
Decomposing the Rationale of Code Commits:
The Software Developer’s Perspective

Khadijah Al Safwan
khsaf@vt.edu
Virginia Tech

Blacksburg, VA, USA

Francisco Servant
fservant@vt.edu
Virginia Tech

Blacksburg, VA, USA

ABSTRACT
Communicating the rationale behind decisions is essential for the
success of software engineering projects. In particular, understand-
ing the rationale of code commits is an important and often difficult
task. We posit that part of such difficulty lies in rationale often
being treated as a single piece of information. In this paper, we
set to discover the breakdown of components in which developers
decompose the rationale of code commits in the context of software
maintenance, and to understand their experience with it andwith its
individual components. For this goal, we apply a mixed-methods ap-
proach, interviewing 20 software developers to ask them how they
decompose rationale, and surveying an additional 24 developers to
understand their experiences needing, finding, and recording those
components. We found that developers decompose the rationale
of code commits into 15 components, each of which is differently
needed, found, and recorded. These components are: goal, need,
benefits, constraints, alternatives, selected alternative, dependencies,
committer, time, location,modifications, explanation of modifications,
validation, maturity stage, and side effects. Our findings provide
multiple implications. Educators can now disseminate the multiple
dimensions and importance of the rationale of code commits. For
practitioners, our decomposition of rationale defines a “common
vocabulary” to use when discussing rationale of code commits,
which we expect to strengthen the quality of their rationale sharing
and documentation process. For researchers, our findings enable
techniques for automatically assessing, improving, and generating
rationale of code commits to specifically target the components
that developers need.

CCS CONCEPTS
• Software and its engineering → Software evolution; Soft-
ware version control;Maintaining software;Documentation.

KEYWORDS
Software Changes Rationale; Software Evolution and Maintenance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338979

ACM Reference Format:
Khadijah Al Safwan and Francisco Servant. 2019. Decomposing the Ra-
tionale of Code Commits: The Software Developer’s Perspective. In Pro-
ceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3338906.3338979

1 INTRODUCTION
Software development is driven by decisions from various stake-
holders, following some rationale, at every stage of the software
development life-cycle [9]. Given the complexity of software and
software development teams, the effective management of ratio-
nale for software development decisions is expected to play an
important role in the success of software projects [14].

In the context of code changes, i.e., code commits, rationale is
a major information need. Many research studies support the im-
portance of understanding the rationale of code commits. It is the
most common [11] and important [50] information need to under-
stand from code history, and very frequently sought during code
review [15, 39]. Unfortunately, it can also be quite difficult to find
an answer for it [35, 50].

We posit that a fundamental step to support developers in man-
aging the rationale of code commits is to discover the specific pieces
of information that compose it. Thus, the main goal of this paper is
to discover the breakdown of components in which developers de-
compose the rationale of code commits — in the context of software
maintenance. Existing studies of software developers informally de-
fine the rationale of code commits as answering the question: “why
was this code implemented this way?” e.g., [11, 35]. However, this
informal question could easily be interpreted by software develop-
ers in many different ways, potentially as disparate as: “what is the
purpose of this code?” [30]; “why where [these changes] introduced?”
[16]; or “why was it done this way?” [35] — all of which request
different answers. Since software developers mentioned all these
different interpretations when asked about rationale in past studies,
we formed our intuition that it could be decomposed into multiple
components, each addressing different aspects of the question.

Efforts to study rationale in depth have been carried out in the
context of design, decomposing it into various more-specific com-
ponents [48]: e.g., design constraints, assumptions, or certainty of
design. In the context of software maintenance, Burge et al. pre-
scriptively propose some questions that may answer rationale [9].
We, instead, take a descriptive approach, i.e., we aim to discover
how developers decompose the rationale of code commits — as op-
posed to conceptually and rigorously decomposing the concept.
We employ this practical approach because we ultimately aim to

397

https://doi.org/10.1145/3338906.3338979
https://doi.org/10.1145/3338906.3338979


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Khadijah Al Safwan and Francisco Servant

assist developers in finding and recording what they mean by the
rationale of code commits.

We used a mixed methods approach in our study. First, we dis-
covered how developers decompose the rationale of code commits
by interviewing 20 software developers. Then, we ran a survey
to ask an additional 24 developers about their experiences with
(needing, finding, and recording) the rationale of code commits —
both generally and for individual components. Our intention with
these questions was to find areas of improvement in their practices.

We found that software developers decompose the rationale of
code commits into 15 separate components that they could seek
when searching for rationale: goal, need, benefits, constraints, al-
ternatives, selected alternative, dependencies, committer, time, loca-
tion,modifications, explanation of modifications, validation,maturity
stage, and side effects. Some of these reported components were not
previously mentioned in studies of rationale in other contexts, e.g.,
[48], and were instead specific to the context of software mainte-
nance — e.g., committer and time. Understanding which components
developers seek in rationale is an important problem, since most
developers reported seeking it multiple times a week or more often,
and spending more than 20 minutes to find it in hard cases.

Our study also revealed areas of improvement in developers’
practices regarding the rationale of code commits. For example,
developers most struggled to find side effects and alternatives, and
they need to find them on average multiple times per month and
per year, respectively. Additionally, developers least often record:
alternatives, selected alternative, constraints, and maturity stage,
even if they need to find them on average multiple times per year
(alternatives) and per month (remaining ones).

Our findings have multiple implications for practitioners. Our
decomposition of the rationale of code commits provides: (1) a
common language to use when discussing it, which practitioners
can use to (2) assess and (3) strengthen the quality of their rationale
sharing and documentation processes. While we do not expect
practitioners to document all components in all situations, they
now have an extensive list of components to judge which ones
are relevant for each situation. Our findings also facilitate multiple
lines of research. Given our decomposition of rationale, techniques
could now be produced to automatically: (1) assess the quality
of rationale documentation, and (2) recommend or (3) generate
missing components.

This paper provides the following contributions:
• A detailed model of the components into which software devel-
opers decompose the rationale of code commits.

• A study of the experiences of software developers needing, find-
ing, and recording the rationale of code commits in general.

• A study of the experiences of software developers needing, find-
ing, and recording the individual components of the rationale of
code commits.

2 RELATEDWORK
Existing work supports the importance of rationale management
throughout the software development life-cycle, e.g., [9, 14]. Thus,
multiple approaches and systems have been proposed to integrate
rationale management in the process of requirements engineering,

software design and architecture, e.g., [18, 34]. However, most ex-
isting research efforts have focused on design rationale, which has
been described from multiple perspectives e.g., [41, 48] to under-
stand the pieces of information that could express design rationale.

In this paper, we focus on rationale for software maintenance,
particularly for individual code commits. Most research in this con-
text empirically found that developers strongly need it, but, to the
extent of our knowledge, no existing work studied the components
of rationale that developers need during software maintenance.
Rationale of software requirements.Multiple models were pro-
posed to extend requirements models to encourage the capture
of rationale within them, e.g., [4, 28]. In addition to these models,
tools have also been proposed to manage rationale of software
requirements e.g., [3, 23, 34].
Rationale of software design and architecture.Many schemes
have been proposed to capture the design and architecture ratio-
nale. The schemes can be divided into two categories: decision-
centric e.g., [36] and usage-centric approaches [9]. The decision-
centric approaches e.g., [41, 48] focus on capturing the rationale as
a decision-making process utilizing Toulmin’s model of argumen-
tation [51] and Rittel’s Issue-Based Information System (IBIS) [32].
The usage-centric approaches focus on capturing rationale without
representing the decision-making process, [18, 48, 52? ].

