationale

“I would completely give up if I could not find any record in our system and the author was someone

who either is no longer at our company or is somebody who just does not write code anymore. Yeah.

I give up when I have exhausted all the possibilities, but if I really need to know, I would keep trying

until I figured it out.”

For the components of rationale that are not easy to find, guidelines could be established,

60 Chapter 3. Surveying developers’ experiences with rationale of code changes

and tools could be developed to simplify finding these components. One participant said

about finding rationale:

“From my experience, the rationale, it is easier to figure out once your team kind of has standards or

guidelines.”

The recording of rationale goes hand in hand with the finding of rationale (see figure 3.6C).

Unsurprisingly, not recording some components makes it hard to find them later. The rarely

recorded components were: side effects, alternatives, constraints, selected alternative,

maturity stage, and benefits — even when developers need to find them on average multiple

times per year (alternatives and constraints) and per month (remaining ones). Identifying

this group of rarely recorded components should encourage researchers to develop tools

specifically focused on recording or answering them. For example, a technique to evaluate

the maturity stage of a commit will aid developers in seeking this component without the

need for other developers to document it manually.

3.8 Threats to validity

Our studied developers may not fully represent the whole developer population. To mitigate

this threat, we recruited a diverse population with diverse types and amounts of experience

(figure 2.1). Our studied population was similar to the ones previously studied in the lit-

erature since we obtained similar answers for our two questions about rationale that were

already studied by Tao et al. [5].

3.9. Conclusion 61

3.9 Conclusion

Developers invest valuable time and resources in the process of discovering the rationale of

code commits, which they perform frequently and is difficult. We applied a mixed-methods

approach in this study to survey the developers’ experiences. We performed a series of

interviews with software developers to discover software developers’ experiences (needing,

finding, and recording) rationale of code commits and its components, and the factors leading

developers to give up their search for rationale. Then, we ran two online surveys to obtain

more responses about developers’ experiences with rationale of code commits. We discovered

that software developers have different experiences with different components. We also found

a set of human, team, and project factors leading software developers to give up their search

for rationale.

Our findings suggest that there is a space for both researchers and practitioners to improve

the practices of managing the rationale of code changes. For example, developers need to

find most rationale components with similar frequency, but they mostly only record and find

those components automatically recorded by revision control systems. Therefore, researchers

and tool builders could help software developers automatically record rationale components

that are not already recorded by revision control systems. Another way to improve the

practices of managing the rationale of code changes is acting on our discovered factors leading

software developers to give up their search for rationale of code commits. For example, we

discovered that changes in project personnel make it hard for software developers to find

the rationale behind code changes. Practitioners could mitigate this factor by establishing

standard documentation guidelines, making the search for rationale for code changes easier.

Chapter 4

Predicting Rationale components

Documentation in Pull Request

Templates

In previous chapters 2 and 3, we found that rationale of code changes is needed for many

software development tasks, including code review. We also found that the rationale of

code changes is composed of many components that are needed, recorded, and found at

different levels. Rationale components need, recording, and finding are likely to be different

for different software development tasks.

This chapter aims to help software developers document rationale components in the code

review context. We investigate prescribed pull request templates for requested rationale

components. Then, we experiment with different machine learning classification algorithms

to predict if a pull request template header of rationale will not be filled. Software developers

time and effort could be saved if a pull request template header is predicted not be filled.

62

4.1. Background and Motivation 63

4.1 Background and Motivation

Pull-based software development model is a widely popular practice in Open Source Software

(OSS) [43]. This model involves contributors forking the main branch of a repository, making

independent code changes, and subsequently submitting a pull request (PR) to merge their

contributions into the main repository. The core team, responsible for maintaining the

repository, reviews these proposed contributions and determines whether to merge or reject

the changes [44].

In the process of opening a PR, contributors provide a PR description that plays a pivotal

role in enhancing collaboration efficiency with the maintainers. A well-crafted PR descrip-

tion can improve collaboration efficiency by providing clear and concise information to the

maintainers, making it easier for them to review and understand the proposed changes [17].

To assist contributors in crafting PR descriptions, GitHub repositories prescribe Pull Re-

quest Templates (PRT) [16]. When a repository prescribes a PRT, project contributors

automatically see the template’s contents when opening a pull request. Recent research

work empirically studied these templates to explore their contents, impacts, and developers’

perceptions [17].

Some rationale components were present in Li et al. exploration of PRT contents. Their

study also discovered that PRTs are perceived to be useful, but using PRT comes with its

own challenges. “Templates require too many fields” was identified by Li et al. [17] survey

as one of the top challenges from both contributors and maintainers.

Developers will likely not fill all PRT headers for every pull request, including rationale

components headers. To assist the developers’ practice of filling PRT when opening a pull

request, we present a novel application of machine learning classification to predict if a PRT

header of rationale will not be filled. Predicting if a PRT header will not be filled could be

64 Chapter 4. Predicting Rationale Components Documentation in PRT

helpful for customizing PRT of individual PRs, i.e., requiring fewer fields. Such predictor

could assist in (1) filtering likely to be empty fields and/or (2) ranking/reordering template

fields.

4.2 Research Questions

To predict if a PRT rationale header will not be filled in individual PRs, we ask the following

research questions:

• RQ: How are different pull request characteristics correlated with filling

a pull request template rationale header? We investigate this research question

to discover features that may be useful for predicting if a pull request template is going

to be filled or left empty. Statistically significant correlation between features and a

template header being filled will help selecting features for a predictor.

• RQ: To what extent can classification algorithms predict if a pull request’s

template rationale header will be filled? We studied how different prediction

algorithms are capable of predicting if a pull request’s template rationale headers will

be filled. This study recommend the best performing algorithms to help software

developers save time and effort.

• RQ: How effective are different feature groups in predicting if a pull

request’s template rationale header will be filled? We investigate how different

group of features perform in the prediction task. An understanding of the features

contribution to the predictor success could lead to building a lightweight predictor

with comparable prediction performance.

4.3. Approach 65

4.3 Approach

We use a data-centric analysis approach to build a technique capable of predicting if a PRT

header of rationale will not be filled. We start by mining software repositories to extract

pull requests’ information (e.g., PR patch characteristics). Then, we process pull requests’

information by applying qualitative and automated labeling methods. Afterward, we study

the correlation between mined features and the PRT header of rationale being filled. In the

next step, we utilize machine learning classification algorithms to predict if a PRT header

of rationale will not be filled. Finally, we test the predictors’ performance using different

groups of features. The following sections present an overview of each step of our analysis

approach.

4.3.1 Data Preparation

In this section, we introduce our data collection and preprocessing processing steps.

Dataset: We started our data collection with GHArchive 1 dataset. GHArchive, short for

GitHub Archive, is a project that collects and provides public access to a comprehensive

record of activities (events) on the GitHub platform. GHArchive “record the public GitHub

timeline, archives it, and makes it easily accessible for further analysis”. We downloaded and

extracted GHArchive data for the second half (Jun 01-Dec 31) of the 2021 year. We hosted

this 1.8TB of data in a MongoDB 2 database and indexed parts of it using Apache Solr 3 for

quick querying.

For this study, we are only interested in Pull Request (PR) events out of the 20 different

GitHub events. Furthermore, we are only interested in PR events at “open” time. Those
1https://www.gharchive.org/
2https://www.mongodb.com/
3https://solr.apache.org/

66 Chapter 4. Predicting Rationale Components Documentation in PRT

PR events include general information about the PR like: PR creation time, PR title, PR

description, PR head and base repositories, and PR creator.

Since our study is interested in the code changes for which the PRs are created, we extended

the GHArchive PR events by extracting the PR patch using GitHub API 4. Our extracted

PR patches are in raw Git patch format that we later transformed to extract the PR patch

information like: PR patch commits, PR patch commits files, PR patch commit messages,

etc.

In addition to the PR events, we needed to collect information about repositories’ prescribed

Pull Request Templates (PRT) 5. We used GitHub API to collect repositories PRT from

GitHub officially defined PRT files paths.

Data selection To conduct our study experiments, we selected repositories to study based

on the following criteria. First, we only selected repositories that define a PRT. Second, we

only selected repositories that use GitHub PR feature. We looked at the number of opened

PRs within the time period of our study. We only selected repositories with more than 600

PRs opened during the Jun-Dec of 2021 inclusive. Third, we only selected repositories with

more than five PRT headers in their prescribed templates. This filtration resulted in 128

repositories with 87K pull requests.

Data preprocessing: To shape the data into a form necessary for correlation study and

statistical models, we parsed, labeled, and encoded some dataset fields. We used a markdown

parser to parse prescribed repositories PRT and individual PR descriptions utilizing the

templates. The parsing of PRT and PR description (PRT usage) allowed us to identify the

template parts and their content, splitting the markdown PRT/PR into header-content pairs.

After the parsing step was completed, we ran a script to compare parsed PR description
4https://docs.github.com/en/rest
5https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-

requests/creating-a-pull-request-template-for-your-repository

4.3. Approach 67

against parsed repositories prescribed PRT, allowing us to label if individual PR description

has filled individual template headers.

In addition to the fill or not PRT header labeling, we manually coded prescribed PRTs

headers using Li et al. [17] taxonomy of elements included in issue/PR templates. This

coding allowed us to account for different wording of headers in different repositories.

The last step of our data preprocessing was encoding categorical and boolean features (Ta-

ble 4.1) in our dataset. We relied on the sklearn preprocessing module 6 to run the en-

coding tasks. We used “MultiLabelBinarizer” to encode multi-valued categorical features

(i.e., Patch_file_types). We used “OneHotEncoder” to encode single-valued categorical

features (e.g., Dev_assoc). Lastly, we used “LabelEncoder” to encode boolean features

(e.g., PRT_H_is_optional).

4.3.2 Correlation analysis

In this section, we introduce our correlation analysis process. We only used one month of

data (June 2021) for the correlation study.

Features list Our data-centric analysis is driven by the data associated with pull requests.

We selected a list of features (Table 4.1) based on available information in GHArchive and

GitHub API. Our set of features is similar to the recent prediction tool in the pull request

context. Zhang et al. [45] used a similar list of factors to predict the influence on pull request

decisions (accept or reject). Similarly, Azeem et al. [46] used similar features to predict pull

request action (accept, respond, and reject.).

