
Unfolding the Rationale for Code Commits

Khadijah Al Safwan

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science and Applications

Francisco Servant, Chair
Eli Tilevich
Na Meng

May 9, 2018
Blacksburg, Virginia

Keywords: software engineering, revision control systems, rationale, empirical study

Copyright 2018, Khadijah Al Safwan

Unfolding the Rationale for Code Commits

Khadijah Al Safwan

ABSTRACT

One of the main reasons why developers investigate code history is to search for the rationale
for code commits. Existing work found that developers report that rationale is one of the
most important aspects to understand code changes and that it can be quite difficult to find.
While this finding strongly points out the fact that understanding the rationale for code
commits is a serious problem for software engineers, no current research efforts have pursued
understanding in detail what specifically developers are searching for when they search for
rationale. In other words, while the rationale for code commits is informally defined as,
“Why was this code implemented this way?” this question could refer to aspects of the
code as disparate as, “Why was it necessary to implement this code?”; “Why is this the
way in which it was implemented?”; or “Why was the code implemented in that moment?”
Our goal with this study is to improve our understanding of what software developers mean
when they talk about the rationale for code commits, i.e., how they “unfold” rationale. We
additionally study which components of rationale developers find important, which ones they
normally need to find, which ones they consider specifically difficult to find, and which ones
they normally record in their own code commits. This new, detailed understanding of the
components of the rationale for code commits may serve as inspiration for novel techniques
to support developers in seeking and accurately recording rationale.

Unfolding the Rationale for Code Commits

Khadijah Al Safwan

General Audience Abstract

Modern software systems evolution is based on the contribution of a large number of de-
velopers. In version control systems, developers introduce packaged changes called code
commits for various reasons. In this process of modifying the code, the software developers
make some decisions. These decisions need to be understood by other software developers.
The question “why the code is this way?” is used by software developers to ask for the
rationale behind code changes. The question could refer to aspects of the code as disparate
as, “Why was it necessary to implement this code?”; “Why is this the way in which it was
implemented?”; or “Why was the code implemented at that moment?” Our goal with this
study is to improve our understanding of what software developers mean when they talk
about the rationale for code commits, i.e., how they “unfold” rationale. We additionally
study which components of rationale developers nd important, which ones they normally
need to nd, which ones they consider specically dicult to nd, and which ones they normally
record in their own code commits. This new, detailed understanding of the components of
the rationale for code commits will allow researchers and tools builders to understand what
the developers mean when they mention rationale. Therefore, assisting the development of
tools and techniques to support the developers when seeking and recording rationale.

Acknowledgments

I would like to thank my advisor, Francisco Servant, who guided me through my Master’s
journey. Thank you for providing continuous support and feedback. I really appreciate your
willingness to meet with me whenever I needed help.

Heartfelt thanks go to my husband, Mohammed Alaboalirat, for being a supportive person
who helped and encouraged me from the start to the end. Thank you for being a better
companion than I could ever wish for. I am also grateful for all your financial support.
Thank you for making Blacksburg a home far from home.

I would like to thank my parents, Ahmad and Yusra Al Safwan, who planted the love of
learning in my heart when I was a small child. Thank you for teaching me how to be a good
student and for raising me with good manners and moral values. I am also deeply thankful
for my siblings and my extended family for being THE family.

My sincere appreciation goes to the scholarship program of the Custodian of the Two Holy
Mosques King Salman bin Abdulaziz and to the Saudi Arabian Cultural Mission (SACM) for
awarding me a full scholarship for my degree. Thank you for supporting my studies to be a
“qualified individual capable of achieving the country’s goals of progress and development.”

I am indebted to the professors who taught me and contributed to my education. Thanks to
those of you who helped me enter Virginia Tech by writing recommendation letters: Dilek
Dustegor, Naya Nagy, Karima Makhluf, and Imran Mahmood. I also extend my gratitude
to those who taught me: Barbara Ryder, Eli Tilevich, Aditya Prakash, Francisco Servant,
Rex Hartson, and Chris North.

Warm thanks go to my friends, lab members, and classmates for filling the journey with
joy and memorable events. I am glad we crossed paths and met each other. Thank you
for extending the list of countries of my friends from only Saudi Arabia to Saudi Arabia,
Bahrain, Kuwait, Oman, Egypt, Palestine, India, Korea, China, Colombia, and the United
States.

Last but not least, I would like to thank the participants in my research study for giving up
some of their valuable time to participate in the interview or fill out the survey. Thank you
for sharing your opinions, knowledge, and experience.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Literature Review 4

2.1 Software History Studies . 4

2.2 Rationale Studies . 5

2.3 Change-Understanding Research . 5

3 Methodology 6

3.1 Research Questions . 6

3.2 Interviews . 7

3.2.1 Preparations . 7

3.2.2 Questions and Structure . 8

3.2.3 Recruitment . 8

3.2.4 Participants . 9

3.3 Survey . 10

3.3.1 Preparations . 10

3.3.2 Recruitment . 10

3.3.3 Participants . 10

v

4 Results 12

4.1 Overview . 12

4.2 Components of the Rationale for Code Commits 14

4.3 Importance of Each Rationale Component 18

4.4 The Need for Rationale and its Components 19

4.5 Finding Rationale and its Components . 20

4.6 Recording Rationale and its Components . 22

5 Discussion 23

5.1 Components of the Rationale for Code Commits 23

5.2 Importance of Rationale Components . 24

5.3 The Need for Rationale and its Components 24

5.4 Finding Rationale and its Components . 24

5.5 Recording Rationale and its Components . 26

6 Threats to Validity 27

6.1 Construct . 27

6.2 Internal . 27

6.3 External . 28

6.4 Replicability . 28

7 Future Work 29

8 Conclusion 30

Bibliography 31

Appendix A Interview Script 34

A.1 Interviewee Version . 34

A.2 Interviewer Version . 48

vi

Appendix B Online Survey Questions 62

Appendix C Quantitative Questions Report 70

Appendix D Virginia Tech IRB Approval 76

vii

List of Figures

3.1 Interview Participants’ Demographics . 9

3.2 Online Survey Participants’ Demographics 11

4.1 Rationale Components’ Importance, Frequency of Recording, Frequency of
Need, Frequency of Finding, and Difficulty of Finding 14