The usage-centric approaches “recognize that organizing ratio-
nale around decisions is not the best way to elicit and characterize
some of the rationale needed for making appropriate design deci-
sions” [9]. Jarczyk et al. provided a survey of the systems developed
to support design rationale, all of which were based on Toulmin’s
model and/or IBIS [24]. Design rational has also been supported by
multiple tools, e.g., [8, 20], which can be useful to detect inconsis-
tencies, omissions, and conflicts [49].
Rationale in software evolution andmaintenance. Burge et al.
prescriptively enumerate a few questions that may answer rationale
in software maintenance [9]. We, in turn, provide a descriptive
model of rationale in the context of software maintenance, from
the perspective of what developers need to find when they seek it.

Studies involving software history and developers’ information
needs in the last decade [9, 11, 15, 16, 30, 35, 38, 39, 43, 50] establish
a strong demand for rationale. As such, some work has focused
on capturing rationale from software artifacts like IRC discussions
[2], or user reviews [33]. Our work is motivated by these empirical
studies that highlight the importance of finding rationale of code
commits. The most closely related study to ours is Tao et al.’s
[50]. They found that the most important information need for
understanding code commits is rationale, which is sometimes easy,
sometimes difficult. Our study validates Tao et al.’s results, since our
participants reported similar ratings of importance and difficulty
for finding the rationale of code changes. This also shows that we
studied a similar population of developers.

Our study extends Tao et al.’s by finding: the individual pieces of
information that compose rationale; the experiences of developers
needing, finding and recording those individual pieces; and recom-
mendations to improve their documentation. In particular, this finer
level of granularity enables us to provide a possible explanation for
one of the main phenomena observed by Tao et al.: that rationale is

398



Decomposing the Rationale of Code Commits ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Preliminary model of rationale of code commits
Component Component Expressed as a Question Literature

References
Goal What do you want to achieve? [9, 30]
Need Why do you need to achieve that? [16, 46]
Location What artifacts were changed? [9]
Modifications What specific changes were performed in the

artifacts?
[30, 46]

Alternatives What other alternatives did you have? [35]
Selected
alternative

Why did you make those specific changes and
not others?

[30, 35]

Validation How do those specific changes achieve the goal? [9, 35]
Benefits What is the benefit of what youwant to achieve? [9, 30]
Costs What risks could come from these changes? [9, 30]

easy to find when it is well documented. We posit that rationale is
deemed well documented when it contains the specific components
that the developer is seeking at that moment.
Software comprehension. Researchers developed techniques to
summarize and document code changes, [10], clarify the rationale
behind code changes [12, 37], or answer “what” and “why” questions
about code changes [7, 25, 26, 29, 42]. Other researchers mined
software repositories to characterize commits [1, 19, 22? ], and
others studied the impact and risk of changes [27, 44, 53].

3 RESEARCH METHOD
We used a mixed-methods approach in this study. We first discov-
ered the individual components into which developers decompose
the rationale of code commits using semi-structured interviews.
Then, we studied the experiences that developers have needing,
finding and recording rationale and its components using the same
interviews and a survey. This mixed-methods strategy allowed us to
decompose rationale through rich one-on-one conversations with
developers, while also reaching more participants for our questions
about needing, finding, and recording it. Mixed-methods have been
successfully employed by many other studies of software develop-
ers, e.g., [11, 21, 45, 50]. Our study answers four research questions:
RQ1: What is the experience of developers needing, finding,
and recording the rationale of code commits? First, we investi-
gated this research question to understand the effort that developers
dedicate to seek and document the rationale of code commits. Tao
et al.’s study found that finding the rationale of code commits is
very important, and it is easy or hard to find depending on how
well-documented it is [50]. We extend their study by asking devel-
opers five additional questions in three different contexts: needing,
finding and recording rationale.
RQ2:Which components do software developers decompose
the rationale of code commits into? Next, we asked developers
about the specific components into which they would decompose
the rationale of code commits — the pieces of information that they
believe would compose a high-quality, detailed description. We aim
to discover an extensive set of components that developers could be
looking for. This model will inform developers wanting to improve
their documentation of rationale of code commits — whether they
aim to document it fully or just more thoroughly.
RQ3: What is the experience of developers needing, finding,
and recording the individual components of the rationale

of code commits? Next, we studied how developers need, find,
and record different components differently. This will now enable
developers to improve their documentation of rationale in an effort-
efficient manner, e.g., by focusing on documenting those compo-
nents that are most needed or most hard-to-find.
RQ4: Would comparing the experience of developers need-
ing, finding, and recording the individual components of the
rationale of code commits with each other reveal areas for
improvement? Finally, we performed a cross-dimensional study
(i.e., comparing need vs. finding vs. recording components) to inves-
tigate areas for improvement in current practices of recording and
retrieving rationale of code commits. Identifying gaps, e.g., between
needed and recorded components, will provide valuable recommen-
dations for developers wanting to improve their documentation of
rationale of code commits.

3.1 Developer Interviews

Interview Design.We designed and refined our interview script
through five pilot sessions. Our interview consisted of two main
parts. The first part focused on finding the perspective of developers
of the components that form the rationale of code commits (RQ2).
The second part aimed to understand the experiences of developers
needing, finding, and recording it (RQ1) and its components (RQ3).
We study RQ4 by comparing participants’ responses in different
dimensions.
Decomposing the Rationale of Code Commits.We started our inter-
views by giving our participants the definition of rationale of code
that is most common in the research literature, i.e., the answer to
“why is the code this way?” [11, 35]. We did this to make sure that all
participants had a uniform definition of the concept that we were
going to discuss. Next, we asked them to describe real situations in
which they investigated a code commit to understand its rationale.
We took this step to stimulate their memories and set them in the
right context. After that, we asked participants to decompose the
rationale of code commits into components. We asked this question
after they had been thinking about their own experiences searching
for it, with the intention of maximizing the number of components
that they would report. Then, we showed them a preliminary model
(see Table 1) of components of the rationale of code commits that we
created by studying the research literature — including components
to which researchers have referred as rationale [9, 16, 30, 35, 46].
We used this preliminary model as a probe to prime our participants
and get them in the right frame of reference. We asked participants
to critique and extend the preliminary model — taking their pre-
vious decomposition into consideration — to the extent that they
believed necessary to build a final model of all the components of
the rationale of code commits. For any component that was added
by participants, we asked them to describe it with a name, question,
and example answer. We presented the same preliminary model
to all participants — i.e., we did not show the modified models to
other interview participants.

Using the preliminary model as a probe served multiple pur-
poses: it clarified the scope of our study, it allowed developers to
discuss an extensive set of components, and it allowed us to reach
saturation of answers much faster (interviewing fewer participants)

399



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Khadijah Al Safwan and Francisco Servant

How many years of experience do you have with [software
development |version control systems (eg. Git, Github)]?

.

(a) Experience (Years)

Select all that apply, your [software
development experience | experience with

version control systems] is:

.
 

            u

(b) Experience (Type)

What version control systems have you used
for software development?