6https://scikit-learn.org/stable/modules/classes.htmlmodule-sklearn.preprocessing

68 Chapter 4. Predicting Rationale Components Documentation in PRT

Table 4.1: Features extracted for each pull request

Category Feature Feature Description Values
Developer
Character-
istics

Dev_assoc PR creator affiliation Categorical
Dev_per_patch Number of unique developers who con-

tributed to the PR changes
Numbers

Dev_per_patch (is_multi-
ple)

More than one developer contributed to the
PR changes

True or False

Patch
Character-
istics

Patch_ch_files_per_comt Median number of files per commit in the
PR patch

Numbers

Patch_commits Number of commits in the PR patch Numbers
Patch_comts_additions Number of additions in all PR patch com-

mits
Numbers

Patch_comts_deletions Number of deletions in all PR patch com-
mits

Numbers

Patch_comts_duration Difference in days between the PR patch’s
newest and oldest commit

Numbers

Patch_comts_messages_len Total length of patch commit messages Numbers
Patch_comts_modification Number of modifications in all PR patch

commits
Numbers

Patch_contains_bug_fix “bug” and/or “fix” keywords exist in the
PR patch files names and/or commit mes-
sages

True or False

Patch_contains_config “config” keyword exists in the PR patch
files names and/or commits messages

True or False

Patch_contains_docs “doc” keyword exists in the PR patch files
names and/or commits messages

True or False

Patch_contains_test “test” keyword exists in the PR patch files
names and/or commits messages

True or False

Patch_file_types PR patch files types Categorical
Patch_file_types Number of unique PR patch files types Numbers
Patch_files_added Number of files added in the PR patch Numbers
Patch_files_changed Number of files changed in the PR patch Numbers
Patch_files_deleted Number of files deleted in the PR patch Numbers
Patch_files_paths Number of files paths in the PR patch Numbers
Patch_files_renamed Number of files renamed in the PR patch Numbers
Patch_has_code_changes PR patch changes modify code True or False
Patch_has_code_comments PR patch changes modify code comments True or False
Patch_has_text_changes PR patch changes modify English text True or False

4.3. Approach 69

Table 4.1: Features extracted for each pull request (cont.)
Category Feature Feature Description Values

Repos-
itory
Character-
istics

Repo_age (head) Number of months from PR changes’ source
repository creation to PR creation

Numbers

Repo_forks (head) Number of forks of the PR changes’ source
repository

Numbers

Repo_names_match PR changes’ source repository matches the
PR repository

True or False

Repo_open_issues (head) Number of open issues of the PR changes’
source repository

Numbers

Repo_stars (head) Number of stars of the PR changes’ source
repository

Numbers

Template
Character-
istics

PRT_H_is_optional The prescribed PRT header contains the
words “optional” or “if applicable”

True or False

PRT_H_order The prescribed PRT header order (1st, 2nd,
…, Nth)

Numbers

PRT_H_type The prescribed PRT header’s content type Categorical

Correlation measures To measure the correlation between a PRT header of rationale

being filled and individual features, we used different correlation measures depending on the

feature type (number vs. binary). We used phi correlation coefficient φ for binary features

and point bi-serial correlation coefficient rpb for numerical continuous features. We also used

Chi-square test to measure the statistical significance of correlations.

The phi correlation coefficient, denoted as φ, is a measure of association between two binary

variables. It is calculated using a 2x2 contingency table, where the rows represent the

levels of one variable, and the columns represent the levels of the other variable. The phi

coefficient ranges from -1 to 1, with 0 indicating no association, positive values indicating

positive association, and negative values indicating negative association.

The point biserial correlation coefficient, denoted as rpb, is a measure of association between

a continuous variable and a binary variable. It is calculated when one variable is continuous,

and the other variable is dichotomous (binary). The point biserial correlation coefficient is

an extension of the Pearson correlation coefficient (r). It measures the degree and direction

70 Chapter 4. Predicting Rationale Components Documentation in PRT

of the linear relationship between the continuous and dichotomous variables. It ranges from

-1 to 1, where 0 indicates no association, positive values indicate a positive association, and

negative values indicate a negative association.

The Chi-square test assesses whether the observed frequencies in a contingency table differ

significantly from those expected if the variables were independent. The test statistic, de-

noted as χ2 (chi-square), is calculated by comparing the observed frequencies to the expected

frequencies under the independence assumption.

4.3.3 Statistical Modeling

We use supervised learning algorithms to predict if a PRT header of rationale will not be

filled in individual PRs. Those supervised learning models are created from labeled historical

training data. The classification task here is for discrete class labels: filled (1) or not filled

(0). The goal is to predict the class labels of new instances based on past observations.

We train a handful of different algorithms utilizing SKLearn supervised learning library 7.

In order to train and select the best-performing model, we use the default parameters of

supervised learning library algorithms.

To determine whether our models not only perform well on the training set but also generalize

well to new data, we also want to randomly divide the dataset into a separate training and

test set. We use the training set to train and optimize our machine learning model, while

we keep the test set until the end to evaluate the final model. After a model has been fitted

on the training dataset, we use the test dataset to estimate how well the model performs on

unseen test data to estimate the generalization error.
7https://scikit-learn.org/stable/supervised_learning.html

https://scikit-learn.org/stable/supervised_learning.html

4.3. Approach 71

4.3.4 Models Evaluation & Analysis

To measure the performance of the different statistical models, we use a 10-fold cross-

validation method and the computation of the standard classification evaluation measures,

including precision, recall, and F-value.

Precision measures the proportion of positive predictions (PRT header of rationale is not

filled) correctly identified by the classifier. It is calculated by dividing the number of true

positive predictions by the sum of true positives and false positives. Precision is valuable

when the impact of false positive (PRT header of rationale is filled) predictions is significant.

Recall, also known as sensitivity or true positive rate, measures the proportion of actual

positive instances (PRT header of rationale is not filled) correctly identified by the classifier.

It is calculated by dividing the number of true positive predictions by the sum of true

positives and false negatives. Recall is especially useful when detecting positive instances

(PRT header of rationale is not filled) is critical.

F-value, also known as F1-score, is a single metric that combines precision and recall. It

is calculated as the harmonic mean of precision and recall, providing a balanced assessment

of the classifier’s performance. The F-value ranges from 0 to 1, with 1 indicating perfect

precision and recall.

Baseline In addition to precision, recall, and F-value evaluation measures, we train a dummy

classifier that randomly guesses whether a PRT header is filled or not is used as the baseline.

We compare against the dummy classifier evaluation measures to evaluate the success of the

predictions.

Feature group performance: We measure the classification performance of different sets

of feature combinations (e.g., the patch characteristics) to compare their performance.

72 Chapter 4. Predicting Rationale Components Documentation in PRT

4.4 RQ: How are different pull request characteristics

correlated with filling a pull request template ra-

tionale header?

Table 4.2 shows statistically significant correlation values (phi φ or point bi-serial rpb cor-

relation coefficient) between each pull request characteristic (feature), and PRT rationale

headers fill observations. Although correlation coefficient values are low overall, the cor-

relations are statistically significant in our one-month data sample. Statistical significance

suggests that the observed correlation is unlikely to have occurred by chance and may still

have practical implications. The correlation values provide us with initial insights into the

nature of the relationship between a pull request feature and the PRT rationale headers fill.

Furthermore, the correlation table (Table 4.2) shows complex analysis dimensions (i.e., var-

ious features and multiple headers). Low correlation coefficients between individual features

and headers may still contribute to a larger predictive model. Multiple weak correlations

combined can provide valuable information for understanding complex situations.

4.4. PRT rationale header correlation analysis 73

Table 4.2: Correlation between features and PRT rationale header fill

Feature
PRT Rationale Header

Feature
PRT Rationale Header

T
es

ti
ng

M
ot

iv
at

io
n

Si
de

ef
fe

ct

L
is

t
of

m
ai

n
ch

an
ge

s

T
es

ti
ng

M
ot

iv
at

io
n

Si
de

ef
fe

ct

L
is

t
of

m
ai

n
ch

an
ge

s

PRT_H_is_optional 0.05 0.20 0.05 Patch_has_.asciidoc 0.04 0.04
PRT_H_order 0.07 0.26 0.18 0.24 Patch_has_.cpp 0.08 0.07 0.08
PRT_H_type_checklist 0.05 0.24 Patch_has_.cs 0.06 0.07
PRT_H_type_question 0.08 0.03 0.08 0.08 Patch_has_.go 0.05 0.06 0.07 0.20
PRT_H_type_yes_no_question 0.26 Patch_has_.gradle 0.07 0.05 0.06
Repo_age (head) 0.08 0.19 0.02 0.05 Patch_has_.h 0.02 0.06 0.09 0.06
Repo_forks (head) 0.03 0.20 0.02 0.05 Patch_has_.html 0.03 0.03
Repo_names_match 0.10 0.29 0.04 0.19 Patch_has_.java 0.11 0.18 0.05
Repo_open_issues (head) 0.18 Patch_has_.jpg 0.03
Repo_stars (head) 0.01 0.23 0.04 0.04 Patch_has_.js 0.04 0.20 0.06
Dev_assoc_COLLABORATOR 0.07 0.18 0.07 0.14 Patch_has_.json 0.06 0.04
Dev_assoc_CONTRIBUTOR 0.18 0.04 Patch_has_.jsx 0.06 0.03 0.04 0.03
Dev_assoc_MEMBER 0.08 0.03 0.08 Patch_has_.kt 0.10 0.07
Dev_assoc_NONE 0.04 0.06 Patch_has_.lock 0.08 0.05
Dev_per_patch (ct) 0.02 0.03 0.01 0.03 Patch_has_.md 0.05 0.07 0.08 0.07
Dev_per_patch (is_multiple) 0.03 0.05 0.04 Patch_has_.mod 0.03 0.03 0.04 0.05
Patch_ch_files_per_comt (mdn) 0.01 0.04 Patch_has_.php 0.13 0.08 0.17
Patch_commits (ct) 0.03 0.04 0.02 0.05 Patch_has_.png 0.02 0.04 0.08 0.05
Patch_comts_additions (sum) 0.01 0.02 0.01 Patch_has_.py 0.04 0.33
Patch_comts_deletions (sum) 0.01 0.01 0.02 Patch_has_.rb 0.06 0.04 0.04
Patch_comts_duration (days) 0.01 Patch_has_.rs 0.03
Patch_comts_messages_len 0.02 0.02 0.04 Patch_has_.scss 0.03 0.05 0.08 0.06
Patch_comts_modification (sum) 0.01 0.01 Patch_has_.sh 0.03 0.05 0.06 0.07
Patch_contains_bug_fix 0.05 0.10 Patch_has_.sql 0.11 0.11
Patch_contains_config 0.05 0.05 Patch_has_.sum 0.02 0.05
Patch_contains_docs 0.08 0.08 0.07 0.07 Patch_has_.toml 0.03 0.04
Patch_contains_test 0.05 0.12 0.11 Patch_has_.ts 0.11 0.03 0.06
Patch_file_types (ct) 0.02 0.04 0.01 0.01 Patch_has_.tsx 0.04 0.11 0.13
Patch_files_added (ct) 0.02 0.04 0.02 Patch_has_.txt 0.02 0.03 0.05 0.10
Patch_files_changed (ct) 0.04 0.02 Patch_has_.vue 0.06 0.10 0.04 0.08
Patch_files_deleted (ct) 0.01 0.02 0.02 Patch_has_.xml 0.03 0.10 0.06
Patch_files_paths (ct) 0.04 0.04 0.01 0.03 Patch_has_.yaml 0.09 0.08
Patch_files_renamed (ct) 0.02 0.02 Patch_has_.yml 0.08 0.07 0.07 0.08
Patch_has_code_changes 0.05 0.04 0.07
Patch_has_code_comments 0.04 0.08 0.06

Correlation
.01 .16 .25 .33

Patch_has_text_changes 0.03 0.09 -.01 -.16 -.25 -.33

74 Chapter 4. Predicting Rationale Components Documentation in PRT

4.5 RQ: To what extent can classification algorithms

predict if a pull request’s template rationale header

will be filled?