4.2 The Process of Updating the Rationale for Code Commits Model 17

4.3 Rationale Components’ Importance . 18

4.4 Rationale Importance for Work Completion 19

4.5 Frequency of Need for Rationale Components 20

4.6 Time Spent Searching for Rationale . 20

4.7 Frequency of Finding Rationale Components 21

4.8 Difficulty of Finding Rationale Components 22

4.9 Recording of Rationale Components . 22

5.1 Frequency of Need vs. Frequency of Finding Rationale Components 25

5.2 Frequency of Need vs. Difficulty of Finding Rationale Components 25

5.3 Frequency of Recording vs. Importance of Rationale Components 26

viii

List of Tables

3.1 Initial Model of the Rationale for Code Commits 7

4.1 Updated Model of the Rationale for Code Commits 13

4.2 Proposed Components of the Rationale for Code Commits 16

ix

Chapter 1

Introduction

Rationale in software engineering is regarded with a great deal of importance. Software de-
velopment relies on the decision making of the stakeholders in every step of the development
process. Rationale is a resource that supports the development process [1, 2]. One funda-
mental component of software development and evolution is software changes [3]. Modern
software is modified in packaged changes called code commits in revision control systems.
Searching for the rationale for code commits is one of the developers’ main motivations for
examining code history [4], which can be quite difficult to find [5, 6].

Codoban et al. [4] found that developers often examine old code history to “recover the
rationale behind a snippet of code.” Their survey results show that around 58% of the
participants selected “Why is this ‘this way’?” as a motivation for examining old history.
Tao et al. [5] regarded the rationale for change as the most important part of change
understanding. LaToza and Myers [6] found that rationale is the most frequently reported
category of hard-to-answer questions about the code. Although these findings strongly point
out the fact that understanding the rationale for code commits is a serious problem for
software engineers, no current research efforts have pursued understanding in detail the
specific information that developers are searching for when they search for rationale.

While the rationale for code commits is informally defined as, “Why was this code imple-
mented this way?” this question could refer to aspects of the code as disparate as, “Why was
it necessary to implement this code?”; “Why is this the way in which it was implemented?”;
or “Why was the code implemented at that moment?”

We hypothesize that the rationale for code commits can be divided into components. Discov-
ering the components of the rationale for code commits is the primary goal of our study. Un-
derstanding specifically what developers mean by rationale will have many benefits. First, it
will allow researchers and practitioners to disambiguate conversations or information-seeking
processes about code-change rationale. Additionally, it will enable the development of tools
to support developers in finding, recording, and assessing code-change rationale. All these

1

Khadijah Al Safwan Chapter 1. Introduction 2

applications can potentially provide a strong improvement of development productivity be-
cause the rationale is important for developers, they search for it often, and it can be really
hard to find. In addition to identifying the components of code-change rationale, we also
investigate which components of rationale developers regard as important, which ones they
normally need to find, which ones they consider specifically difficult to find, and which ones
they normally record in their own code commits.

We used two research methods to perform our study. First, we used one-on-one interviews
to identify the components of the rationale for code commits and understand them in depth,
and then we performed a survey to validate the identified components from a larger number
of practitioners. We combined the responses of our interview and survey participants to
understand the components of the rationale for code commits, practitioners’ habits about
recording and finding the rationale for code commits, and the importance of and need for
such components.

The interview participants built the model of the rationale for code commits and identified its
components (Tables 3.1, 4.1, and 4.2). In combining the interview and survey participants’
answers, we identified the components of the rationale for code commits most important
to the developers. These components are goal, need, location, and modifications. We also
found that developers need the rationale for code commits and spend a considerable amount
of time searching for it. Finally, the interview and online survey results specified that software
developers usually only record the components of the rationale for code commits that they
consider the most important, and they rarely record the remaining ones.

Our newly discovered detailed understanding of the components of the rationale for code
commits motivates creating tools and techniques to support developers in accurately record-
ing and finding the rationale. Further research may include studies to discover developers’
strategies for recording and finding the rationale. In addition, studies to validate the fre-
quency of recording dierent components of rationale are encouraged.

Our goal with this study is to improve our understanding of what software developers mean
when they talk about the rationale for code commits, i.e., how they “unfold” rationale. This
master’s thesis examines the following thesis statement:

“The rationale for code changes can be divided into components,
each of which has different characteristics.”

The main contributions of this study are as follows:

1. Unfolding the rationale for code commits into separate components.

2. Discovering the importance of every component of the rationale for code commits.

3. Identifying the components of the rationale for code commits that developers need.

Khadijah Al Safwan Chapter 1. Introduction 3

4. Identifying the components of the rationale for code commits that are difficult to find.

5. Identifying the recorded or unrecorded components of the rationale for code commits.

The rest of this document is organized as follows. First, we present related work in Chapter
2. Chapter 3 discusses our study’s methodology. In Chapters 4 and 5, we present our study’s
results and our discussion of the results. Finally, Chapter 6 states threats to validity, Chapter
7 proposes future work based on our results, and Chapter 8 concludes this thesis.

Chapter 2

Literature Review

We group the work related to our study into three parts: empirical studies of software history,
rationale studies, and software change-understanding research.

2.1 Software History Studies

Researchers have performed several empirical studies involving software history and devel-
opers’ information needs in the last decade [4, 7, 5, 8, 6, 9, 10]. In these studies, researchers
explored the motivation for examining software history (evolved software), the methods and
strategies used in the software-history investigation, the challenges developers face when
studying evolved software, and the needs and questions developers have about software his-
tory.

Our work builds on these empirical studies, whose findings establish a strong demand for
rationale. For our goal of defining and conceptualizing the rationale for code commits, we
created an initial model of the rationale for code commits with reference to these empirical
studies, where associations were made between questions/needs and rationale/reasoning.

Tao et al. [5] highlighted the question, “What is the rationale behind this code change?”
[11] and found that rationale is the most important information need. Ko et al. [8] identified
questions developers ask when reasoning about design: “What is the purpose of this code?”;
“What is the program supposed to do?”; “Why was this code implemented this way?”; and
“What are the implications of this change?” LaToza and Myers [6] identified the hard-to-
answer rationale questions, “Why was it done this way?”; “Why wasn’t it done this other
way?”; and “Was this intentional, accidental, or a hack?” Finally, Fritz and Murphy [7]
discovered the developers’ question, “Why were [these changes] introduced?”