(c) Version control systems

Figure 1: Demographics of our interview and survey participants

than if we had only relied on our participants’ experiences and
decompositions — since situations in which many components are
needed simultaneously may be rare, or because people’s memory
is generally unreliable.

However, by using a preliminary model, we had the risk of in-
troducing confirmation bias [40]. We took multiple measures to
reduce this potential bias. First, we presented the preliminary model
neutrally, as “this model” — avoiding potentially-biasing adjectives,
such as “ours” or “preliminary”. Second, we built it by studying
in the research literature, reducing the risk of inserting our own
opinions in it. Third, we presented the preliminary model to par-
ticipants only after they had produced their own decomposition —
without having seen it. Fourth, we asked participants to consider
their own decomposition when they critiqued and extended the
preliminary model. We believe that we were successful with these
efforts, since our final model of rationale of code commits (see Table
2) is much more extensive than the preliminary model (see Table 1).
The preliminary model had only 9 components, whereas the final
model has 15.
Developer Experiences with the Rationale of Code Commits. In the
second part of the interviews, we asked participants to rate their
experiences needing, finding, and recording rationale of code com-
mits and its components in Likert-scale-style questions. We report
our specific questions and their scales in Section 4, in Figures 2–7.
Interview Analysis. To answer RQ2, we used card sorting [47] to
aggregate all the components that at least one participant included
in their final model of rationale of code commits. First, one author
of this paper created a card for each component. Then, each of the
two paper authors separately sorted the cards to aggregate those
that described similar components. For example, we aggregated
into “Side Effects” : the preliminary component “Costs”, and the
“Merge Conflict/Success”, “Limitation”, and “Impact” components that
were mentioned by different participants. After that, both authors
collaboratively consolidated the two sets of individually-aggregated
components, comparing them and deciding on disagreements. Then,
we characterized each of the resulting aggregated components with
a name, a question, and an example answer to the question based
on a hypothetical commit. Finally, we categorized the resulting
components into themes.

To answer RQ1 and RQ3, in Section 4, we report the percentage
of participants that provided each answer to each Likert-scale-style
question. All participants provided answers about the rationale of
code commits in general. For individual components of rationale,
the answers include only the participants that included them in
their final model. Whenever we aggregated components through
card sorting, we also aggregated the responses about experience
with them.
Recruitment.We used snowball sampling [6], i.e., we asked par-
ticipants to refer our study to their own contacts. We advertised
our study in mailing lists in our university that covered software
developers of diverse experience, e.g., developing various university
software systems, and graduate students with professional software
development experience. We compensated interview participants
with a $20 Amazon gift card.

We interviewed 20 participants, after having discarded three
other interviews for various reasons: one participant could not de-
scribe an example of seeking rationale of code commits, another
voluntarily expressed lack of experience throughout the interview,
and we found out that the last one had knowledge about our inter-
view materials.

3.2 Survey
Once we had identified the components of the rationale of code
commits through our interviews, we used a survey to obtain more
answers about developers’ experiences needing, finding, and record-
ing it and its components. We refined our survey through four pilot
versions, improving its clarity and the time required to complete
it. Our survey included the same Likert-scale-style questions that
we asked our interview participants for RQ1 and RQ3, but the ref-
erence model of rationale of code commits that we gave survey
respondents was the final model resulting from our analysis for
RQ2. Our results for RQ1 and RQ3 include the answers that we
obtained both from our interviews and from the survey.

We also used snowball sampling for our survey, asking interview
participants to advertise it to their contacts. We also advertised it
through public channels and social media. We encouraged partici-
pation by raffling a $50 gift card.

We analyzed 24 survey responses, after having discarded four
responses. We discarded two survey responses that reported longer

400



Decomposing the Rationale of Code Commits ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

How difficult is it to find rationale?

(a) Difficulty of finding

How often do you usually find rationale?

(b) Frequency of finding

How much time do you usually spend when searching for the rationale of code
commits?

(c) Usual search time

In the cases where it is hard to find the rationale of code commits, how much time do
you usually spend when searching for the rationale of code commits?

(d) Hard cases search time

Figure 2: Experience of developers finding rationale

During your software engineering activities, which frequency best reflects
how often you sought rationale?

(a) Rationale frequency of need
How important is understanding the rationale of code commits for the

completion of your work?

(b) Rationale importance

Figure 3: Experience of developers needing rationale

During your software engineering activities, how often do you record rationale?

Figure 4: Experience of developers recording rationale

experience with version control than with software development
to avoid bias introduced from experience with version control for
purposes other than coding. We also discarded two surveys that
we deemed as having been done carelessly — taking less than 10
minutes. We determined this cut-off point through our pilot surveys
— we asked one pilot participant to fill the survey carelessly and it
took 10 minutes.

4 RESULTS
We answer our four research questions in this section by presenting
the results of our study. We represent in Figure 1 the demographic
information of our interview and survey participants.

RQ1: What is the experience of developers needing,
finding, and recording the rationale of code commits?

Need. The participants of our study reported needing to seek ra-
tionale with diverse frequencies (see Figure 3a): multiple times per
day (27%), multiple times per week (29%), multiple times per month
(27%), and multiple times per year (13%). This also means that,
overall, the majority (56%) of our study participants need rationale
relatively frequently: multiple times per week or more often.

When asked about how important it is to understand the ratio-
nale of code commits, 86% of our participants reported needing
the rationale of code commits (see Figure 3b), from which: 7% can-
not complete their work without understanding it, 31% struggle to
complete their work without it, and 47% can complete their work
without it but still need it. The remaining 14% do not need the ra-
tionale of code commits, but report that it still helps them complete
their work. A very similar question was studied by Tao et al. [50],
whose participants “generally considered knowing the rationale of
a change as the top priority in change-understanding tasks”. Our
finding is aligned with theirs, since a majority of our participants
reported needing the rationale of code commits, which validates
that we are studying a similar population of developers.
Finding. Our participants’ responses in Figure 2a indicate that the
difficulty of finding the rationale of code commits, in general, is not
easy nor difficult. Software developers (on average) selected neutral
difficulty of finding the rationale of code commits. This finding also
generally agrees with Tao et al.’s, since their participants reported
that the rationale of code commits was generally easy to find, but
sometimes hard, depending on “the availability and quality of the
change description” [50].

Regardless of how hard it is, we were also interested in how often
developers end up finding the rationale of code commits altogether.
For this aspect, our study participants responses are positive (see
Figure 2b). Most software developers find the rationale of code
commits often or almost always. Only a few participants (11%)
rarely or almost never find the rationale of code commits.

In addition to studying whether software developers find the
rationale of code commits, we also studied how much time they
spend searching for it. Figure 2c and 2d shows the times that our
participants reported spending when searching for rationale. In

401



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Khadijah Al Safwan and Francisco Servant

Table 2: Resulting model of the rationale of code commits

Theme Component Component Expressed as Question Example Answer

Ch
an
ge

O
bj
ec
tiv

e ∗Goal What did you want to achieve? I wanted to implement functionality to sort the product list by price.
∗Need Why did you need to achieve that? Our user requested to be able to sort the list of products by price.
∗Benefits What is the benefit of what you want to

achieve?
The new option of sorting products by price will be useful for many customers in
addition to the one who requested it.