Figure 4.1 shows six algorithms’ performance in predicting if a PRT header of rationale will

not be filled. We used five months of PRs data (87K PRs) for our selected repositories (128

repos). With individual pull requests broken down to PRT header-content-fill observation,

the total number of observations for all PRT headers is around 500K observations. We used

10-fold cross-validation to build and test predictors of PRT headers of rationale, a predictor

for each repository’s PRT headers of rationale. Figure 4.1 shows each algorithm’s precision,

recall, and f1-score in predicting if PRT headers of rationale will not be filled in repositories

PRs.

Figure 4.1: Classification results of classifiers trained using 10-fold cross-validation

In the median case, all prediction algorithms perform better than the baseline (dummy

prior predictor). The dummy predictor chose predictions based on the empirical class (fill)

distribution. Random forest is the algorithm that provides the best performance in both

precision and recall. This experiment indicated the ability to predict if a PRT header of

rationale will be filled. Using such a predictor in practice could help software developers be

4.6. Comparing features groups performance 75

more efficient (save time) by skipping the documentation of the PRT header of rationale if

the predictor finds the header likely not to be filled.

4.6 RQ: How effective are different feature groups in

predicting if a pull request’s template rationale header

will be filled?

To understand which features are better in predicting if a PRT header of rationale will be

filled, we compare the prediction performance using only a subset of features at a time. We

select the best predictor (Random Forest) from the previous research question and apply

a feature permutation experiment. We used 10-fold cross-validation to build and test five

Random Forest predictors of PRT headers of rationale, a predictor for each repository’s PRT

headers of rationale. Each predictor uses a different set of features: all features, template

features, patch features, developer features, and repository features, respectively. Figure 4.2

shows each feature group’s precision, recall, and f1-score in predicting if PRT headers of

rationale will not be filled in repositories PRs.

Figure 4.2: Classification results of Random Forest classifier trained with different set/groups
of features

76 Chapter 4. Predicting Rationale Components Documentation in PRT

This experiment shows that different groups of features can improve or decrease prediction

performance. In the median case, template features perform better than the prediction with

all features. Other features groups predictors perform worse that predicting with all features.

The repository features notably perform worse than other feature groups. The negative

correlation between the PRT motivation header and repository features may explain this

lower performance of repository features. The dummy predictor chose predictions based on

the empirical class (fill) distribution.

4.7 Threats to validity

To design our statistical model, we used a set of features that may only partially describe

the aspects of pull requests. There are many other aspects of code changes (e.g., continu-

ous integration information) that we did not consider. To mitigate this issue, the features

considered in our work describe diverse aspects of the pull requests. Each feature falls into

one of four categories: patch, repository, developers, or template characteristics. We have

selected our features considering features of recent studies in pull request context [45, 46].

To construct our dataset, we took careful measures to not introduce duplicate observations

that might lead to over-fitting or bias in our statistical model building and analysis. We

only studied PR events at “open” time, avoiding duplicate PRs information with “close” or

“reopen” time events. Another careful measure we employed is dividing the data used for

correlation and prediction parts of our study. We used one month of data for the correlation

data and the five remaining months for the prediction task data.

Our study is specific to open-source GitHub projects that prescribe and use pull request

templates. Those repositories might not be representative of all repositories that use pull

request templates. For instance, close-sourced repositories and repositories that use different

4.8. Summary 77

code review workflows are not considered in our study. Our study results may not generalize

to those repositories.

4.8 Summary

To assist developers in crafting PR descriptions, GitHub repositories prescribe Pull Request

Templates (PRT) that ask for rationale for code changes components [17]. Developers will

likely not fill all PRT headers for every pull request, including rationale components headers.

To assist the developers’ practice of filling PRT when opening a pull request, we experimented

with building different predictors. The predictor’s objective is to suggest if a PRT header

of rationale will not be filled. Such predictions could help software developers work more

efficiently, skipping the documentation of PRT headers of rationale that will likely not be

filled.

Our experimentation showed that all built predictors can predict if a PRT header of rationale

will not be filled with better precision and recall than our baseline. In the median case,

random forest outperforms other prediction algorithms. We also find that different groups

of features can improve or decrease prediction performance. Interestingly, template features

perform better than other feature groups. Our observations motivate the implementation

of such predictors in practice. Such predictor could assist in (1) filtering likely to be empty

fields and/or (2) ranking/reordering template fields.

Chapter 5

Discussion and Implications

This section discusses our research findings and their implications.

5.1 Is the need for rationale of code commits different

than the need for rationale in other contexts?

Some of the components of the rationale of code commits that we discovered are also rel-

evant for rationale in software requirements, design, and architecture. These are: con-

straints [19, 47, 48, 49, 50], alternatives [47, 50, 51, 52], and validation [47, 48, 50]. However,

we also discovered components that are specific to the scope of code commits: committer,

time, location, and modifications. They generally refer to performing the code change. Our

participants indicated that these components are more needed and important than those

that also show in rationale in other contexts (see figures 3.4A and 3.6A). Similarly, some

components were not mentioned in our study and were reported by previous work as part of

the design rationale. Examples are: design assumptions [19, 48, 49] and weaknesses [19, 48].

78

5.2. Providing a better understanding of rationale need 79

5.2 Providing a better understanding of the need for

rationale of code commits

The observations in this study illustrate the importance of supporting developers in docu-

menting and finding the rationale of code commits. Software developers regularly need the

rationale of code commits (see figure 3.1B) and spend a significant amount of time searching

for it (see figures 3.2C and 3.2D). Our observations also allow us to speculate about the root

cause of this problem. We observed that most components of the rationale of code commits

are frequently not recorded (see figure 3.4C and see figure 3.6B), not found (see figures 3.4B-i

and see figure 3.6A), or difficult to find (see figure 3.4B-ii). This may be because finding

rationale for code commits could be very easy when the rationale is well documented, or the

change owner is easily available to provide the rationale.

We also observed that finding the rationale of code commits may cause productivity loss

and sometimes without gain. Furthermore, even after investing high effort searching for it, a

variety of factors may lead them to abandon the search (see Table 3.1), making their produc-

tivity loss more serious, since they did not get any value from the time spent. Furthermore,

after giving up their search for rationale, developers may resort to speculating their own

understanding, which may lead to introducing code errors.

“At one point, I gave up understanding why they did what they did. I was confused

as to why [input check was done] redundantly and gave up trying to figure it out. I

removed the [redundant check] later on as it made more sense [to me].”

80 Chapter 5. Discussion and Implications

5.3 Our vision: how should practitioners document the

rationale of code commits?

We do not believe that developers should necessarily document every component of rationale

all of the time. In fact, our participants mentioned concern about such an approach.

“I know it might not be doable or possible because no one will ever answer all these in

a commit. However, it is a good model.”

Instead, the goal of our model is to provide a superset of the possible components that

could answer a question about the rationale of code changes. Developers would then choose

which components are relevant for which code change. We believe that developers may seek

different components of rationale at different times, but not necessarily all of them every

time. In fact, we observed that they seek different components with different frequencies

(see figure 3.4A-i).

We see our decomposition of the rationale of code commits as an artifact to support develop-

ers in documenting it (by reminding them of all the components they may want to document),

not as a template that they would always be forced to fill completely. We believe that dif-

ferent components will be relevant for different types of code changes, and developers should

judge which ones are worth documenting on each occasion. Our experimentation with pre-

dicting the documentation of rationale components in pull request (Chapter 4) aligns with

this belief. Our predictor and model work as a check to asses documenting the rationale

of code changes; they could be very useful for developers to ensure that all the relevant

components are documented. A similar approach was successfully applied in the area of bug

reports [53, 54], not only to assist in the documentation of various components but also to

measure their quality. Checklists are a known powerful mechanism to ensure processes are

performed correctly [55].

5.3. Our vision: practitioners documentation of rationale 81

Another measure that would benefit developers is the lazy documentation of the rationale

of code changes — i.e., to document it opportunistically after they have needed it. Our

observations show that developers often give up seeking the rationale of code changes due

to not finding it in the code or documentation. Other times, they do not find it in code or

documentation, but end up finding it in different ways, e.g., asking a colleague:

“If I cannot figure it out, I ask someone to help me out to understand the code because

I need to work.”

We believe that this signals an opportunity: if developers document the rationale of code

changes in centralized documentation (maybe in the code comments themselves) after iden-

tifying it by other means, the next developer will easily find it when searching. This incre-

mental approach to documenting may be preferred by many developers since the workload

may feel more manageable that way, e.g., as is the case with other practices like incremental

testing [56, 57].

Developer teams are diverse [58], and some developers may want to improve the documen-

tation of rationale of their past code commits in a more exhaustive fashion, as opposed to

opportunistically. Some developers may also want to improve the current documentation

of rationale of their past code commits, in a more exhaustive fashion —as opposed to op-

portunistically. Our observations also provide feedback on how to prioritize such efforts.

A starting point for improving the rationale documentation of existing commits would be

tackling the areas of improvement that we identified. We observed which components of the

rationale of code commits are frequently not recorded (see figure 3.4C and see figure 3.6B),

not found (see figures 3.4B-i and see figure 3.6A), or difficult to find (see figure 3.4B-ii).

82 Chapter 5. Discussion and Implications

5.4 Our vision: how could tools support developers in

documenting the rationale of code commits?