Other researchers studied the impact and risk of changes [12, 13, 14], which is one other need
of developers. Understanding the impact and risk of a code change is the main reasoning

4

Khadijah Al Safwan Chapter 2. Literature Review 5

component of changes, which is why we included it in our model of rationale.

2.2 Rationale Studies

Dutoit et al. [1] published a book that discusses “Rationale Management (RM) in Software
Engineering.” “The aim of [the] book is to encourage software engineers to explore different
ways for RM in research and practice and help to make RM a well-recognized ingredient
for successful software engineering.” Similarly, Burge et al. ’s [2] book “Rationale-Based
Software Engineering” discusses the rationale for software development and the software
engineering lifecycle, including requirements engineering, software design, software architec-
ture, and bodies of knowledge.

These two books motivated us to study rationale at the code-commit level. Although software
history studies, as presented in Section 2.1, regarded rationale with importance, a clear
definition of software-change rationale is missing.

One recent empirical study [15] tried to capture how developers discuss rationale in Internet
Relay Chat (IRC) channels of open-source software (OSS). They identified rationale in IRC
by following an Issue-Based Information System (IBIS), analyzing rationale elements as
issues, alternatives, pro-arguments, con-arguments, and decisions.

2.3 Change-Understanding Research

Software engineering research has proposed a number of techniques and tools to facilitate
developers’ change-understanding practice. Our work complements the existing research
by empirically studying the rationale for code changes, identifying the components of the
rationale and the developers’ need for these components.

Researchers developed techniques to summarize and document code changes. Some focused
on generating natural language descriptions of code changes to replace incomplete or inac-
curate commit messages [11], clarify the rationale behind code changes [16, 17], or answer
“what” and “why” questions about code changes [18, 19, 20].

Other researchers mined software repositories to characterize commits [21, 22, 23, 24]. The
categories they used to classify commits are the same as the rationale components we found.
An example is the use of the commit goal (e.g., fix, add, test, bug, patch) to classify commits.

Chapter 3

Methodology

To establish the methodology of our study, we employ successful methods from prior research
in the field of software engineering [4, 5, 25, 26]. Our study consists of two main research
methods: interviews followed by an online survey. We first interviewed software developers
in one-to-one sessions to build the model of the rationale for code commits and identify its
components. We also asked the interview participants about their experience with recording
and finding rationale components and the importance of and need for such components.
Then, we distributed an online survey to a larger number of developers, populating the
answers and findings of the interview questions.

3.1 Research Questions

Our exploratory study of the rationale for code commits was designed to answer the following
research questions:

RQ1: What are the components of the rationale for code commits?

RQ2: How important is each rationale component to the rationale for code commits?

RQ3: What is the developers’ need for rationale and its components?

RQ4: What is the developers’ experience with finding rationale and its components?

RQ5: What are the rationale components that are recorded or unrecorded by software
developers?

6

Khadijah Al Safwan Chapter 3. Methodology 7

3.2 Interviews

Interviews are the qualitative method that we used to elicit the developers’ knowledge about
the rationale for code commits. One-to-one interviews are the first and primary method
of our study. We interviewed 20 practitioners, seeking information about the rationale for
code commits and its components. Information about the interview preparations, structure,
recruitment, and participants is presented in the following sections.

3.2.1 Preparations

We built an initial model of the rationale for code commits as preparation for the interviews.
The model was created based on the research involving software history. When reviewing
the software history studies, we recognized a lack of a consistent and clear definition of the
rationale for code commits. We searched empirical studies [8, 6, 5, 7] for associations between
questions/needs and rationale/reasoning. Such associations were created by researchers to
categorize or label the questions and needs of software developers. Table 3.1 is our initial
model of the rationale for code commits.

Table 3.1: Initial Model of the Rationale for Code Commits

Component Component Expressed as Question Example Answer
Goal What did you want to achieve? I want to modify our usage of try/catch blocks in a way that

they all account for unexpected exceptions.
Need Why did you need to achieve that? A new company directive requires that all our try/catch

block statements include the Exception case by June 1st.
Alternatives What other alternatives did you have? Spend the time to consider the best way to handle Exception

for each instance of a try/catch block.
Selected Alter-
native

Why did you make those specific changes and
not others?

A general exception message works for now. It was more
efficient to apply the same implementation to all locations.

Location What artifacts were changed? I made changes in every catch/block that I could find in the
core branch.

Modifications What specific changes were performed in the
artifacts?

I added an “Exception (e)” case to all of them and handled
it by logging a general exception message.

Validation How did those specific changes achieve the
goal?

This partially achieved our goal, because we may be able to
handle some of these exceptions in a more specific way.

Benefits What is the benefit of what you want to
achieve?

This will increase the quality of our system by now hav-
ing decided how to handle exceptions that we did not think
about before.

Costs What risks could come from these changes? Some test cases may now fail because of the new exception
messages in the logs.

We then developed our interview script by performing five pilot interviews. After each
pilot, we made changes to improve the script structure, clarity of questions, and supporting
material. The pilots helped us identify the scope of the study, define the interview structure,
phrase the interview questions, prepare clarification questions, and rehearse for the actual
sessions.

Khadijah Al Safwan Chapter 3. Methodology 8

3.2.2 Questions and Structure

The final interview questions are based on the research questions presented in Section 3.1.
The parts of the interview script and their purpose are presented below in the order we
asked them during the interview. The interview script of the interviewer and interviewee are
available in Appendix A.

In the first part of our interview script, we ask the participant for examples of investigat-
ing code commits for rationale. Providing examples helps the participants engage in the
discussion and interview. It also clarifies the scope of the study.

We asked the participants to think about rationale in a more general sense after providing
the examples. This second part of the interview captured the participants’ own conceptual
(abstract-level) definition of the rationale and its components. To avoid bias, it was im-
portant to ask for the participants’ general thoughts about rationale before introducing the
initial model of rationale.

In the third part of the interview, we presented the initial model of the rationale for code
commits to the participants. We requested that they review, understand, think about, and
ask for clarifications of the model. It was important that the participants understand the
model before asking for their modifications in the following part of the interview.

Part four of the interview is when we asked the participants for their modifications to the
model. We requested that they share their ideas about the model of the rationale for code
commits, delete components that should not be part of the rationale for code commits, and
add missing components of the rationale for code commits. The participants were allowed
to update the model to reflect their definition of the rationale for code commits.