Ch
an
ge

D
es
ig
n

(p
re
-im

pl
em

en
ta
tio

n
as
se
ss
m
en
t)

Constraints What were the constraints limiting your im-
plementation choice?

The sorting algorithm had to be space efficient because it shouldwork in embedded
devices.

∗Alternatives What other alternatives did you have? I could have used the bucket sort algorithm, but this option was not feasible
because I would not have known the maximum price before sorting.

∗Selected Alterna-
tive

Why did you make those specific changes and
not others?

I implemented heap sort because it is space efficient and it has a predictable speed.

Dependency What other changes does this change depend
on?

This change depends on the API that provides the product list to be updated to
use JSON format.

Ch
an
ge

Ex
ec
ut
io
n

Committer Who changed the code? Developer X, who is responsible for the “products” page.
Time Why were the changes made at that time? This change happened before our 3.0 release to meet the customer contract for

that release.
∗Location What artifacts were changed? The “product” class was updated.
∗Modifications What specific changes were performed in the

artifacts?
I added a “sort” method in the “product” class implementing heap sort and now
the “listProduct” method calls “sort” first.

Explanation of
Modifications

What are the details of the implementation?

The code sorts the products by price by performing the following steps:
1- Build a heap from a list of “products” in O(n) operations.
2- Swap the first list-element with the final list-element of the list.
3- Decrease the considered range of the list by one.
4- Shift the new first element to its appropriate index in the heap based on the
“price”.
5- Repeat step (2) unless the considered range of the list is one element.

Ch
an
ge

Ev
al
ua
tio

n
(p
os
t-i
m
pl
em

en
ta
tio

n
as
se
ss
m
en
t)

∗Validation How did those specific changes achieve the
goal?

By using the heap sort algorithm, our customers can now see a sorted product
list in their memory-limited hardware.

Maturity Stage How mature is this code? The change is an initial implementation, which still has to be fully tested after
the API for the products list is updated.

∗Side Effects What are the side effects of the change? The integration test will fail if the API that provides the product list is not updated.
At the same time, merging this change with the main branch after updating the
API might break the existing code. Also, our implementation of heap sort may be
too complex for beginners and may slow down maintenance.

∗ Components that were included in the preliminary model of rationale of code commits. We extended the preliminary component Costs to Side Effects to include other side effects
mentioned by participants e.g., Impact.

the usual cases, slightly more than half participants (54%) spend
less than 10 minutes. However, in the hard cases of searching for
rationale, only slightly less than half participants (47%) spend more
than 30 minutes searching for the rationale of code commits. One
participant said about the time they spend searching for rationale
in the hard cases that it “depends how responsive the other person
is.” When considering the relatively high frequency with which
developers search for rationale of code commits, it can be a rather
time-consuming task.
Recording. Regarding the frequency of recording rationale in gen-
eral, Figure 4 shows our participants’ responses. The majority of
them reported recording the rationale of code commits often (30%)
or almost always (40%). Interestingly, our participants reported
recording the rationale of code commits with similar frequencies
than they reported finding it, which suggests that documentation
efforts generally help others find rationale.

RQ2: Which components do software developers de-
compose the rationale of code commits into?
We display in Table 2 the model of rationale of code commits that
we discovered. It represents the union of all the models that our
participants reported. As we discussed in Section 3.1, we obtained
this model aggregating all the components that were mentioned by
at least one participant in their final interview model of rationale

of code commits. Each participant built their final model by adding
and/or removing components to the preliminary model, while also
considering their own rationale decomposition. Altogether, our
participants reported a total of 27 components of the rationale of
code commits — they added 18 components to the 9 components in
the preliminary model. Since many of those components reported
very similar concepts, we aggregated them using card sorting to
obtain the final model that we show in Table 2. This resulting model
of rationale of code commits includes 15 components into which
developers decompose it. We categorized the resulting components
into four themes.

Our goal with this model of rationale was to gather an extensive
set of specific components of the rationale of code commits that
developers may be looking for when they need it. For that reason,
when a participant removed a component from the preliminary
model, we still kept it in our resulting final model (in Table 2).
Besides, only a few participants removed components.

When participants decided to remove components from the pre-
liminary model, they mentioned two main reasons: overlap with
other components, and the component being out of scope. In terms
of overlap among components, one participant thought that goal
and need can be the same most of the time and preferred to merge
them together, deleting the goal component. Another thought that
need is included in benefits and cost, deleting the need component.

402



Decomposing the Rationale of Code Commits ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

During your software engineering activities, which frequency best reflects
how often you sought [Rationale | Component Name]?    

(a) Frequency of need

How important is finding each component (for understanding
the rationale of code commits)?

  

(b) Components importance

Figure 5: Experience of developers needing individual components of rationale

Another participant deleted benefits because it is included in goal.
Another one considered location as part of modification.

We believe that it is possible that the answers for different com-
ponents can be the same in some cases. For a single code commit,
components of the same theme (see Table 2) may have very similar
answers to their expressive question. However, in many other cases
they will be different, making it useful to separate those compo-
nents. We illustrate the differences between components in Table 2
by including the components expressed as questions and different
example answers for different ones.

Other participants removed components that they considered
out of scope of rationale. From our 20 interview participants: two
participants removed modifications because they considered it too
low-level; three participants removed location because it would
not tell why the changes were made; three participants removed
alternatives, e.g., “alternatives is not something that you actually
implement!” ; and one participant deleted validation, saying that
“validation answers why the code is correct, not the rationale”. Despite
these disagreements, the majority of our interview participants (18,
17, 17, and 19, respectively) considered that these components do
belong in the rationale of code commits.

Furthermore, our participants generally provided positive com-
ments about the preliminary model — describing it as e.g., “a good
model,” “detailed,” “thorough,” “comprehensive,” “holistic,” or “exhaus-
tive.” They thought that the model “formally define[s] rationale”
and that “the components seem to be related to each other, but classi-
fied differently to each other.” One participant said that the model
is a “logical framework for thinking through rationale because [it
is] a sort of wide-open concept. It’s a little bit hard to know how to
think about [rationale]. [The model] makes sense as a directed way
to understand a specific commit or a series of commits. Why they are
the way they are.”

Many participants added components to the preliminary model.
As we mentioned earlier, we used card sorting to aggregate them

to the preliminary model and with each other. The 18 components
proposed by participants were: technical requirement, timeliness,
documentation, guidelines, non-feasible alternative, opinion selected
alternative, constraints, dependency, committer, time/date, explana-
tion of modifications, result, environment, scope for future develop-
ment, quality,merge conflict/success, limitation, and impact. For each
added component, we also asked participants to describe them with
a name, expressive question, and example answer to the question.

The fact that many participants added and some removed com-
ponents suggests that our participants were not strongly biased
towards simply agreeing with the preliminary model. More im-
portantly, it also suggests that different developers seek different
components at different times. Our study throws light into this
phenomenon. Thus, we pose that the rationale of code commits
would be much easier to comprehend, search for, and document
when it is expressed as its components — not necessarily all of them
at all times, but the ones that are relevant for each situation.