Our observations provide some advice on designing future support for developers to document

and find the rationale of code commits. We observed that the need for the rationale of

code commits has a wide reach: it affects most software development tasks and subtasks

(figure 2.2A). Therefore, any future support should be accessible and convenient, independent

of the developer’s task.

We also observed that the rationale of code changes is needed for code changes in software

projects both within the developer’s company and external to it (figure 2.2). This teaches

us that the rationale of code changes should be documented by also keeping in mind devel-

opers that do not necessarily belong to the software development team. Some examples of

additional considerations that developers could have to be inclusive of external developers

in their documentation efforts are: including clarifications about vocabulary that is specific

to the software project (or adding links to a centralized legend); including assumptions that

may be clear to the development team, but not to outsiders (e.g., assumptions about the

pre-set configuration of the OS or underlying libraries); documenting best practices that

are common within the development team, but that may not be intuitive to outsiders (e.g.,

unconventional code writing habits, such as special casing, indentation, exception handling,

logging, etc.).

Our observations of why developers give up their search for rationale also inform how future

techniques can be designed. We observed that the major factors why developers gave up

were: (1) the poor state of the code and documentation, or (2) to avoid impacting the

productivity of their team, or (3) their own. Therefore, it would be beneficial if future

efforts to support the documentation of the rationale of code commits address these issues.

5.4. Our vision: tools support in documenting rationale 83

In particular, we believe that future efforts should support (1) recording the rationale of code

commits when it is needed. For example, documenting rationale in pull request descriptions

as preparation for code review , so that if rationale was missing from individual commits,

it could be added. We also believe that future efforts should support (2 & 3) asynchronous

communication mechanisms, so that the productivity of the seeker and the people eventually

providing the rationale can be impacted as little as possible. Our participants also echoed

the benefit of connecting software development artifacts that are related, so that their later

comprehension is made easier:

“At my company, typically we link each commit, branch, and pull request (PR) to a

ticket number, which should include details and discussion about the change and why

it is being made.”

They also commented on the opposite: the difficulties they face when these centralized

connections break.

“What usually makes the search more difficult is when code has been moved around,

and the version control system lost track of its origin.”

Such support of rationale documentation could provide additional benefits. This practice

of documenting needed components can be especially useful before somebody leaves the

company — they already documented all the code changes that they performed. This could

contribute to reducing the problem of not being able to find rationale that can only be

provided by somebody who has already left the team.

Another way to support rationale documentation is having a tool to support conversations

about the rationale of code commits. Such a tool would make it easier to document ra-

tionale after the discussions have happened — because the conversations themselves could

help and simplify the process of producing structured documentation (as in bug-tracking

84 Chapter 5. Discussion and Implications

systems). Such a system could also make it easier to save the documentation in the right

place, connected to the code change discussed.

Finally, tools could be developed to make it easier to find the rationale of code changes that

have already been documented. If we had a system that kept track of the conversations

about and documentation of the rationale of code changes, it would be easy to offer that

information in easy-to-access ways in software development environments. The retrieved

rationale of code changes could also be represented in different ways to fit the different

tasks in which developers need to find it — similar to how the WhyLine system provides

already-available program-slicing information in a much more user-friendly format [59]. Such

varied representations may also require varied analyses, e.g., rationale finding triggered by

a debugging task might require in-depth navigation of the history of relevant code changes

(e.g., [60, 61, 62, 63, 64]), whereas rationale finding triggered by learning about an external

tool might require a broad search for similar codes across the external codebase. Finally,

these efforts should provide the right amount of information to developers, since giving too

many recommendations can have hidden costs [65].

An example of such an enhancement of an IDE would be to provide the rationale of code

changes while the user is actively debugging a feature. The IDE plugin could gather rationale

components from previous commits, where the specific feature under debugging was changed.

One of our participants commented on the importance of understanding the evolution of code

(i.e., “why the code is this way?”) while debugging:

“I believe that understanding the evolution of the code is just as important as under-

standing the current code. If you know where the code has been, you can get a sense of

where it needs to evolve for the next release and to be able to avoid the pitfalls of past

bugs.”

5.5. Our vision: rationale documentation automation 85

5.5 Our vision: how could the documentation of the

rationale of code commits be automated?

The previous section describes how future software tools could support developers in the

process of documenting and finding the rationale of code commits. Next, we discuss how

some parts of that process could be more strongly automated.

First, we see opportunities to automate the detection of insufficiently documented rationale

of code changes. This could be either code changes completely lacking the documentation,

or lacking relevant components. Relevant components can be predicted by relying on code

change characteristics. Automating this problem would be akin to predicting which code

changes developers are likely to face the need to understand rationale components that are

not currently documented. Such a tool could base its predictions on observing which charac-

teristics are common among the code changes for which certain components are requested.

We believe that this tool would be really valuable for developers to prioritize their efforts of

documenting the rationale of code commits i.e., starting with those for which their rationale

is likely to be requested.

Next, we also see opportunities for automating the documentation of the rationale of code

changes. Techniques could be developed to capture the common characteristics among the

code changes with a specific answer to a given component of the rationale of code changes.

If such common characteristics could be captured, future code changes with similar charac-

teristics could be automatically labeled with the same answer to the rationale component.

Similar mechanisms have been successfully applied to similar goals, e.g., applying machine

learning to detect design patterns [66]. Other approaches may also be promising, such as

applying techniques for summarizing and documenting code changes like [67, 68], tools an-

swering “what” and “why” questions about code changes like [38, 39, 59, 69, 70], and studies

86 Chapter 5. Discussion and Implications

of impact and risk of changes like [71, 72, 73].

Any efforts to automate or support the process of documenting or finding the rationale of

code commits will benefit from the rich understanding provided by our model of the specific

pieces of information (components) that developers may seek when they need it. Our model

now allows future research efforts to generate targeted pieces of information to generate to

improve the documentation of rationale.

5.6 Our vision: what other benefits could arise from

good documentation of the rationale of code com-

mits?

In a longer timeline, we also anticipate further benefits from having a codebase in which the

rationale of code commits is carefully documented. In projects with well-crafted documen-

tation of the rationale of code commits, many future useful analyses may be possible. Next

are some of the kinds of analyses that we anticipate.

First, we expect that the documentation of the rationale for code commits may be useful

data to improve the traceability of software requirements to areas of the source code. This

is a well-known problem and research area, and having richer data may help improve the

accuracy of existing techniques to infer traceability or inspire future ones.

Second, the documentation of rationale for code commits may reveal hidden properties of

the system. For example, the documentation of code changes side effects component may

reveal hidden properties of the system changes conflict [74, 75], energy consumption [76], and

upgrade impact [77]. Those properties may not otherwise be visible in software documen-

5.6. Our vision: benefits of good documentation 87

tation. The documentation of rationale for code commits may also reveal assumptions that

are not documented elsewhere, or development team habits that are otherwise not visible.

Furthermore, the documentation of the rationale of code changes in highly successful soft-

ware projects, i.e., those with high quality, may reveal best practices that are not necessarily

documented (are implicit in their decision-making), and from which other practitioners could

learn.

The first step to studying the promise of these (or other) ideas for useful software analytics

would start by identifying a current software project that already assigns high importance

to documenting their code changes.

Chapter 6

Related Work

Existing work highlights the importance of rationale management throughout the software

development life-cycle [1, 2]. Thus, multiple approaches and systems have been proposed to

integrate rationale management in the process of software requirements engineering, software

design, and software architecture [48, 78].

We focus on the rationale for code commits in the context of software evolution and main-

tenance. In this context, existing work studied part of the experience of developers seeking

the rationale of code changes, finding that it was considered important and sometimes hard

to find [5]. In contrast, this dissertation presents an in-depth study of the rationale of code

changes. We identified an extensive list of the tasks in which developers need to learn

the rationale of code changes. We decomposed the rationale of code changes into multiple

components, and surveyed the developers experiences seeking the rationale and its

individual components. Finally, we experimented with predicting rationale docu-

mentation in the pull request context.

In the following sections, we discuss the related work in several areas:

88

6.1. Rationale Management in Software Requirements, Design, and Architecture 89

6.1 Rationale Management in Software Requirements,

Design, and Architecture

Multiple extensions of requirements models were proposed to encourage the capture of ratio-

nale within them [79, 80]. In addition to these models, tools have been proposed to manage

rationale of software requirements [78, 81, 82].

Many schemes have also been proposed to capture design and architecture rationale. The

schemes can be divided into two categories: decision-centric e.g., Lee and Lai [52] [52] and

usage-centric approaches e.g., Burge et al. [1] [1]. The decision-centric approaches [19, 83]

focus on capturing the rationale as a decision-making process utilizing Toulmin’s model of

argumentation [84] and Rittel’s Issue-Based Information System (IBIS) [51]. The usage-

centric approaches focus on capturing rationale without representing the decision-making

process [19, 48, 49, 50].

The usage-centric approaches “recognize that organizing rationale around decisions is not the

best way to elicit and characterize some of the rationale needed for making appropriate design

decisions” [1]. Jarczyk et al. [85] provided a survey of the systems developed to support

design rationale, all of which were based on Toulmin’s model or IBIS [85]. Design rationale

has also been supported by multiple tools [47, 86], which can help detect inconsistencies,

omissions, and conflicts [87]. Mehrpour and LaToza [88] surveyed tools support for working

with design decisions in code. Some recent tools focus on capturing design rationale from

software artifacts like IRC discussions [89, 90, 91], or user reviews [92]. Our work, in turn,

focuses on the rationale in software maintenance.

90 Chapter 6. Related Work

6.2 Rationale in Software Evolution and Maintenance

This section discusses the related work in which rationale of code changes were prescriptively

decomposed and discovered to be a major information need.

6.2.1 Components of the Rationale of Code Changes

Burge et al. [1] prescriptively enumerate a few questions that may answer rationale in

software maintenance [1]. We, in turn, provide a descriptive model of rationale in the context

of software maintenance, from the perspective of what developers need to find when they seek

it. Our descriptive approach extends Burge et al. [1]ś prescriptive approach as we discovered

more questions that may answer rationale in software maintenance. For example, our change

objective questions (What did you want to achieve?, Why did you need to achieve that?, and

What is the benefit of what you want to achieve?) were not mentioned in Burge et al. [1]

study. Our extended set of questions covers all of Burge et al. [1] prescriptively enumerated

questions. Because our set of questions is descriptive of the developers’ needs while seeking

and finding rationale for code changes, we believe these questions will help the finding and

recording activities.

6.2.2 Tasks that need the Rationale of Code Changes

Past research focused on discovering various developer information needs within a given de-

veloper task (e.g., collaborating [6], understanding code [11], understanding bug reports [93],

understanding the life of bugs [94], or reviewing code [9]), and uncovered a breadth of aspects

about them, such as how early [93] or frequently [11] each piece of information was needed.