The last part of the interview addressed the importance of and need for rationale and its
components, as well as how rationale and its components are recorded and found, based on
the participants’ experience. We asked the participants to select on a scale of four or five
Likert points the importance of rationale for work completion, rationale usual- and hard-case
search time, the components’ importance for rationale, and the rationale and the components’
frequency of recording, frequency of need, maximum frequency of need, frequency of finding,
and difficulty of finding.

3.2.3 Recruitment

The recruitment of interview participants was done in two ways. We sent out an advertise-
ment email about the study, and at the end of the study session, we asked every interview
participant for referrals to people who might participate (snowball sampling). We asked
for participants with revision control systems experience and experience investigating code
changes to understand something about them.

Khadijah Al Safwan Chapter 3. Methodology 9

All subjects who were interested in participating were asked to fill out a screening question-
naire. In the screening questionnaire, we asked demographic questions about age, gender,
software development experience (number of years and type), revision control systems expe-
rience (number of years, type, and systems used), and the frequency of investigating code
commits for rationale (own commits and other developers’ commits). We interviewed every-
one who filled out the screening questionnaire and replied to our scheduling emails.

3.2.4 Participants

We interviewed 28 developers in total. Each interview lasted between 60 and 120 minutes,
and the participants were given $20 Amazon.com gift cards at the end of the interview as
compensation for their time. Figure 3.1 shows our analysis of the participants’ demographic
information.

We analyzed the data of 20 interview sessions after excluding the five pilot interviews and
three other interview sessions. In the first one, the participant did not complete the interview.
The participant was unable to provide an example of a situation where he/she needed to
understand the rationale for code commits. In the second excluded session, the participant
voluntarily stated lack of experience and knowledge multiple times during the interview
session. The last one was excluded after we noticed that the participant had knowledge
about our initial model before the interview was performed. We excluded this person because
he/she could have been biased toward supporting our initial model.

(a) Years of Experience (b) Type of Experience

Figure 3.1: Interview Participants’ Demographics

Khadijah Al Safwan Chapter 3. Methodology 10

3.3 Survey

We used an online survey as our second method of data collection. While we used our inter-
views to understand (in depth) the components into which developers break down rationale,
we used our surveys to reach a larger number of practitioners to get more information about
those components. We collected the responses of 24 survey participants about recording and
finding rationale components, and the importance of and need for such components.

3.3.1 Preparations

We designed the online survey with 16 questions to quantify our findings from the inter-
views. All the survey questions were multiple choice. The questions were the same as the
demographic questions from the screening questionnaire (see Section 3.2.3) and the last part
of the interview (see Section 3.2.2). The exact survey questions are available in Appendix
??. We asked the survey participants about the updated model of rationale that we obtained
from the interview participants. The final model of the rationale for code commits presented
to the survey participants is shown in Table 4.1.

We ran a pilot of the survey by asking four participants with various levels of familiarity
and experience with version control systems to fill out the survey. We asked one of the pilot
participants to complete the survey carelessly and quickly while still reading the questions.
The goal was to test the minimum time needed to fill out the survey. Data from any surveys
completed in less than that amount of time was discarded in the analysis of the survey data.
The rest of the pilot participants were asked to give feedback on the timing, the clarity of
the rationale for code commits model, and the clarity of the questions.

3.3.2 Recruitment

To recruit participants for the online survey, invitations were sent through public channels.
The interview participants were sent the advertisement email to forward it to people who
might participate but not to fill it out themselves. To maximize participation, we offered a
raffle of $50 Amazon.com gift cards to survey participants.

3.3.3 Participants

We received a total of 35 complete survey responses and 55 incomplete responses. We
excluded 11 of the complete responses from our analyses. Two of the pilot surveys were
discarded, as their goal was to set a minimum bar for survey duration to accept the responses.
This minimum bar of 10 minutes was used to discard another two of the completed surveys.
An additional five of the completed surveys were excluded because the participants did not

Khadijah Al Safwan Chapter 3. Methodology 11

consent. Finally, we excluded two responses where the participants specified that they have a
greater number of years of experience in version control systems than software development.
Figure 3.2 shows the demographic information of the 24 analyzed survey participants’ data.

(a) Years of Experience (b) Type of Experience

Figure 3.2: Online Survey Participants’ Demographics

Chapter 4

Results

In this chapter, we present the results of the interviews and online survey, which answer our
research questions and address our thesis statement. We give an overview of the results,
including the final model of the components of the rationale for code commits and the char-
acteristics of these components. Afterward, we provide a detailed report on the modifications
and improvements to the initial model of the rationale for code commits, the components
of rationale developers consider important, the components they normally need to find, the
components they consider specifically difficult to find, and the components they normally
record in their own code commits.

4.1 Overview

The model of the rationale for code commits that we discovered in this study is presented
in Table 4.1. We started with the model in Table 3.1, and Table 4.2 shows the components
proposed by the interview participants. The final updated model’s components are described
by a question and an example answer to the question. The example answers are possible
answers to the expressive question of each component. All the example answers are related
to a simple hypothetical commit. The questions and answers for the components added to
the model by participants are included as provided by the participants. Most of the final
model’s components are a merge of proposed components that refer to the same matter.
Some of the updated model’s components are an abstraction of the specific cases that the
participants mentioned.

The components of the rationale for code commits can be categorized into four themes.
First, the change-objective theme includes the goal, need, and benefits components. The
second theme is change-design (pre-implementation assessment), including the constraints,
alternatives, selected alternative, and dependency components. The third is the change-
execution theme, including the committer, time, location, modifications, and explanation

12

Khadijah Al Safwan Chapter 4. Results 13

Table 4.1: Updated Model of the Rationale for Code Commits

Component Component Expressed as Question Example Answer
Goal What did you want to achieve? I wanted to implement functionality to sort the product list

by price.
Need Why did you need to achieve that? Our user requested to be able to sort the list of products by

price.
Benefits What is the benefit of what you want to

achieve?
The new option of sorting products by price will be useful
for many customers in addition to the one who requested it.

Constraints What were the constraints limiting your im-
plementation choice?

The sorting algorithm had to be space efficient because it
should work in embedded devices.