RQ3: What is the experience of developers needing,
finding, and recording the individual components of
the rationale of code commits?
We plot the distribution of answers to our questions about indi-
vidual components of the rationale for code commits in Figures
5–7. We cluster components into similar groups according to the
mean value of their responses using the Scott-Knott [17] algorithm.
We sort the components in our figures by the mean value of their
responses and we use red horizontal lines to separate clusters. We
also include as reference point in each figure the responses that our
participants gave for rationale in general.
Need. Figure 5a shows the distribution of responses for how fre-
quently developers need each component of the rationale of code
commits. Overall, the frequency with which developers need differ-
ent components of the rationale of code commits is highly similar
for all components — and for rationale itself in general. In this case,

403



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Khadijah Al Safwan and Francisco Servant

For the components of rationale of code commits that you seek,
how often do you usually find [Rationale | Component Name]?
    

(a) Rationale components frequency of finding

For the components of rationale of code commits that you seek,
how difficult is it to find [Rationale | Component Name]?         

(b) Rationale components difficulty of finding

Figure 6: Experience of developers finding individual components of rationale

During your software engineering activities,
how often do you record [Rationale | Component Name]?

    

Figure 7: Experience of developers recording individual
components of rationale

the Scott-Knott algorithm returns only two very-similar clusters.
While some of the most often needed components (like modifica-
tions, location or committer) are normally automatically recorded
by revision control systems, many other components are similarly
often needed and are not recorded automatically (like need or de-
pendency, or constraints). These results show that practitioners
would benefit from regularly recording these frequently-needed
components.

Figure 5b shows the relative importance of each component to
understand the rationale of code commits reported by developers.
These results show that most developers mentioned that most com-
ponents are important enough that they would understand the
rationale of code commits better if they knew that component. We
also observe that developers wanting to document the most impor-
tant component of rationale should focus on documenting the goal

and need of their changes, since the other most-important com-
ponents (modifications, location) are already recorded by revision
control.
Finding. Figure 6 shows the relative frequency and difficulty of
finding reported by developers for each component. Unsurprisingly,
the most frequently found components (and also the easiest to find)
are those automatically tracked by revision control (committer,
modifications, and location), followed by goal and time. However,
the frequency (and easiness) of finding quickly drops for all other
components, bringing our attention to a clear problem in finding the
remaining components. These results bring attention to the need to
improve documentation for the other components, since they are
hard to find. This clear divide could also explain why developers
talking about rationale in general say that sometimes it is much
harder to find rationale than other times [50] and it takes longer
(Figure 2d).
Recording. Figure 7 shows the relative frequency with which de-
velopers reported to record components of the rationale of code
commits. Again unsurprisingly, the most frequently recorded com-
ponents are those recorded automatically by revision control, but
again the frequency of recording drops dramatically for the remain-
ing components (which also probably explains why they are hard
to find). These results show that, even if developers claim to fre-
quently record rationale in general, there are many components of
it that they are in fact not recording frequently (even if they are
relatively often needed).

RQ4: Would comparing the experience of developers
needing, finding, and recording the individual compo-
nents of the rationale of code commitswith each other
reveal areas for improvement?

Figures 8a and 8b show that software developers aremost frequently
finding and recording the most frequently needed components of
rationale. Most of the components are in the middle frequency
of need and finding. However, this result brings attention to the

404



Decomposing the Rationale of Code Commits ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

(a) Components need vs. finding (b) Components need vs. recording (c) Components finding vs. recording

Figure 8: Cross-dimensional analysis of developers experience with the individual components of rationale of code commits

fact that there are many components that are not too frequently
needed, but when they are needed they are really hard to find.
Developers most struggled to find side effects and alternatives, even
if they need to find them on average multiple times per month and
per year, respectively. In these cases, the difficulty of finding these
components may overcome their limited frequency of need. Thus,
practitioners may want to pay more attention to documenting these
not-so-frequently-needed components.

The difficulty of finding rationale depends on many factors, e.g.,
the complexity of code commits, the developers’ documentation of
code changes, and the need for discovering the rationale. One of
the participants said about the giving up of searching rationale “I
would completely give up if I couldn’t find any record in our system
and the author was someone who either is no longer at our company
or is somebody who just doesn’t write code anymore. Yeah. I give up
when I’ve exhausted all the possibilities, but if I really need to know
I would keep trying until I figured it out.” For the components of
rationale that are not easy to find, guidelines could be established
and tools could be developed to simplify finding these components.
One participant said about finding rationale: “from my experience,
the rationale, it’s easier to figure out once your team kind of has
standards or guidelines.”

The recording of rationale goes hand in hand with the finding
of rationale (see Figure 8c). Unsurprisingly, not recording some
components makes it hard to find them later. The rarely recorded
components were: alternatives, selected alternative, maturity stage,
and constraints — even when developers need to find them on aver-
age multiple times per year (alternatives) and per month (remaining
ones). The identification of this group of rarely recorded compo-
nents should encourage researchers to develop tools specifically
focused on recording or answering them. For example, a technique
to evaluate the maturity stage of a commit will aid developers
seeking this component without the need for other developers to
manually document it.

5 DISCUSSION AND IMPLICATIONS
We discuss how our findings could improve the management of
rationale and how they differ from the knowledge about rationale
in other contexts. Then, we discuss implications for educators,
practitioners, researchers, and tool builders.

Improving the Management of Rationale. The management
of rationale of code commits is an important problem. Software
developers need the rationale of code commits (see Figure 3b) and
spend a significant amount of time searching for it (see Figures 2c
and 2d). Our decomposition of the rationale of code commits based
on the perspective of software developers (in Table 2) is a necessary
first step for any efforts to try to improve its management.

It is important to notice that we do not argue that developers
should document every component of rationale all of the time. In
fact, our participants mentioned this concern, e.g., “I know it might
not be doable or possible because no one will ever answer all these
in a commit. However, it is a good model.” Our goal is instead to
characterize the individual pieces of information that developers
may seek from rationale at different times. We, in fact, observed
that they seek different components with different frequencies (see
Figure 5a). Our characterization informs developers of the broad set
(and characteristics) of components of rationale that may be later
sought by others — so that they can make an informed decision of
which ones are worth documenting at each particular time.

A starting point for improving rationale documentation would
be those areas of improvement that we identified studying RQ4. We
observed that most components of rationale of code commits are
frequently not recorded (see Figure 7 and 8b), not found (see Figures
6a and 8a), or difficult to find (see Figure 6b). This observation
suggests the need for improving tools and practices to simplify the
management of rationale (recording and finding).
Rationale in Other Contexts. Some of the components of ra-
tionale of code commits that we discovered are also relevant for
rationale in software requirements, design, and architecture. These
are: constraints [18, 20, 48, 52? ], alternatives [20, 32, 36? ], and vali-
dation [18, 20? ]. However, we also discovered components that are
specific to the context of code commits: committer, time, location,
andmodifications. They generally refer to the execution of the code
change. Our participants indicated that these components are more
needed and important that those that also show in rationale in
other contexts (see Figures 5 and 8a). Similarly, there were some
components that were not mentioned in our study and were re-
ported in previous work as part of design rationale. Examples are:
design assumptions [18, 48, 52] and weaknesses [18, 48].

405



ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Khadijah Al Safwan and Francisco Servant

Implications for educators and practitioners. Our results pro-
vide a common language for discussing the rationale of code com-
mits in detail — by decomposing it into its individual components.
This common language will allows educators to disseminate the
multiple dimensions of rationale of code commits. They could ad-
vocate the practice of documenting the rationale of code commits
considering the components of rationale that other developers need.