Our goal is instead to discover the tasks in which this particularly important information

6.2. Rationale in Software Evolution and Maintenance 91

need (the rationale for code commits) exists (i.e., our study takes the opposite direction),

and we study various aspects of it. Our results in this theme validate the findings of some

previous studies, since we found that the rationale of code changes was needed in learning [1],

code review [9, 13, 95], and mentoring [15].

Tao et al. [5] prescriptively proposed a list of seven “development scenarios” (e.g., refactoring,

developing new features, and fixing bugs) in which they expected developers to need to

understand code changes. They asked developers to choose which ones they encountered most

often, and found that the most often encountered one was “reviewing others’ changes” [5].

Our work had a different goal: to discover the tasks for which developers need to understand

the rationale of code changes, as stated by developers, i.e., in a descriptive fashion. As a

result, we discovered a much more exhaustive list: we observed that developers needed to

understand the rationale of code changes in eight tasks and 25 sub-tasks (as opposed to Tao

et al. [5]ś seven scenarios).

6.2.3 Experience with the Rationale of Code Changes

Studies involving software history and developers’ information needs in the last decade es-

tablish a strong demand for rationale [1, 3, 4, 5, 6, 7, 9, 11, 12, 13, 15, 95, 96, 97]. Our

work is motivated by these empirical studies highlighting the importance of rationale for

code commits.

The most closely related study to ours is Tao et al. [5]. Tao et al. [5] found that the most

important information needs for understanding code changes is rationale, which is some-

times easy and sometimes difficult. We replicated these two questions (importance and

difficulty) of their study. We also studied additional questions in three additional contexts:

needing, finding, and recording rationale. Our study validates their results since our partic-

92 Chapter 6. Related Work

ipants reported similar ratings for the importance and difficulty of finding the rationale for

code changes. This similarity of results also shows that we studied a similar population of

developers.

Our study extends Tao et al. [5]ś by finding the individual pieces of information that compose

rationale; the experiences of developers needing, finding, and recording those individual

pieces; and recommendations to improve their documentation. In particular, this finer level

of granularity (i.e., rationale of code commits) enables us to provide a possible explanation

for one of the main phenomena observed by Tao et al. [5]: that rationale is easy to find when

it is well documented. We posit that rationale is deemed well documented when it contains

the specific components that the developer is seeking at that moment. For instance, a recent

qualitative study Liang et al. [98] highlights multiple types of implementation decisions made

by developers, rationale may be deemed well documented when it contains the alternatives

decision sought by the developer.

6.3 Rationale Documentation Support

The software engineering community is strongly pushing for improving software documenta-

tion [99, 100, 101, 102, 103, 104]. Studies have been carried out to explore documentation

issues [100, 101], lost knowledge in informal documentation [102], management of decision

knowledge [103], and new documentation schemes [104]. These studies advocate the develop-

ment of automatic techniques to assist and improve software documentation. Our research

effort is motivated by the software documentation literature. The following sections discuss

the related work to supporting the documentation of rationale for code changes.

6.3. Rationale Documentation Support 93

6.3.1 Rationale documentation in code review context

Code review is one of many tasks for which rationale of code changes is needed. Inspired by

recent research studies of code review, we chose code review context to build our experimental

rationale documentation prediction approach. Recent code review research notices the need

for rationale for code changes. Rationale is noticed by researchers who performed studies

to understand code review as a process and identify its challenges and best practices [9, 13,

22, 105, 106, 107, 108]. Another group of researchers empirically studied code review data

to discover communicative intention in code review questions [10], frequency and nature of

design discussions [109], identifying large-review-effort code changes [110], and confusion in

code reviews [14, 111, 112]. More specifically, recent research work empirically studied pull

request templates to explore their contents, impacts, and developers’ perceptions [17]. Some

rationale components were present in Li et al. [17] exploration of PRT contents. Our results

add to this body of knowledge and provide strategies that will contribute to the improvement

of overall changes in documentation and code review practice.

6.3.2 Tools to support software changes documentation

Researchers developed techniques to summarize and document code changes, [68], clarify

the rationale behind code changes [113, 114], answer “what” and “why” questions about

code changes [59, 69, 70, 115, 116, 117], generate pull request descriptions [118], or gener-

ate release notes [119]. Other researchers mined software repositories to characterize com-

mits [120, 121, 122, 123], and others studied the impact and risk of changes [72, 73, 124].

Repository maintainers prescribe Pull Request Templates (PRT) [16] to guide software devel-

opers in describing their code changes for code review. These technique target components of

rationale, among other change information, in their efforts. These research papers target ra-

94 Chapter 6. Related Work

tionale components like motivation, validation, and side effects of code changes [69, 117, 118].

Our technique is motivated by these techniques and their effort in supporting software de-

velopers. Our work on prediction rationale pull request templates headers documentation,

complement existing tools.

Chapter 7

Conclusions

The dissertation offers an in-depth examination of the rationale behind code changes in

software systems. The aim is to better understand and document the rationale of code

changes. To achieve our goal, We performed three studies to understand software developers’

need for rationale of code changes, surveying software developers’ experiences with code

changes, and predicting the documentation of rationale components in pull request templates.

We found that software developers need to investigate code commits to understand their

rationale when working on diverse tasks (and subtasks): programming, working on bugs,

communication, tools, documentation, project management, testing, and specifications.. We

also found that software developers decompose the rationale of code commits into 15 sep-

arate components that they could seek when searching for rationale: goal, need, benefits,

constraints, alternatives, selected alternative, dependencies, committer, time, location, modi-

fications, explanation of modifications, validation, maturity stage, and side effects.

Our survey of developers’ experiences with rationale of code changes uncovered issues and

challenges software developers encounter while searching and recording rationale for code

changes. We discovered that software developers have different experiences with different

components of rationale. We present human, team, and project factors leading software

developers to give up their search for rationale. For example, changes in project personnel

make it hard for software developers to find the rationale behind code changes.

95

96 Chapter 7. Conclusions

Our experimentation with building a predictor for rationale components documentation in

pull request templates was effective in achieving high accuracy and recall. We found that the

random forest prediction algorithm can perform better than other prediction algorithms. We

also found that different feature groups (i.e., template features) lead to better performance

in the prediction task.

Our findings provide a better understanding of the need for rationale of code commits. In

light of our findings, we emphasize the potential for improving software maintenance and

quality through a better understanding and documentation of rationale. We presented our

vision for rationale of code commits practitioners’ documentation, tools support, and doc-

umentation automation. In addition, we presented the benefits of analyses that could arise

from good documentation of rationale for code commits. Overall, this document contributes

to the field of software development by shedding light on the rationale behind code changes

and offering insights to enhance the development process.

Bibliography

[1] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrik, Rationale-Based Software

Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. [Online].

Available: https://doi.org/10.1007/978-3-540-77583-6

[2] A. H. Dutoit, R. McCall, I. Mistrík, and B. Paech, Rationale Management in

Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. [Online].

Available: https://doi.org/10.1007/978-3-540-30998-7

[3] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history under the lens: A

study on why and how developers examine it,” in 2015 IEEE International Conference

on Software Maintenance and Evolution (ICSME), Sep. 2015, pp. 1–10.

[4] T. Fritz and G. C. Murphy, “Using information fragments to answer the questions

developers ask,” in Proceedings of the 32Nd ACM/IEEE International Conference on

Software Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010,

pp. 175–184. [Online]. Available: http://doi.acm.org/10.1145/1806799.1806828

[5] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software engineers

understand code changes?: An exploratory study in industry,” in Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 51:1–51:11.

[Online]. Available: http://doi.acm.org/10.1145/2393596.2393656

[6] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software devel-

opment teams,” in 29th International Conference on Software Engineering (ICSE’07),

May 2007, pp. 344–353.

97

https://doi.org/10.1007/978-3-540-77583-6
https://doi.org/10.1007/978-3-540-30998-7
http://doi.acm.org/10.1145/1806799.1806828
http://doi.acm.org/10.1145/2393596.2393656

98 BIBLIOGRAPHY

[7] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,” in

Evaluation and Usability of Programming Languages and Tools, ser. PLATEAU

’10. New York, NY, USA: ACM, 2010, pp. 8:1–8:6. [Online]. Available:

http://doi.acm.org/10.1145/1937117.1937125

[8] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers

comprehend software?” in Proceedings of the 34th International Conference on

Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp.

255–265. [Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[9] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and A. Bacchelli,

“Information needs in contemporary code review,” Proc. ACM Hum.-Comput.

Interact., vol. 2, no. CSCW, pp. 135:1–135:27, Nov. 2018. [Online]. Available:

http://doi.acm.org/10.1145/3274404

[10] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative intention in code

review questions,” in Proceedings - 2018 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2018, 2018, pp. 519–523. [Online]. Available:

https://goo.gl/Bpoqj6

[11] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the comprehension of program

comprehension,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, pp. 31:1–31:37,

Sep. 2014. [Online]. Available: http://doi.acm.org/10.1145/2622669

[12] S. Srinivasa Ragavan, M. Codoban, D. Piorkowski, D. Dig, and M. Burnett, “Version

control systems: An information foraging perspective,” IEEE Transactions on Software

Engineering, pp. 1–1, 2019.

[13] A. Ram, A. A. Sawant, M. Castelluccio, and A. Bacchelli, “What makes a code

change easier to review: An empirical investigation on code change reviewability,” in

http://doi.acm.org/10.1145/1937117.1937125
http://dl.acm.org/citation.cfm?id=2337223.2337254
http://doi.acm.org/10.1145/3274404
https://goo.gl/Bpoqj6
http://doi.acm.org/10.1145/2622669

BIBLIOGRAPHY 99

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, ser.

ESEC/FSE 2018. New York, NY, USA: Association for Computing Machinery, 2018,

p. 201–212. [Online]. Available: https://doi.org/10.1145/3236024.3236080

[14] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in Code Reviews: Rea-

sons, Impacts, and Coping Strategies,” SANER 2019 - Proceedings of the 2019 IEEE

26th International Conference on Software Analysis, Evolution, and Reengineering, pp.

49–60, 2019.

[15] B. e. l. e. m. Dagenais, H. Ossher, R. K. E. Bellamy, M. P. Robillard, and J. P.

de Vries, “Moving into a new software project landscape,” in Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1, ser. ICSE

’10. New York, NY, USA: Association for Computing Machinery, 2010, p. 275–284.