Alternatives What other alternatives did you have? I could have used the bucket sort algorithm, but this op-
tion was not feasible because I would not have known the
maximum price before sorting.

Selected Alter-
native

Why did you make those specific changes and
not others?

I implemented heap sort because it is space efficient and it
has a predictable speed.

Dependency What other changes does this change depend
on?

This change depends on the API that provides the product
list to be updated to use JSON format.

Committer Who changed the code? Developer X, who is responsible for the “products” page.
Time Why were the changes made at that time? This change happened before our 3.0 release to meet the

customer contract for that release.
Location What artifacts were changed? The “product” class was updated.
Modifications What specific changes were performed in the

artifacts?
I added a “sort” method in the “product” class implement-
ing heap sort and now the “listProduct” method calls “sort”
first.

Explanation of
Modifications

What are the details of the implementation?
The code sorts the products by price by performing the
following steps:
1- Build a heap from a list of “products” in O(n) operations.
2- Swap the first list-element with the final list-element of
the list.
3- Decrease the considered range of the list by one.
4- Shift the new first element to its appropriate index in
the heap based on the “price. ”
5- Repeat step (2) unless the considered range of the list is
one element.

Validation How did those specific changes achieve the
goal?

By using the heap sort algorithm, our customers can now
see a sorted product list in their memory-limited hardware.

Maturity Stage How mature is this code? The change is an initial implementation, which still has to
be fully tested after the API for the products list is updated.

Side Effects What are the side effects of the change? The integration test will fail if the API that provides the
product list is not updated. At the same time, merging this
change with the main branch after updating the API might
break the existing code. Also, our implementation of heap
sort may be too complex for beginners and may slow down
maintenance.

of modifications components. The final theme is change-evaluation (post-implementation
assessment), including validation, maturity stage, and side effects.

Figure 4.1 shows an overview of the results for the characteristics of the rationale for code
commits. For every component of the rationale for code commits, we show five boxes in-
dicating the component’s importance, frequency of recording, frequency of need, frequency
of finding, and difficulty of finding. The boxes show statistics about the participants’ re-
sponses covering the minimum, maximum, median, and outliers. The raw data is available
in Appendix C.

Khadijah Al Safwan Chapter 4. Results 14

Figure 4.1: Rationale Components’ Importance, Frequency of Recording, Frequency of Need,
Frequency of Finding, and Difficulty of Finding

4.2 Components of the Rationale for Code Commits

The interview participants were asked to list and describe the components of the rationale
for code commits (RQ1). After that, we showed them our initial model (Table 3.1) of
components of the rationale and asked them for their opinion. Most participants shared
similar thoughts about the initial model being detailed and comprehensive. Then, we asked
participants if they wanted to change their answer after having seen our model. We specifi-
cally told them that they should feel free to remove, add, or modify components from their
model. Most participants used our model as a reference (since most felt that it was more
comprehensive than theirs) and adapted it by removing or adding components, as they felt
necessary.

The participants provided positive comments about the initial model of the rationale for
code commits. They indicated that the model is “a good model,” “detailed,” “thorough,”
“comprehensive,” “holistic,” and “exhaustive.” They also thought it “formally define[s]
rationale” and is “a logical frame that would work.” One participant said that the model
“clarifies the wide open concept which is hard to think about.”

When we asked the participants about components that should not be part of the rationale
for code commits, they revisited the model and spent some time to think. Below, we explain
some examples of changes that participants proposed. One participant thought that the goal
and the need can be the same most of the time and preferred to merge them together, delet-
ing the “goal” component. Another participant thought the need is included in the benefits
and cost, deleting the need component. One participant deleted the benefits component
because it is included in the goal component. Four of the participants disagreed with the
location component being part of the rationale for code commits. One of them considered
the location to be part of the modification component. Another one of the four stated the
reason for deletion as, “The location tells what changed, not why you changed it.” The last
two of the four also disagreed with the modification component. One said, “Rationale is
a high-level concept, and the content of the commit is low-level implementation,” deleting

Khadijah Al Safwan Chapter 4. Results 15

both the location and modification components. The other said, “Modifications are imple-
mentation details. The details are not the reason the code changed.” Four of the participants
did not consider the alternatives component part of the rationale. One of them clarified,
“Alternatives is not something that you actually implement!” For the selected alternative
component, one participant thought this component is extra information and not part of the
rationale. One participant thought that “validation answers why the code is correct, not
the rationale,” deleting the validation component. Finally, one participant doubted the cost
component but decided to keep it in the end.

As for any missing components of the rationale for code commits, most of the participants
proposed new components to be added to the model. In total, the participants added 18
components to the initial model. Table 4.2 shows the proposed components along with
the participant-provided component questions and example answers. Some of these compo-
nents mean the same thing as other participants’ added components or our initial model’s
components.

To update the initial model with the participants’ proposed components, we merged some
components together in two steps. First, we grouped components that mean the same thing.
Second, we abstracted away some of the specific cases that the participants mentioned into
a more abstract component. Figure 4.2 shows the transition from the initial to the updated
model, considering the proposed components. The timeliness proposed component is divided
into two parts to be grouped. The final updated model, which is composed of 15 components,
is shown in Table 4.1.

Khadijah Al Safwan Chapter 4. Results 16

Table 4.2: Proposed Components of the Rationale for Code Commits

Component Component Expressed as Question Example Answer
Technical
Requirement

Do I need to do the commit as part of my
version control software?

Git requires that I make a merge commit.

Documentation Why did you modify these parts of the code? I modified these parts of code similarly to X because the
implementation needs to follow this Y specific order.

Guidelines Does the code follow all the company-defined
coding guidelines?

Remove all hard-coded strings from the code.

Non-feasible al-
ternative

Were there alternatives initially chosen by the
developer that could not complete the require-
ment?

I tried to use HTML table to tabulate the changes needed
but couldn’t do that in the time frame. I used Bootstrap to
wrap the changes to all the tables.

Opinion Se-
lected Alterna-
tive

Why did you choose this implementation
rather than another quality effective imple-
mentation?

I prefer generic error messages over unspecified errors and/or
attempts to predict error types.

Constraints What else does this change impact or not im-
pact?

This change improves the exception handling but does so in
a way that doesn’t change any subsequent processing steps.
Another approach might have required further changes else-
where in the system.