We also encourage practitioners to consider the range of ra-
tionale when documenting their code commits to avoid missing
important components. Managers can collaborate with develop-
ers to establish team-specific guidelines for documenting rationale.
These guidelines could trigger developers to capture the rationale
of their code commits appropriately for each situation, building
beneficial habits and long-lasting documentation.
Implications for researchers and tool builders. In practice,
software developers fail to document various components of ratio-
nale, making it hard on other software developers to find it (Figure
8b). Any efforts to automate or support the process of finding the
rationale of code commits will require a rich understanding of the
specific pieces of information that developers seek when they need
it. The automated assistance for rationale documentation and re-
trieval is now easier with our model. For example, code-committing
interfaces could be enhanced with templates to offer suggestions
to record the different components/themes of rationale. This idea
was examined in the area of bug reports [5, 13], not only to as-
sist the documentation of various components but also to measure
their quality. We expect that these ideas will also translate to the
documentation of the rationale of code commits.

New techniques and tools could also be developed to automati-
cally generate the rationale of code commits, saving developer effort.
Existing efforts of automatic documentation of rationale treat it
as a single piece of information e.g., [7, 25, 26, 29, 42]. Our model
now allows future research efforts to generate targeted pieces of
information to build a more thorough documentation of rationale.

6 THREATS TO VALIDITY

Construct. To answer our research questions, we asked both open
and quantitative questions. We scheduled the interview sessions
to be relatively long (two hours), making sure that we gave the
participants enough time to express their ideas and share their
thoughts. At the beginning of each interview section, we asked the
participants to “answer the questions in [their] own words and provide
as much detail as [they] feel is relevant to address each question”. We
also placed an open question at the end of the interview to allow the
participants to share any additional information about the topic.
Internal. The methods we used in our study, interviews and sur-
veys, can be affected by bias and inaccurate responses. This effect
could be intentional or unintentional. We gave gift cards to the
interview participants and some of the survey participants, which
could have biased our results. To mitigate these concerns, we clearly
indicated that the compensation is for the time spent and not the
answers given. We repeatedly and constantly used phrases to en-
courage the participants to provide their own honest opinions,
using the phrase “based on your experience” in most of the ques-
tions. We also clearly indicated that the participants should “feel

free to change/add/delete components or not.” Sometimes, we also
indicated that “there is no right or wrong answer; we are interested
in what you think and your perspective.”

We also took multiple steps to reduce potential confirmation
bias [40] resulting from using a preliminary model. We asked par-
ticipants to describe their own examples and decomposition of
rationale into components before they ever saw the preliminary
model. We formed the preliminary model based on knowledge from
the research literature, and presented it neutrally. The fact that
the preliminary was largely extended from 9 components into 15
validates that potential confirmation bias was minimal in our study.

Another threat to validity in our study is drawing conclusions
based on recollected memories [31]. We are interested in capturing
developers’ opinions about what components constitute rationale,
independently of how accurate their recollection is. We encouraged
participants to take their time to recall situations and to report the
components that mattered in their experience.
External. Our studied developers may not fully represent the
whole developer population. To mitigate this threat, we recruited a
diverse population, with diverse types and amounts of experience
(Figure 1). Furthermore, our studied population was similar to the
ones previously studied in the literature, since we obtained similar
answers for our two questions about rationale that were already
studied by Tao et al. [50].

7 CONCLUSION
Developers invest valuable time and resources in the process of
discovering the rationale of code commits, which they perform
frequently and is difficult. However, any efforts aiming to improve
this process will necessarily require a good understanding of the
specific pieces of information that developers seekwhen they search
for rationale of code commits.

We applied a mixed-methods approach in this study. First, we
performed a series of interviews with software developers to dis-
cover the components into which developers decompose the ratio-
nale of code commits. Then, we ran a survey to better understand
their experiences needing, finding, and recording the rationale of
code commits. We found that developers decompose rationale of
code commits into 15 components along 4 themes, and that they
have different experiences with different components. Overall, de-
velopers need to find most components with similar frequency.
However, they mostly only record and find those components that
are automatically recorded by revision control systems. This finding
suggests that there is space for both researchers and practitioners to
improve the practices of managing the rationale of code commits.

This work provides a descriptive representation of the ratio-
nale of code commits that practitioners can use to improve their
documentation and communication of rationale. Additionally, re-
searchers and tool builders can support the management of the
rationale of code commits using our discovered components of
rationale and the experiences of software developers with them.

REPRODUCIBILITY
An artifact containing our interview questions and survey instru-
ment is available at https://doi.org/10.5281/zenodo.3261842.

406

https://doi.org/10.5281/zenodo.3261842


Decomposing the Rationale of Code Commits ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] A. Alali, H. Kagdi, and J. I. Maletic. 2008. What’s a Typical Commit? A Charac-

terization of Open Source Software Repositories. In 2008 16th IEEE International
Conference on Program Comprehension. 182–191. https://doi.org/10.1109/ICPC.
2008.24

[2] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge. 2018. How Do
Developers Discuss Rationale?. In 2018 IEEE 25th International Conference on
Software Analysis, Evolution and Reengineering (SANER). 357–369. https://doi.
org/10.1109/SANER.2018.8330223

[3] Daniel Amyot. 2003. Introduction to the User Requirements Notation: learning
by example. Computer Networks 42, 3 (2003), 285 – 301. https://doi.org/10.1016/
S1389-1286(03)00244-5 ITU-T System Design Languages (SDL).

[4] A. I. Anton. 1996. Goal-Based Requirements Analysis. In Proceedings of the
Second International Conference on Requirements Engineering. 136–144. https:
//doi.org/10.1109/ICRE.1996.491438

[5] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj,
and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In Proceedings
of the 16th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (SIGSOFT ’08/FSE-16). ACM, New York, NY, USA, 308–318. https:
//doi.org/10.1145/1453101.1453146

[6] Patrick Biernacki and Dan Waldorf. 1981. Snowball Sampling: Problems
and Techniques of Chain Referral Sampling. Sociological Methods & Re-
search 10, 2 (1981), 141–163. https://doi.org/10.1177/004912418101000205
arXiv:https://doi.org/10.1177/004912418101000205

[7] Alexander W.J. Bradley and Gail C. Murphy. 2011. Supporting Software History
Exploration. In Proceedings of the 8th Working Conference on Mining Software
Repositories (MSR ’11). ACM, New York, NY, USA, 193–202. https://doi.org/10.
1145/1985441.1985469

[8] Janet E. Burge and David C. Brown. 2008. Software Engineering Using RATionale.
Journal of Systems and Software 81, 3 (2008), 395 – 413. https://doi.org/10.1016/j.
jss.2007.05.004 Selected Papers from the 2006 Brazilian Symposia on Databases
and on Software Engineering.