[Online]. Available: https://doi.org/10.1145/1806799.1806842

[16] “Creating a pull request template for your repository -

GitHub Docs — docs.github.com,” https://docs.github.com/en/

communities/using-templates-to-encourage-useful-issues-and-pull-requests/

creating-a-pull-request-template-for-your-repository, [Accessed 30-May-2023].

[17] Z. Li, Y. Yu, T. Wang, Y. Lei, Y. Wang, and H. Wang, “To follow or not to follow: Un-

derstanding issue/pull-request templates on github,” IEEE Transactions on Software

Engineering, pp. 1–16, 2022.

[18] M. Zhang, H. Liu, C. Chen, Y. Liu, and S. Bai, “Consistent or not?

An investigation of using Pull Request Template in GitHub,” Information

and Software Technology, vol. 144, p. 106797, 2022. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0950584921002354

https://doi.org/10.1145/3236024.3236080
https://doi.org/10.1145/1806799.1806842
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://docs.github.com/en/communities/using-templates-to-encourage-useful-issues-and-pull-requests/creating-a-pull-request-template-for-your-repository
https://www.sciencedirect.com/science/article/pii/S0950584921002354

100 BIBLIOGRAPHY

[19] A. Tang, M. A. Babar, I. Gorton, and J. Han, “A survey of architecture

design rationale,” Journal of Systems and Software, vol. 79, no. 12, pp. 1792 –

1804, 2006. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0164121206001415

[20] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in

continuous integration: Assurance, security, and flexibility,” in Proceedings of the

2017 11th Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE

2017. New York, NY, USA: ACM, 2017, pp. 197–207. [Online]. Available:

http://doi.acm.org/10.1145/3106237.3106270

[21] J. Singer, S. E. Sim, and T. C. Lethbridge, Guide to Advanced Empirical Software

Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg, Eds. London: Springer

London, 2008. [Online]. Available: https://doi.org/10.1007/978-1-84800-044-5

[22] D. Spadini, M. Aniche, M.-A. Storey, M. Bruntink, and A. Bacchelli, “When

testing meets code review: Why and how developers review tests,” in

Proceedings of the 40th International Conference on Software Engineering, ser.

ICSE ’18. New York, NY, USA: ACM, 2018, pp. 677–687. [Online]. Available:

http://doi.acm.org/10.1145/3180155.3180192

[23] R. Pohl and R. Pohl, “Confirmation bias,” in Cognitive Illusions: A Handbook

on Fallacies and Biases in Thinking, Judgement and Memory. Psychology Press,

2004, ch. 4, pp. 79–96. [Online]. Available: https://books.google.com/books?id=

k5gTes7yyWEC

[24] P. Biernacki and D. Waldorf, “Snowball sampling: Problems and techniques of chain

referral sampling,” Sociological Methods & Research, vol. 10, no. 2, pp. 141–163, 1981.

[Online]. Available: https://doi.org/10.1177/004912418101000205

http://www.sciencedirect.com/science/article/pii/S0164121206001415
http://www.sciencedirect.com/science/article/pii/S0164121206001415
http://doi.acm.org/10.1145/3106237.3106270
https://doi.org/10.1007/978-1-84800-044-5
http://doi.acm.org/10.1145/3180155.3180192
https://books.google.com/books?id=k5gTes7yyWEC
https://books.google.com/books?id=k5gTes7yyWEC
https://doi.org/10.1177/004912418101000205

BIBLIOGRAPHY 101

[25] B. L BERG, “Qualitative research methods for the social sciences,” 2001.

[26] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to study the experience

of software development,” Empirical Software Engineering, vol. 16, no. 4, pp. 487–513,

2011. [Online]. Available: https://doi.org/10.1007/s10664-010-9152-6

[27] A. Begel and B. Simon, “Novice software developers, all over again,” in Proceedings of

the Fourth International Workshop on Computing Education Research, ser. ICER ’08.

New York, NY, USA: Association for Computing Machinery, 2008, p. 3–14. [Online].

Available: https://doi.org/10.1145/1404520.1404522

[28] B. Saunders, J. Sim, T. Kingstone, S. Baker, J. Waterfield, B. Bartlam, H. Burroughs,

and C. Jinks, “Saturation in qualitative research: exploring its conceptualization and

operationalization,” Quality & Quantity, vol. 52, no. 4, pp. 1893–1907, 2018. [Online].

Available: https://doi.org/10.1007/s11135-017-0574-8

[29] M. M. Hennink and B. N. Kaiser, “Saturation in qualitative research,” Sep 2019.

[Online]. Available: http://dx.doi.org/10.4135/9781526421036822322

[30] Y. Liu, S. Li, and E. Tilevich, “Toward a better alignment between the research and

practice of code search engines,” in 2022 29th Asia-Pacific Software Engineering Con-

ference (APSEC), Dec 2022, pp. 219–228.

[31] D. Spencer and J. Garrett, Card Sorting: Designing Usable Categories. Rosenfeld

Media, 2009. [Online]. Available: https://books.google.com/books?id=_h4D9gqi5tsC

[32] A. Koriat, M. Goldsmith, and A. Pansky, “Toward a psychology of memory accuracy,”

Annual Review of Psychology, vol. 51, no. 1, pp. 481–537, 2000, pMID: 10751979.

[Online]. Available: https://doi.org/10.1146/annurev.psych.51.1.481

https://doi.org/10.1007/s10664-010-9152-6
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1007/s11135-017-0574-8
http://dx.doi.org/10.4135/9781526421036822322
https://books.google.com/books?id=_h4D9gqi5tsC
https://doi.org/10.1146/annurev.psych.51.1.481

102 BIBLIOGRAPHY

[33] E. G Jelihovschi and J. Faria, “Scottknott: A package for performing the scott-knott

clustering algorithm in r,” TEMA (São Carlos), vol. 15, 03 2014.

[34] K. Herzig and A. Zeller, “Untangling changes,” 2011.

[35] K. Herzig and A. Zeller, “The impact of tangled code changes,” in 2013 10th Working

Conference on Mining Software Repositories (MSR), May 2013, pp. 121–130.

[36] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse, “Untangling fine-grained

code changes,” in 2015 IEEE 22nd International Conference on Software Analysis,

Evolution, and Reengineering (SANER), March 2015, pp. 341–350.

[37] E. Aghajani, C. Nagy, O. L. Vega-Márquez, M. Linares-Vásquez, L. Moreno, G. Bavota,

and M. Lanza, “Software documentation issues unveiled,” in 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE), May 2019, pp. 1199–1210.

[38] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit

messages from diffs using neural machine translation,” in Proceedings of the 32Nd

IEEE/ACM International Conference on Automated Software Engineering, ser. ASE

2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 135–146. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3155562.3155583

[39] S. Jiang and C. McMillan, “Towards automatic generation of short summaries of com-

mits,” in 2017 IEEE/ACM 25th International Conference on Program Comprehension

(ICPC), May 2017, pp. 320–323.

[40] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On the unhappiness

of software developers,” in Proceedings of the 21st International Conference on

Evaluation and Assessment in Software Engineering, ser. EASE’17. New York, NY,

http://dl.acm.org/citation.cfm?id=3155562.3155583

BIBLIOGRAPHY 103

USA: Association for Computing Machinery, 2017, p. 324–333. [Online]. Available:

https://doi.org/10.1145/3084226.3084242

[41] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel emotions? An

exploratory analysis of emotions in software artifacts,” 11th Working Conference on

Mining Software Repositories, MSR 2014 - Proceedings, pp. 262–271, 2014.

[42] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “On the unhappiness

of software developers,” ACM International Conference Proceeding Series, vol. Part

F128635, pp. 324–333, 2017.

[43] G. Gousios, M. Pinzger, and A. v. Deursen, “An exploratory study of the

pull-based software development model,” in Proceedings of the 36th International

Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA:

Association for Computing Machinery, 2014, p. 345–355. [Online]. Available:

https://doi-org.ezproxy.lib.vt.edu/10.1145/2568225.2568260

[44] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and challenges in pull-

based development: The contributor’s perspective,” in 2016 IEEE/ACM 38th Inter-

national Conference on Software Engineering (ICSE), May 2016, pp. 285–296.

[45] X. Zhang, Y. Yu, G. Georgios, and A. Rastogi, “Pull Request Decisions Explained:

An Empirical Overview,” IEEE Transactions on Software Engineering, pp. 1–1, 2022,

conference Name: IEEE Transactions on Software Engineering.

[46] M. I. Azeem, S. Panichella, A. D. Sorbo, A. Serebrenik, and Q. Wang, “Action-based

recommendation in pull-request development,” Proceedings of the International Con-

ference on Software and System Processes, 2020.

[47] T. R. Gruber and D. M. Russell, “Design rationale,” T. P. Moran and J. M.

https://doi.org/10.1145/3084226.3084242
https://doi-org.ezproxy.lib.vt.edu/10.1145/2568225.2568260

104 BIBLIOGRAPHY

Carroll, Eds. Hillsdale, NJ, USA: L. Erlbaum Associates Inc., 1996, ch. Generative

Design Rationale: Beyond the Record and Replay Paradigm, pp. 323–349. [Online].

Available: http://dl.acm.org/citation.cfm?id=261685.261725

[48] F. Gilson and V. Englebert, “Rationale, decisions and alternatives traceability for

architecture design,” in Proceedings of the 5th European Conference on Software

Architecture: Companion Volume, ser. ECSA ’11. New York, NY, USA: ACM, 2011,

pp. 4:1–4:9. [Online]. Available: http://doi.acm.org/10.1145/2031759.2031764

[49] J. Tyree and A. Akerman, “Architecture decisions: demystifying architecture,” IEEE

Software, vol. 22, no. 2, pp. 19–27, March 2005.

[50] T. R. Gruber and D. M. Russell, “Design knowledge and design rationale : A framework

for representation , capture , and use,” 1991.

[51] W. Kunz and H. Rittel, Issues as Elements of Information Systems, ser. California.

University. Center for Planning and Development Research. Working paper, no. 131.

Institute of Urban and Regional Development, University of California, 1970, no. 131.

[Online]. Available: https://books.google.com/books?id=B-MaAQAAMAAJ

[52] J. Lee and K.-Y. Lai, “What’s in design rationale?” Hum.-Comput. Interact.,

vol. 6, no. 3, pp. 251–280, Sep. 1991. [Online]. Available: http://dx.doi.org/10.1207/

s15327051hci0603&4_3

[53] S. Davies and M. Roper, “What’s in a bug report?” in Proceedings of the

8th ACM/IEEE International Symposium on Empirical Software Engineering and

Measurement, ser. ESEM ’14. New York, NY, USA: ACM, 2014, pp. 26:1–26:10.