Timeliness Why is this change necessary now ? What
other chunks of work need to take place be-
fore/after?

Suppose a commit includes a call to an API of a external
system. The other system also needs changes in order for
this commit to function properly. Has the other commit
reached production yet?

Dependency What is this change dependent on? This change is dependent on a version 1.x of history y.

Person
Author
Committer

Who changed the code?
Who was it who made this change (and when?)
Who made the change? Why them?

I made this commit at the end of my internship; or, I made
this commit on May 31st to hurriedly meet the June 1st
deadline.
Person A because they are familiar with error handling.

Time/Date When was the change introduced?
Who was it who made this change (and when?)
When were the changes made?

I made this commit at the end of my internship; or, I made
this commit on May 31st to hurriedly meet the June 1st
deadline.
Right after Bug A manifested.

Explanation of
Modifications

Explain how the modifications work and why
the code is like this.

Explanation of the specific syntax and purpose of it.
(for .. i+=2 && var) Why i+=2 instead of i+1
Why i++ instead of ++i

Result What observed results were noticed when run-
ning the code?

Due to the exception message handling, we see 10% more
messages due to location not being observed before.

Environment Which environment does the commit need to
be pushed to?

(Dev → Test → Val → Prod)

Scope for
future develop-
ment

Did you identify future implementations that
can be done in next cycle sprint?

We can improve our code further to cover all the test cases
that couldn’t be done due to the upcoming deadline.

Quality How well is the code written from software en-
gineering? Is it just a hack or small fix as
opposed to a more thorough solution to fix a
problem from previous commits?

Instead of using print statements in “try/catch” block, ide-
ally, a logging library would have been a better choice.

Merge Conflict
Success

Will there be a merge conflict with the master
branch or previous commits of other collabo-
rators?

Yes, if somebody else tried to remedy a fix or added other
alternatives or extra code in parallel to you for the same
code location.

Limitation What are the known limitations of this com-
mit?

This commit can address that for only specific inputs
the intended goal would be accomplished or in cer-
tain cases, the expected output or runtime could be
different from the general case.

Impact How did this change impact the rest of the
system?

This change requires John to update his code where he calls
API X.

Khadijah Al Safwan Chapter 4. Results 17

Figure 4.2: The Process of Updating the Rationale for Code Commits Model

Khadijah Al Safwan Chapter 4. Results 18

4.3 Importance of Each Rationale Component

Not all the rationale components presented in Tables 3.1, 4.2, and 4.1 are considered to be
equally important to the rationale. We asked the interview and online survey participants
to identify how important each component is to the rationale for code commits (RQ2). We
asked the participants to choose from the following scale:

(0) I would easily know the rationale for code commits without finding this component.
(1) I would know the rationale for code commits without finding this component.
(2) I would better know the rationale for code commits when finding this component.
(3) It’s hard to know the rationale for code commits without finding this component.
(4) I can’t know the rationale for code commits without finding this component.

The green boxes in Figures 4.1 and 4.3 show a summary of the participants’ answers. Considering
the median value of the participants’ answers, the components of the rationale for code commits
are of three levels of importance. The first level is the most important rationale components and
includes the goal, need, location, and modifications. The second level is less important rationale
components and includes benefits, constraints, selected alternative, dependency, explanation of
modifications, validation, and side effects. The third level is the least important rationale compo-
nents and includes alternatives, committer, time, and maturity stage.

(0) I would easily know the rationale for code commits without finding this component
(1) I would know the rationale for code commits without finding this component
(2) I would better know the rationale for code commits when finding this component
(3) It’s hard to know the rationale for code commits without finding this component
(4) I can’t know the rationale for code commits without finding this component

Figure 4.3: Rationale Components’ Importance

Khadijah Al Safwan Chapter 4. Results 19

4.4 The Need for Rationale and its Components

To learn about the developers’ need for rationale and its components (RQ3), we asked the inter-
view and online survey participants two questions. First, we asked them about the importance of
rationale for the completion of their work. Second, we asked them about the frequency of their
need for rationale and its components.

Figure 4.4 and the green boxes of rationale in Figures 4.1 and 4.3 show the participants’ selected
level of importance or need for rationale in general. Almost 50% of the participants need the
rationale for code commits, but they can complete their work without it. A little more than 30%
of the participants really need the rationale for code commits, and they struggle to complete their
work without it.

Figure 4.4: Rationale Importance for Work Completion

The blue boxes in Figures 4.1 and 4.5 shows a summary of the participants’ answers about the
frequency of their need for rationale and its components. We asked the participants to select the
common frequency of need from a scale of five Likert points: (0) N/A, (1) a few times per year, (2)
multiple times per year, (3) multiple times per month, (4) multiple times per week, or (5) multiple
times a day. The average need for rationale, in general, is multiple times per week. The participants
on average need the goal, location, and modifications components multiple times per week. They
need the need, benefits, dependency, committer, time, explanation of modifications, validation, and
maturity stage components multiple times per month. Finally, participants need the constraints,
alternatives, selected alternative, and side effects components multiple times per year.

Khadijah Al Safwan Chapter 4. Results 20

(0) N/A (1) A few times per year (2) Multiple times per year (3) Multiple times per month
(4) Multiple times per week (5) Multiple times per day

Figure 4.5: Frequency of Need for Rationale Components

4.5 Finding Rationale and its Components

To explore the developers’ experience with finding rationale and its components (RQ4), we asked
the interview and online survey participants about the amount of time they spend searching for the
rationale for code commits, the frequency of finding rationale and its components, and the difficulty
of finding rationale and its components.

Figure 4.6 shows the rationale search times spent by the participants. The figure includes both
usual and hard-case search times. The participants’ usual search time is five to ten minutes on
average. In the hard cases, almost 50% of the participants spend more than 30 minutes searching
for the rationale.

Figure 4.6: Time Spent Searching for Rationale

Khadijah Al Safwan Chapter 4. Results 21

When we asked the interview participants, “When do you give up searching for rationale?” half
of the participants indicated that they do not really give up searching for the rationale for code
commits. In the context of this question, five participants mentioned making an effort to reach
the author or reaching out to other developers on the team for help. Four participants come up
with their own judgment of the rationale by looking at and revising the code and making sense
of it. Another four of the participants completely give up when the author is no longer available,
the author is no longer writing code, they have exhausted all the possibilities, they cannot run the
code, or the code base is huge and no documentation is available.