[9] Janet E Burge, JohnMCarroll, RaymondMcCall, and IvanMistrik. 2008. Rationale-
Based Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-77583-6

[10] Raymond P.L. Buse and Westley R. Weimer. 2010. Automatically Documenting
Program Changes. In Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE ’10). ACM, New York, NY, USA, 33–42.
https://doi.org/10.1145/1858996.1859005

[11] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey. 2015. Software History under the
Lens: A Study onWhy and HowDevelopers Examine It. In 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1–10. https://doi.
org/10.1109/ICSM.2015.7332446

[12] L. F. Cortés-Coy, M. Linares-Vásquez, J. Aponte, and D. Poshyvanyk. 2014. On
Automatically Generating Commit Messages via Summarization of Source Code
Changes. In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation. 275–284. https://doi.org/10.1109/SCAM.2014.14

[13] Steven Davies and Marc Roper. 2014. What’s in a Bug Report?. In Proceedings of
the 8th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM ’14). ACM, New York, NY, USA, Article 26, 10 pages.
https://doi.org/10.1145/2652524.2652541

[14] Allen H. Dutoit, Raymond McCall, Ivan Mistrík, and Barbara Paech. 2006. Ratio-
nale Management in Software Engineering. Springer Berlin Heidelberg, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-30998-7

[15] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik. 2018. Communicative Intention
in Code Review Questions. In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME). 519–523. https://doi.org/10.1109/ICSME.
2018.00061

[16] Thomas Fritz and Gail C. Murphy. 2010. Using Information Fragments to Answer
the Questions Developers Ask. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1 (ICSE ’10). ACM, New York, NY,
USA, 175–184. https://doi.org/10.1145/1806799.1806828

[17] Enio G Jelihovschi and José Faria. 2014. ScottKnott: A Package for Performing
the Scott-Knott Clustering Algorithm in R. TEMA (São Carlos) 15 (03 2014).
https://doi.org/10.5540/tema.2014.015.01.0003

[18] Fabian Gilson and Vincent Englebert. 2011. Rationale, Decisions and Alternatives
Traceability for Architecture Design. In Proceedings of the 5th European Conference
on Software Architecture: Companion Volume (ECSA ’11). ACM, New York, NY,
USA, Article 4, 9 pages. https://doi.org/10.1145/2031759.2031764

[19] Raman Goyal, Gabriel Ferreira, Christian Kästner, and James Herbsleb.
2018. Identifying unusual commits on GitHub. Journal of Software: Evo-
lution and Process 30, 1 (2018), e1893. https://doi.org/10.1002/smr.1893
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1893 e1893 smr.1893.

[20] Thomas R. Gruber and Daniel M. Russell. 1996. Design Rationale. L. Erlbaum
Associates Inc., Hillsdale, NJ, USA, Chapter Generative Design Rationale: Beyond
the Record and Replay Paradigm, 323–349. http://dl.acm.org/citation.cfm?id=
261685.261725

[21] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-offs in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA, 197–207.
https://doi.org/10.1145/3106237.3106270

[22] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt. 2009. Automatic
Classication of Large Changes into Maintenance Categories. In 2009 IEEE 17th
International Conference on Program Comprehension. 30–39. https://doi.org/10.
1109/ICPC.2009.5090025

[23] ITU-T. 2018. User Requirements Notation (URN) – Language definition. http:
//handle.itu.int/11.1002/1000/13711

[24] A. P. J. Jarczyk, P. Loffler, and F. M. Shipmann. 1992. Design Rationale for Software
Engineering: A Survey. In Proceedings of the Twenty-Fifth Hawaii International
Conference on System Sciences, Vol. ii. 577–586 vol.2. https://doi.org/10.1109/
HICSS.1992.183309

[25] Siyuan Jiang, Ameer Armaly, and Collin McMillan. 2017. Automatically Gen-
erating Commit Messages from Diffs Using Neural Machine Translation. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2017). IEEE Press, Piscataway, NJ, USA, 135–146. http:
//dl.acm.org/citation.cfm?id=3155562.3155583

[26] S. Jiang and C. McMillan. 2017. Towards Automatic Generation of Short Sum-
maries of Commits. In 2017 IEEE/ACM 25th International Conference on Program
Comprehension (ICPC). 320–323. https://doi.org/10.1109/ICPC.2017.12

[27] Siyuan Jiang, Collin McMillan, and Raul Santelices. 2017. Do Programmers do
Change Impact Analysis in Debugging? Empirical Software Engineering 22, 2 (01
Apr 2017), 631–669. https://doi.org/10.1007/s10664-016-9441-9

[28] H. Kaiya, H. Horai, and M. Saeki. 2002. AGORA: Attributed Goal-Oriented
Requirements Analysis Method. In Proceedings IEEE Joint International Conference
on Requirements Engineering. 13–22. https://doi.org/10.1109/ICRE.2002.1048501

[29] A. Ko and B. Myers. 2008. Debugging Reinvented. In 2008 ACM/IEEE 30th Inter-
national Conference on Software Engineering. 301–310. https://doi.org/10.1145/
1368088.1368130

[30] A. J. Ko, R. DeLine, and G. Venolia. 2007. Information Needs in Collocated
Software Development Teams. In 29th International Conference on Software Engi-
neering (ICSE’07). 344–353. https://doi.org/10.1109/ICSE.2007.45

[31] Asher Koriat, Morris Goldsmith, and Ainat Pansky. 2000. Toward
a Psychology of Memory Accuracy. Annual Review of Psychology
51, 1 (2000), 481–537. https://doi.org/10.1146/annurev.psych.51.1.481
arXiv:https://doi.org/10.1146/annurev.psych.51.1.481 PMID: 10751979.

[32] W. Kunz andH.W.J. Rittel. 1970. Issues as Elements of Information Systems. Number
131 in California. University. Center for Planning and Development Research.
Working paper, no. 131. Institute of Urban and Regional Development, University
of California. https://books.google.com/books?id=B-MaAQAAMAAJ

[33] Z. Kurtanović andW.Maalej. 2017. Mining User Rationale from Software Reviews.
In 2017 IEEE 25th International Requirements Engineering Conference (RE). 61–70.
https://doi.org/10.1109/RE.2017.86

[34] A. Van Lamsweerde. 2001. Goal-Oriented Requirements Engineering: A Guided
Tour. In Proceedings Fifth IEEE International Symposium on Requirements Engi-
neering. 249–262. https://doi.org/10.1109/ISRE.2001.948567

[35] Thomas D. LaToza and Brad A. Myers. 2010. Hard-to-answer Questions About
Code. In Evaluation and Usability of Programming Languages and Tools (PLATEAU
’10). ACM, NewYork, NY, USA, Article 8, 6 pages. https://doi.org/10.1145/1937117.
1937125

[36] Jintae Lee and Kum-Yew Lai. 1991. What’s in Design Rationale? Hum.-Comput.
Interact. 6, 3 (Sept. 1991), 251–280. https://doi.org/10.1207/s15327051hci0603&4_3

[37] M. Linares-Vásquez, L. F. Cortés-Coy, J. Aponte, and D. Poshyvanyk. 2015.
ChangeScribe: A Tool for Automatically Generating Commit Messages. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 2.
709–712. https://doi.org/10.1109/ICSE.2015.229

[38] Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. 2014. On the
Comprehension of Program Comprehension. ACM Trans. Softw. Eng. Methodol.
23, 4, Article 31 (Sept. 2014), 37 pages. https://doi.org/10.1145/2622669

[39] Luca Pascarella, Davide Spadini, Fabio Palomba, Magiel Bruntink, and Alberto
Bacchelli. 2018. Information Needs in Contemporary Code Review. Proc. ACM
Hum.-Comput. Interact. 2, CSCW, Article 135 (Nov. 2018), 27 pages. https://doi.
org/10.1145/3274404