[Online]. Available: http://doi.acm.org/10.1145/2652524.2652541

[54] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zimmermann,

http://dl.acm.org/citation.cfm?id=261685.261725
http://doi.acm.org/10.1145/2031759.2031764
https://books.google.com/books?id=B-MaAQAAMAAJ
http://dx.doi.org/10.1207/s15327051hci0603&4_3
http://dx.doi.org/10.1207/s15327051hci0603&4_3
http://doi.acm.org/10.1145/2652524.2652541

BIBLIOGRAPHY 105

“What makes a good bug report?” in Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser. SIGSOFT

’08/FSE-16. New York, NY, USA: ACM, 2008, pp. 308–318. [Online]. Available:

http://doi.acm.org/10.1145/1453101.1453146

[55] G. Dziekan, “Checklists save lives,” Bulletin of the World Health Organization, vol. 86,

no. 7, 2008.

[56] A. M. Kazerouni, C. A. Shaffer, S. H. Edwards, and F. Servant, “Assessing

incremental testing practices and their impact on project outcomes,” in Proceedings

of the 50th ACM Technical Symposium on Computer Science Education, ser. SIGCSE

’19. New York, NY, USA: Association for Computing Machinery, 2019, p. 407–413.

[Online]. Available: https://doi.org/10.1145/3287324.3287366

[57] A. M. Kazerouni, J. C. Davis, A. Basak, C. A. Shaffer, F. Servant, and S. H.

Edwards, “Fast and accurate incremental feedback for students’ software tests using

selective mutation analysis,” J. Syst. Softw., vol. 175, p. 110905, 2021. [Online].

Available: https://doi.org/10.1016/j.jss.2021.110905

[58] A. Gautam, S. Vishwasrao, and F. Servant, “An empirical study of activity, popularity,

size, testing, and stability in continuous integration,” in 2017 IEEE/ACM 14th Inter-

national Conference on Mining Software Repositories (MSR), May 2017, pp. 495–498.

[59] A. Ko and B. Myers, “Debugging reinvented,” in 2008 ACM/IEEE 30th International

Conference on Software Engineering, May 2008, pp. 301–310.

[60] F. Servant and J. A. Jones, “History slicing,” in 2011 26th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2011), Nov 2011, pp. 452–455.

[61] ——, “History slicing: Assisting code-evolution tasks,” in Proceedings of the ACM

http://doi.acm.org/10.1145/1453101.1453146
https://doi.org/10.1145/3287324.3287366
https://doi.org/10.1016/j.jss.2021.110905

106 BIBLIOGRAPHY

SIGSOFT 20th International Symposium on the Foundations of Software Engineering,

ser. FSE ’12. New York, NY, USA: Association for Computing Machinery, 2012.

[Online]. Available: https://doi.org/10.1145/2393596.2393646

[62] ——, “Chronos: Visualizing slices of source-code history,” in 2013 First IEEE Working

Conference on Software Visualization (VISSOFT), Sep. 2013, pp. 1–4.

[63] ——, “Fuzzy fine-grained code-history analysis,” in Proceedings of the 39th

International Conference on Software Engineering, ser. ICSE ’17. IEEE Press, 2017,

p. 746–757. [Online]. Available: https://doi.org/10.1109/ICSE.2017.74

[64] F. Servant, “Supporting bug investigation using history analysis,” in 2013 28th

IEEE/ACM International Conference on Automated Software Engineering (ASE), Nov

2013, pp. 754–757.

[65] X. Jin and F. Servant, “The hidden cost of code completion: Understanding the impact

of the recommendation-list length on its efficiency,” in 2018 IEEE/ACM 15th Inter-

national Conference on Mining Software Repositories (MSR), May 2018, pp. 70–73.

[66] R. Barbudo, A. Ramírez, F. Servant, and J. R. Romero, “GEML: A grammar-based

evolutionary machine learning approach for design-pattern detection,” J. Syst. Softw.,

vol. 175, p. 110919, 2021. [Online]. Available: https://doi.org/10.1016/j.jss.2021.

110919

[67] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk, “On automati-

cally generating commit messages via summarization of source code changes,” in 2014

IEEE 14th International Working Conference on Source Code Analysis and Manipu-

lation, Sep. 2014, pp. 275–284.

[68] R. P. Buse and W. R. Weimer, “Automatically documenting program changes,”

https://doi.org/10.1145/2393596.2393646
https://doi.org/10.1109/ICSE.2017.74
https://doi.org/10.1016/j.jss.2021.110919
https://doi.org/10.1016/j.jss.2021.110919

BIBLIOGRAPHY 107

in Proceedings of the IEEE/ACM International Conference on Automated Software

Engineering, ser. ASE ’10. New York, NY, USA: ACM, 2010, pp. 33–42. [Online].

Available: http://doi.acm.org/10.1145/1858996.1859005

[69] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proceedings

of the 2013 International Conference on Software Engineering, ser. ICSE ’13.

Piscataway, NJ, USA: IEEE Press, 2013, pp. 1193–1196. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2486788.2486959

[70] A. W. Bradley and G. C. Murphy, “Supporting software history exploration,” in

Proceedings of the 8th Working Conference on Mining Software Repositories, ser.

MSR ’11. New York, NY, USA: ACM, 2011, pp. 193–202. [Online]. Available:

http://doi.acm.org/10.1145/1985441.1985469

[71] S. Zhang and M. D. Ernst, “Which configuration option should i change?” in

Proceedings of the 36th International Conference on Software Engineering, ser.

ICSE 2014. New York, NY, USA: ACM, 2014, pp. 152–163. [Online]. Available:

http://doi.acm.org/10.1145/2568225.2568251

[72] S. Jiang, C. McMillan, and R. Santelices, “Do programmers do change impact

analysis in debugging?” Empirical Software Engineering, vol. 22, no. 2, pp. 631–669,

Apr 2017. [Online]. Available: https://doi.org/10.1007/s10664-016-9441-9

[73] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics and risk prediction of

software commits,” in Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp.

966–969. [Online]. Available: http://doi.acm.org/10.1145/2786805.2803183

[74] B. Shen, M. A. Gulzar, F. He, and N. Meng, “A characterization study of merge

http://doi.acm.org/10.1145/1858996.1859005
http://dl.acm.org/citation.cfm?id=2486788.2486959
http://doi.acm.org/10.1145/1985441.1985469
http://doi.acm.org/10.1145/2568225.2568251
https://doi.org/10.1007/s10664-016-9441-9
http://doi.acm.org/10.1145/2786805.2803183

108 BIBLIOGRAPHY

conflicts in java projects,” ACM Trans. Softw. Eng. Methodol., vol. 32, no. 2, mar

2023. [Online]. Available: https://doi-org.ezproxy.lib.vt.edu/10.1145/3546944

[75] S. S. Towqir, B. Shen, M. A. Gulzar, and N. Meng, “Detecting build conflicts in

software merge for java programs via static analysis,” in Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering, ser. ASE

’22. New York, NY, USA: Association for Computing Machinery, 2023. [Online].

Available: https://doi-org.ezproxy.lib.vt.edu/10.1145/3551349.3556950

[76] Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of mobile applications

behind the scenes,” in 2013 IEEE International Conference on Software Maintenance,

2013, pp. 170–179.

[77] T. Dumitraş, P. Narasimhan, and E. Tilevich, “To upgrade or not to

upgrade: Impact of online upgrades across multiple administrative domains,”

SIGPLAN Not., vol. 45, no. 10, p. 865–876, oct 2010. [Online]. Available:

https://doi-org.ezproxy.lib.vt.edu/10.1145/1932682.1869530

[78] A. V. Lamsweerde, “Goal-oriented requirements engineering: A guided tour,” in Pro-

ceedings Fifth IEEE International Symposium on Requirements Engineering, Aug 2001,

pp. 249–262.

[79] A. I. Anton, “Goal-based requirements analysis,” in Proceedings of the Second Inter-

national Conference on Requirements Engineering, April 1996, pp. 136–144.

[80] H. Kaiya, H. Horai, and M. Saeki, “Agora: Attributed goal-oriented requirements anal-

ysis method,” in Proceedings IEEE Joint International Conference on Requirements

Engineering, Sep. 2002, pp. 13–22.

https://doi-org.ezproxy.lib.vt.edu/10.1145/3546944
https://doi-org.ezproxy.lib.vt.edu/10.1145/3551349.3556950
https://doi-org.ezproxy.lib.vt.edu/10.1145/1932682.1869530

BIBLIOGRAPHY 109

[81] ITU-T. (2018, nov) User requirements notation (urn) – language definition. [Online].

Available: http://handle.itu.int/11.1002/1000/13711

[82] D. Amyot, “Introduction to the user requirements notation: learning by example,”

Computer Networks, vol. 42, no. 3, pp. 285 – 301, 2003, iTU-T System Design

Languages (SDL). [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S1389128603002445

[83] C. Potts and G. Bruns, “Recording the reasons for design decisions,” in Proceedings

of the 10th International Conference on Software Engineering, ser. ICSE ’88. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1988, pp. 418–427. [Online].

Available: http://dl.acm.org/citation.cfm?id=55823.55863

[84] S. E. Toulmin, The Uses of Argument, 2nd ed. Cambridge University Press, 2003.

[85] A. P. J. Jarczyk, P. Loffler, and F. M. Shipmann, “Design rationale for software engi-

neering: A survey,” in Proceedings of the Twenty-Fifth Hawaii International Conference

on System Sciences, vol. ii, Jan 1992, pp. 577–586 vol.2.

[86] J. E. Burge and D. C. Brown, “Software engineering using rationale,” Journal of

Systems and Software, vol. 81, no. 3, pp. 395 – 413, 2008, selected Papers from

the 2006 Brazilian Symposia on Databases and on Software Engineering. [Online].

Available: http://www.sciencedirect.com/science/article/pii/S0164121207001203

[87] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for design

traceability and reasoning,” Journal of Systems and Software, vol. 80, no. 6, pp. 918

– 934, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0164121206002287

[88] S. Mehrpour and T. D. LaToza, “A survey of tool support for working with design

http://handle.itu.int/11.1002/1000/13711
http://www.sciencedirect.com/science/article/pii/S1389128603002445
http://www.sciencedirect.com/science/article/pii/S1389128603002445
http://dl.acm.org/citation.cfm?id=55823.55863
http://www.sciencedirect.com/science/article/pii/S0164121207001203
http://www.sciencedirect.com/science/article/pii/S0164121206002287
http://www.sciencedirect.com/science/article/pii/S0164121206002287

110 BIBLIOGRAPHY

decisions in code,” ACM Comput. Surv., jul 2023, just Accepted. [Online]. Available:

https://doi-org.ezproxy.lib.vt.edu/10.1145/3607868

[89] R. Alkadhi, T. Lata, E. Guzmany, and B. Bruegge, “Rationale in development chat

messages: An exploratory study,” in 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR), May 2017, pp. 436–446.