For the frequency of finding rationale and its components, we asked the participants to select from
a scale of five Likert points: (0) N/A, (1) almost never, (2) rarely, (3) sometimes, (4) often, or (5)
almost always. The orange boxes in Figures 4.1 and 4.7 summarize the participants’ answers. The
participants almost always find the committer, location, and modifications. They often find the goal
and time. Sometimes they find the need, benefits, explanation of modifications, and maturity stage.
Finally, the six components that they rarely find are constraints, alternatives, selected alternative,
dependency, validation, and side effects.

(0) N/A (1) Almost never (2) Rarely (3) Sometimes (4) Often (5) Almost always

Figure 4.7: Frequency of Finding Rationale Components

For the difficulty of finding rationale and its components, we asked the participants to select from
a scale of five Likert points: (0) N/A, (1) very easy, (2) easy, (3) neutral, (4) difficult, or (5)
very difficult. The purple boxes in Figures 4.1 and 4.8 summarize the participants’ answers. The
participants think it is relatively easy to find the goal, committer, time, location, and modifications
components. On the other hand, the participants find it relatively difficult to find the alternatives
and side effects components. The rest of the rationale components have a neutral finding difficulty.

Khadijah Al Safwan Chapter 4. Results 22

(0) N/A (1) Very easy (2) Easy (3) Neutral (4) Difficult (5) Very difficult

Figure 4.8: Difficulty of Finding Rationale Components

4.6 Recording Rationale and its Components

To find the participants’ recording or lack of recording of the rationale for code commits (RQ5),
we asked them to select the frequency with which they record rationale and its components. For
this question, we presented choices as a scale of five Likert points: (0) N/A, (1) almost never, (2)
rarely, (3) sometimes, (4) often, or (5) almost always. The red boxes in Figures 4.1 and 4.9 show a
summary of the participants’ answers. The participants almost always record the goal, committer,
location, and modifications components. Sometimes they record the need, benefits, dependency,
time, explanation of modifications, validation, and side effects components. Finally, they rarely
record the constraints, alternatives, selected alternative, and maturity stage components.

(0) N/A (1) Almost never (2) Rarely (3) Sometimes (4) Often (5) Almost always

Figure 4.9: Recording of Rationale Components

Chapter 5

Discussion

In this section, we highlight some of the results presented in Chapter 4 and discuss the implications
of these results.

5.1 Components of the Rationale for Code Commits

The interview participants proposed that a large number of components be included in the model
of the rationale for code commits, indicating a diversity of the meaning of rationale. When dif-
ferent developers request the rationale for code commits, they probably are referring to different
components of rationale.

For the model of rationale, some interview participants shared their concern about the model’s
usability or applicability and the ability to record the components for every single commit. One
participant expressed that concern by saying that the model “seems like a good model, especially
when I read the component and the example answer. It clarifies everything [developers] has trouble
[answering]. I never thought of it like that even if I am doing it. If I look at commits and find
answers to all the components, it would make my life a lot easier. I know it might not be doable
or possible because no one will ever answer all these in a commit. However, it is a good model.”
Another participant mentioned, “I have included in my commit messages a description of the
benefits and cost, including benchmarking numbers and a description of the benchmarks I ran and
what the numbers were. I was asked to remove that from my commit message!”

A number of participants were concerned about the overlap between the components of the rationale
for code commits (see Section 4.2). It is true that the answers for different components can be the
same in some cases. Because components of the same theme (see Section 4.1) are similar, the
answers to these components may be the same for some commits. However, we wanted this model
to be general and comprehensive.

23

Khadijah Al Safwan Chapter 5. Discussion 24

5.2 Importance of Rationale Components

The participants identified the goal, need, location, and modification components as the most
important components of the rationale for a code commit. These most important components are
the commit as presented in most version control systems. A commit in GitHub, for example, is
presented as a commit message that specifies the goal and need of the changes, a list of changed
files which specifies the location of the change, and the difference between the old and new versions
which is the modifications. It may be that developers identify the primary parts of a commit as
the rationale because it is what they see.

5.3 The Need for Rationale and its Components

Although a lack of rationale is not stopping more than 50% of the participants from completing
their work (Figure 4.4), the interview participants strongly clarified that they do not give up seeking
rationale (see Section 4.5). The rationale for code commits might not be extremely important for
the completion of work. However, the rationale for code commits is something that developers
spend a considerable amount of time searching for, especially when it is hard to find. The amount
of time spent by the developers searching and not giving up the search for rationale implies a strong
need for rationale. The rationale for code commits is valuable for software developers, even if they
can still manage to complete their work without it.

5.4 Finding Rationale and its Components

Spending five to ten minutes searching for the rationale for code commits is a reasonable amount
of time. Although that is the usual amount of time, there are hard cases where software developers
spend a significant amount of time (20 to 30 minutes on average) searching for the rationale. Making
rationale finding a less time-consuming process is an area that should be explored (see future work
in Chapter 7).

Figure 5.1 shows the average frequency of need for and the frequency of finding the rationale and
its components. The participants indicated that they are finding needed components except for the
dependency and validation components, which are frequently needed but not found. The average
frequency of recording these components indicates that the participants rarely record dependency
and validation. Studying the need for, recording of, and finding of both components is discussed
further in Chapter 7 on future work.

Figure 5.2 shows the average frequency of need and the difficulty of finding the rationale and
its components. The participants indicated easy to neutral difficulty in finding needed rationale
components, except for the alternatives and side effects components. Making rationale finding a
simpler process is an area that should be explored (see Chapter 7 on future work).

Khadijah Al Safwan Chapter 5. Discussion 25

Figure 5.1: Frequency of Need vs. Frequency of Finding Rationale Components

Figure 5.2: Frequency of Need vs. Difficulty of Finding Rationale Components

Khadijah Al Safwan Chapter 5. Discussion 26

5.5 Recording Rationale and its Components

Figure 5.3 shows that the developers are recording the parts of rationale they consider to be
important. Here we raise a question about the relationship between the recorded components and
their importance. Are the developers not identifying unrecorded components as important because
these components are not usually seen?

Figure 5.3: Frequency of Recording vs. Importance of Rationale Components

Chapter 6

Threats to Validity

This chapter presents the threats to the validity of our study, including construct, internal, external,
and replicability threats.