[40] R. Pohl and R.F. Pohl. 2004. Confirmation bias. In Cognitive Illusions: A Handbook
on Fallacies and Biases in Thinking, Judgement and Memory. Psychology Press,
Chapter 4, 79–96. https://books.google.com/books?id=k5gTes7yyWEC

[41] C. Potts and G. Bruns. 1988. Recording the Reasons for Design Decisions. In
Proceedings of the 10th International Conference on Software Engineering (ICSE
’88). IEEE Computer Society Press, Los Alamitos, CA, USA, 418–427. http:
//dl.acm.org/citation.cfm?id=55823.55863

[42] Sarah Rastkar and Gail C. Murphy. 2013. Why Did This Code Change?. In
Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). IEEE Press, Piscataway, NJ, USA, 1193–1196. http://dl.acm.org/citation.cfm?
id=2486788.2486959

407

https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1109/SANER.2018.8330223
https://doi.org/10.1016/S1389-1286(03)00244-5
https://doi.org/10.1016/S1389-1286(03)00244-5
https://doi.org/10.1109/ICRE.1996.491438
https://doi.org/10.1109/ICRE.1996.491438
https://doi.org/10.1145/1453101.1453146
https://doi.org/10.1145/1453101.1453146
https://doi.org/10.1177/004912418101000205
http://arxiv.org/abs/https://doi.org/10.1177/004912418101000205
https://doi.org/10.1145/1985441.1985469
https://doi.org/10.1145/1985441.1985469
https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1016/j.jss.2007.05.004
https://doi.org/10.1007/978-3-540-77583-6
https://doi.org/10.1145/1858996.1859005
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1109/ICSM.2015.7332446
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1145/2652524.2652541
https://doi.org/10.1007/978-3-540-30998-7
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1109/ICSME.2018.00061
https://doi.org/10.1145/1806799.1806828
https://doi.org/10.5540/tema.2014.015.01.0003
https://doi.org/10.1145/2031759.2031764
https://doi.org/10.1002/smr.1893
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.1893
http://dl.acm.org/citation.cfm?id=261685.261725
http://dl.acm.org/citation.cfm?id=261685.261725
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1109/ICPC.2009.5090025
http://handle.itu.int/11.1002/1000/13711
http://handle.itu.int/11.1002/1000/13711
https://doi.org/10.1109/HICSS.1992.183309
https://doi.org/10.1109/HICSS.1992.183309
http://dl.acm.org/citation.cfm?id=3155562.3155583
http://dl.acm.org/citation.cfm?id=3155562.3155583
https://doi.org/10.1109/ICPC.2017.12
https://doi.org/10.1007/s10664-016-9441-9
https://doi.org/10.1109/ICRE.2002.1048501
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1145/1368088.1368130
https://doi.org/10.1109/ICSE.2007.45
https://doi.org/10.1146/annurev.psych.51.1.481
http://arxiv.org/abs/https://doi.org/10.1146/annurev.psych.51.1.481
https://books.google.com/books?id=B-MaAQAAMAAJ
https://doi.org/10.1109/RE.2017.86
https://doi.org/10.1109/ISRE.2001.948567
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1145/1937117.1937125
https://doi.org/10.1207/s15327051hci0603&4_3
https://doi.org/10.1109/ICSE.2015.229
https://doi.org/10.1145/2622669
https://doi.org/10.1145/3274404
https://doi.org/10.1145/3274404
https://books.google.com/books?id=k5gTes7yyWEC
http://dl.acm.org/citation.cfm?id=55823.55863
http://dl.acm.org/citation.cfm?id=55823.55863
http://dl.acm.org/citation.cfm?id=2486788.2486959
http://dl.acm.org/citation.cfm?id=2486788.2486959


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Khadijah Al Safwan and Francisco Servant

[43] Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. 2012. How
Do Professional Developers Comprehend Software?. In Proceedings of the 34th In-
ternational Conference on Software Engineering (ICSE ’12). IEEE Press, Piscataway,
NJ, USA, 255–265. http://dl.acm.org/citation.cfm?id=2337223.2337254

[44] Christoffer Rosen, Ben Grawi, and Emad Shihab. 2015. Commit Guru: Analytics
and Risk Prediction of Software Commits. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering (ESEC/FSE 2015). ACM, New York,
NY, USA, 966–969. https://doi.org/10.1145/2786805.2803183

[45] Janice Singer, Susan E. Sim, and Timothy C. Lethbridge. 2008. Guide to Advanced
Empirical Software Engineering. Springer London, London. https://doi.org/10.
1007/978-1-84800-044-5

[46] Davide Spadini, Maurício Aniche, Margaret-Anne Storey, Magiel Bruntink, and
Alberto Bacchelli. 2018. When Testing Meets Code Review: Why and How
Developers Review Tests. In Proceedings of the 40th International Conference on
Software Engineering (ICSE ’18). ACM, New York, NY, USA, 677–687. https:
//doi.org/10.1145/3180155.3180192

[47] D. Spencer and J.J. Garrett. 2009. Card Sorting: Designing Usable Categories.
Rosenfeld Media. https://books.google.com/books?id=_h4D9gqi5tsC

[48] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. 2006. A survey
of architecture design rationale. Journal of Systems and Software 79, 12 (2006),
1792 – 1804. https://doi.org/10.1016/j.jss.2006.04.029

[49] Antony Tang, Yan Jin, and Jun Han. 2007. A rationale-based architecture model
for design traceability and reasoning. Journal of Systems and Software 80, 6 (2007),
918 – 934. https://doi.org/10.1016/j.jss.2006.08.040

[50] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang, and Sunghun Kim. 2012.
How Do Software Engineers Understand Code Changes?: An Exploratory Study
in Industry. In Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering (FSE ’12). ACM, New York, NY, USA,
Article 51, 11 pages. https://doi.org/10.1145/2393596.2393656

[51] Stephen E. Toulmin. 2003. The Uses of Argument (2 ed.). Cambridge University
Press. https://doi.org/10.1017/CBO9780511840005

[52] J. Tyree and A. Akerman. 2005. Architecture decisions: demystifying architecture.
IEEE Software 22, 2 (March 2005), 19–27. https://doi.org/10.1109/MS.2005.27

[53] Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should I
Change?. In Proceedings of the 36th International Conference on Software Engineer-
ing (ICSE 2014). ACM, New York, NY, USA, 152–163. https://doi.org/10.1145/
2568225.2568251

408

http://dl.acm.org/citation.cfm?id=2337223.2337254
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1007/978-1-84800-044-5
https://doi.org/10.1145/3180155.3180192
https://doi.org/10.1145/3180155.3180192
https://books.google.com/books?id=_h4D9gqi5tsC
https://doi.org/10.1016/j.jss.2006.04.029
https://doi.org/10.1016/j.jss.2006.08.040
https://doi.org/10.1145/2393596.2393656
https://doi.org/10.1017/CBO9780511840005
https://doi.org/10.1109/MS.2005.27
https://doi.org/10.1145/2568225.2568251
https://doi.org/10.1145/2568225.2568251

	Abstract
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Developer Interviews
	3.2 Survey

	4 Results
	5 Discussion and Implications
	6 Threats to validity
	7 Conclusion
	References