[90] ——, “Rationale in development chat messages: An exploratory study,” in 2017

IEEE/ACM 14th International Conference on Mining Software Repositories (MSR),

May 2017, pp. 436–446.

[91] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do developers

discuss rationale?” in 2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER), March 2018, pp. 357–369.

[92] Z. Kurtanović and W. Maalej, “Mining user rationale from software reviews,” in 2017

IEEE 25th International Requirements Engineering Conference (RE), Sep. 2017, pp.

61–70.

[93] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann, “Information needs in bug

reports: Improving cooperation between developers and users,” in Proceedings of

the 2010 ACM Conference on Computer Supported Cooperative Work, ser. CSCW

’10. New York, NY, USA: Association for Computing Machinery, 2010, p. 301–310.

[Online]. Available: https://doi.org/10.1145/1718918.1718973

[94] J. Aranda and G. Venolia, “The secret life of bugs: Going past the errors and omissions

in software repositories,” in 2009 IEEE 31st International Conference on Software

Engineering, 2009, pp. 298–308.

https://doi-org.ezproxy.lib.vt.edu/10.1145/3607868
https://doi.org/10.1145/1718918.1718973

BIBLIOGRAPHY 111

[95] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion in code reviews: Rea-

sons, impacts, and coping strategies,” in 2019 IEEE 26th International Conference on

Software Analysis, Evolution and Reengineering (SANER), Feb 2019, pp. 49–60.

[96] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers

comprehend software?” in Proceedings of the 34th International Conference on

Software Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp.

255–265. [Online]. Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

[97] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Communicative intention in code

review questions,” in 2018 IEEE International Conference on Software Maintenance

and Evolution (ICSME), Sep. 2018, pp. 519–523.

[98] J. T. Liang, M. Arab, M. Ko, A. J. Ko, and T. D. LaToza, “A qualitative study on

the implementation design decisions of developers,” 2023.

[99] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, “Cost,

benefits and quality of software development documentation: A systematic mapping,”

Journal of Systems and Software, vol. 99, pp. 175 – 198, 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0164121214002131

[100] E. Aghajani, C. Nagy, O. L. Vega-Marquez, M. Linares-Vasquez, L. Moreno, G. Bavota,

and M. Lanza, “Software Documentation Issues Unveiled,” Proceedings - International

Conference on Software Engineering, vol. 2019-May, pp. 1199–1210, 2019.

[101] E. Aghajani, C. Nagy, M. Linares-Vá squez, L. Moreno, G. Bavota, M. Lanza,

and D. C. Shepherd, “Software documentation: The practitioners’ perspective,” in

Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering,

ser. ICSE ’20. New York, NY, USA: Association for Computing Machinery, 2020, p.

590–601. [Online]. Available: https://doi.org/10.1145/3377811.3380405

http://dl.acm.org/citation.cfm?id=2337223.2337254
http://www.sciencedirect.com/science/article/pii/S0164121214002131
https://doi.org/10.1145/3377811.3380405

112 BIBLIOGRAPHY

[102] M. á. r. Lima, I. Ahmed, T. Conte, E. Nascimento, E. Oliveira, and B. Gadelha,

“Land of Lost Knowledge: An Initial Investigation into Projects Lost Knowledge,”

International Symposium on Empirical Software Engineering and Measurement, vol.

2019-Septemer, pp. 1–6, 2019.

[103] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “How do practitioners

manage decision knowledge during continuous software engineering?” Proceedings of

the International Conference on Software Engineering and Knowledge Engineering,

SEKE, vol. 2019-July, pp. 735–740, 2019.

[104] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A.

Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C. Murphy, L. Moreno,

D. Shepherd, and E. Wong, “On-demand developer documentation,” in 2017 IEEE In-

ternational Conference on Software Maintenance and Evolution (ICSME), Sep. 2017,

pp. 479–483.

[105] A. Bosu, J. C. Carver, C. Bird, J. Orbeck, and C. Chockley, “Process aspects and

social dynamics of contemporary code review: Insights from open source development

and industrial practice at microsoft,” IEEE Transactions on Software Engineering,

vol. 43, no. 1, pp. 56–75, Jan 2017.

[106] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka, “Code reviewing in

the trenches: Challenges and best practices,” IEEE Software, vol. 35, no. 4, pp. 34–42,

July 2018.

[107] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern code

review,” Proceedings - International Conference on Software Engineering, pp. 712–721,

2013.

BIBLIOGRAPHY 113

[108] N. Fatima, S. Nazir, and S. Chuprat, “Understanding the impact of feedback on knowl-

edge sharing in modern code review,” in 2019 IEEE 6th International Conference on

Engineering Technologies and Applied Sciences (ICETAS), Dec 2019, pp. 1–5.

[109] F. E. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and K. Matsumoto, “An empirical study

of design discussions in code review,” International Symposium on Empirical Software

Engineering and Measurement, 2018.

[110] S. Wang, C. Bansal, and N. Nagappan, “Large-scale intent analysis for

identifying large-review-effort code changes,” Information and Software Technology,

p. 106408, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0950584920300033

[111] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “An exploratory study on confusion

in code reviews,” Empirical Software Engineering, 2020.

[112] ——, “Confusion detection in code reviews,” Proceedings - 2017 IEEE International

Conference on Software Maintenance and Evolution, ICSME 2017, pp. 549–553, 2017.

[113] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk, “On automati-

cally generating commit messages via summarization of source code changes,” in 2014

IEEE 14th International Working Conference on Source Code Analysis and Manipu-

lation, Sep. 2014, pp. 275–284.

[114] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk, “Changescribe:

A tool for automatically generating commit messages,” in 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, vol. 2, May 2015, pp. 709–712.

[115] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit

messages from diffs using neural machine translation,” in Proceedings of the 32Nd

http://www.sciencedirect.com/science/article/pii/S0950584920300033
http://www.sciencedirect.com/science/article/pii/S0950584920300033

114 BIBLIOGRAPHY

IEEE/ACM International Conference on Automated Software Engineering, ser. ASE

2017. Piscataway, NJ, USA: IEEE Press, 2017, pp. 135–146. [Online]. Available:

http://dl.acm.org/citation.cfm?id=3155562.3155583

[116] S. Jiang and C. McMillan, “Towards automatic generation of short summaries of com-

mits,” in 2017 IEEE/ACM 25th International Conference on Program Comprehension

(ICPC), May 2017, pp. 320–323.

[117] J. Shen, X. Sun, B. Li, H. Yang, and J. Hu, “On automatic summarization of what

and why information in source code changes,” in 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), vol. 1, June 2016, pp. 103–112.

[118] Z. Liu, X. Xia, C. Treude, D. Lo, and S. Li, “Automatic generation of pull request

descriptions,” Proceedings - 2019 34th IEEE/ACM International Conference on Auto-

mated Software Engineering, ASE 2019, pp. 176–188, 2019.

[119] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and G. Canfora,

“Automatic generation of release notes,” in Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, ser. FSE 2014.

New York, NY, USA: Association for Computing Machinery, 2014, p. 484–495.

[Online]. Available: https://doi.org/10.1145/2635868.2635870

[120] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a characterization

of open source software repositories,” in 2008 16th IEEE International Conference on

Program Comprehension, June 2008, pp. 182–191.

[121] L. P. Hattori and M. Lanza, “On the nature of commits,” in Proceedings of the

23rd IEEE/ACM International Conference on Automated Software Engineering, ser.

ASE’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. III–63–III–71. [Online].

Available: https://doi.org/10.1109/ASEW.2008.4686322

http://dl.acm.org/citation.cfm?id=3155562.3155583
https://doi.org/10.1145/2635868.2635870
https://doi.org/10.1109/ASEW.2008.4686322

BIBLIOGRAPHY 115

[122] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic classication of

large changes into maintenance categories,” in 2009 IEEE 17th International Confer-

ence on Program Comprehension, May 2009, pp. 30–39.

[123] R. Goyal, G. Ferreira, C. Kästner, and J. Herbsleb, “Identifying unusual commits

on github,” Journal of Software: Evolution and Process, vol. 30, no. 1, p. e1893,

2018, e1893 smr.1893. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/

10.1002/smr.1893

[124] S. Zhang and M. D. Ernst, “Which configuration option should i change?” in

Proceedings of the 36th International Conference on Software Engineering, ser.

ICSE 2014. New York, NY, USA: ACM, 2014, pp. 152–163. [Online]. Available:

http://doi.acm.org/10.1145/2568225.2568251

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1893
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1893
http://doi.acm.org/10.1145/2568225.2568251

	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Thesis Statement
	Understanding developers' need
	Surveying developers' experiences
	Predicting rationale components' documentation
	Results and Contributions
	Outline

	Understanding developers' need for rationale of code changes
	Background and Motivation
	Research Questions
	Approach
	Developer Interviews
	Survey I
	Survey II
	Participants' Recruitment

	Tasks for which rationale is needed
	Research Method
	Results

	Seeking rationale of internal code vs. external code
	Research Method
	Results

	Components of rationale
	Research Method
	Results

	Threats to validity
	Summary

	Surveying developers' experiences with rationale of code changes
	Background and Motivation
	Research Questions
	Approach
	Experience with rationale
	Research Method
	Results

	Experience with individual components
	Research Method
	Results

	Factors leading to give up rationale search
	Research Method
	Results

	Experience comparison
	Research Method
	Results

	Threats to validity
	Conclusion

	Predicting Rationale Components Documentation in PRT
	Background and Motivation
	Research Questions
	Approach
	Data Preparation
	Correlation analysis
	Statistical Modeling
	Models Evaluation & Analysis

	PRT rationale header correlation analysis
	Predicting PRT rationale header fill
	Comparing features groups performance
	Threats to validity
	Summary

	Discussion and Implications
	Rationale of code commits vs. rationale in other contexts
	Providing a better understanding of rationale need
	Our vision: practitioners documentation of rationale
	Our vision: tools support in documenting rationale
	Our vision: rationale documentation automation
	Our vision: benefits of good documentation

	Related Work
	Rationale Management in Software Requirements, Design, and Architecture
	Rationale in Software Evolution and Maintenance
	Components of the Rationale of Code Changes
	Tasks that need the Rationale of Code Changes
	Experience with the Rationale of Code Changes

	Rationale Documentation Support
	Rationale documentation in code review context
	Tools to support software changes documentation

	Conclusions
	Bibliography