6.1 Construct

Are we asking the right questions? To answer our research questions, we asked both open and
quantitative questions. We scheduled the interview sessions to be relatively long (two hours),
making sure that we gave the participants enough time to express their ideas and share their
thoughts. At the beginning of each interview section, we asked the participants to “answer the
questions in [their] own words and provide as much detail as [they] feel is relevant to address each
question.” We also placed an open question at the end of the interview to allow the participants
to share any additional information about the topic.

6.2 Internal

Is the accuracy of the results skewed by the method with which we collected and analyzed them?
The methods we used in our study, interviews and surveys, can be affected by bias and inaccurate
responses. This effect could be intentional or unintentional. We gave gift cards to the interview
participants, and some of the survey participants won gift cards, which could have biased our results.
To mitigate these concerns, we clearly indicated that the compensation is for the time spent and
not the given answers. We repeatedly and constantly used phrases to encourage the participants to
provide their own honest opinions. We used the phrase “based on your experience” in most of the
questions. We also clearly indicated that the participants should “feel free to change/add/delete
or not.” Sometimes, we also indicated that “there is no right or wrong answer; we are interested
in what you think and your perspective.”

27

Khadijah Al Safwan Chapter 6. Threats to Validity 28

6.3 External

Are our study results generalizable? By interviewing a group of developers, we cannot understand
the whole developer population. To mitigate this threat to validity, we tried to recruit as diverse a
population as possible. Our interview participants have diverse types and amounts of experience.

6.4 Replicability

Can the results of this study be replicated by others? It is difficult to replicate qualitative stud-
ies.The exact interview scripts and survey questions are available in Appendix A and B. We cannot
share the raw data and transcripts of the interviews because we told the interview participants we
would not share individual participants’ data. However, counts of the participants’ responses to
the quantitative questions are available in Appendix C.

Chapter 7

Future Work

The results of our study motivate the development of novel techniques and tools to support de-
velopers in accurately recording and seeking the rationale for code commits. Further exploratory
studies are encouraged to discover developers’ strategies for recording and finding the rationale.
The processes that developers follow to find the rationale for code commits, the tools they use, and
the locations where they find rationale is outside the scope of our study. However, the participants
in our study provided some points about their strategies in the context of the questions we asked.
Future studies may use interviews, surveys, and shadowing or observing developers while working
to discover their strategies.

Future research may also further validate the frequency of recording different components of ratio-
nale expressed by our participants by searching for evidence for it through mining of open-source
project repositories and their related management and bug-tracking systems. This approach may
be also interesting to also validate the reported importance of every rationale component by mining
the recorded discussions, conversations, and messages between projects’ software developers.

Finally, a detailed understanding of the components of the rationale for code commits may serve as
inspiration for novel techniques to support developers in accurately recording and seeking rationale.
Making rationale finding a simpler and less time-consuming process is an area that should be
explored.

29

Chapter 8

Conclusion

In this study, we discovered that the rationale for code changes can be divided into components.
We interviewed software developers to identify the rationale for code commits and its components.
We created an initial model based on the findings of software history studies to start the discussion
with the developers, asked the study participants to update the model to reflect what they mean
by the rationale for code commits, and analyzed the participants’ proposed components to create
a final model of the rationale for code commits.

Additionally, we identified different characteristics of these components. We determined which
components of rationale developers consider important, which components are needed more than
others, which components are difficult to find, and which components are recorded by software
developers.

An exploration of developers’ strategies for recording and finding the rationale for code commits
would be a study that naturally follows ours. Our results will assist future work in creating tools and
techniques to support developers in accurately recording and efficiently finding the rationale. The
identification of the rationale for code commits components and their characteristics are essential
for building such tools and techniques, which will potentially improve the software developers’
productivity.

30

Bibliography

[1] A. H. Dutoit, R. McCall, I. Mistŕık, and B. Paech, Rationale management in software engi-
neering. Springer Science & Business Media, 2007.

[2] J. E. Burge, J. M. Carroll, R. McCall, and I. Mistrik, Rationale-based software engineering.
Springer, 2008.

[3] V. Rajlich, “Software evolution and maintenance,” in Proceedings of the on Future of Software
Engineering, ser. FOSE 2014. New York, NY, USA: ACM, 2014, pp. 133–144. [Online].
Available: http://doi.acm.org/10.1145/2593882.2593893

[4] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey, “Software history under the lens: A study
on why and how developers examine it,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), Sept 2015, pp. 1–10.

[5] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software engineers
understand code changes?: An exploratory study in industry,” in Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering,
ser. FSE ’12. New York, NY, USA: ACM, 2012, pp. 51:1–51:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393656

[6] T. D. LaToza and B. A. Myers, “Hard-to-answer questions about code,” in Evaluation and
Usability of Programming Languages and Tools, ser. PLATEAU ’10. New York, NY, USA:
ACM, 2010, pp. 8:1–8:6. [Online]. Available: http://doi.acm.org/10.1145/1937117.1937125

[7] T. Fritz and G. C. Murphy, “Using information fragments to answer the questions
developers ask,” in Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York, NY, USA: ACM, 2010, pp. 175–184.
[Online]. Available: http://doi.acm.org/10.1145/1806799.1806828

[8] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated software development
teams,” in 29th International Conference on Software Engineering (ICSE’07), May 2007, pp.
344–353.

[9] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional developers
comprehend software?” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12. Piscataway, NJ, USA: IEEE Press, 2012, pp. 255–265. [Online].
Available: http://dl.acm.org/citation.cfm?id=2337223.2337254

31

http://doi.acm.org/10.1145/2593882.2593893
http://doi.acm.org/10.1145/2393596.2393656
http://doi.acm.org/10.1145/1937117.1937125
http://doi.acm.org/10.1145/1806799.1806828
http://dl.acm.org/citation.cfm?id=2337223.2337254

Khadijah Al Safwan Bibliography 32

[10] K. Y. Sharif and J. Buckley, “Observation of open source programmers’ information seeking,”
in 2009 IEEE 17th International Conference on Program Comprehension, May 2009, pp. 307–
308.

[11] R. P. Buse and W. R. Weimer, “Automatically documenting program changes,” in
Proceedings of the IEEE/ACM International Conference on Automated Software Engineering,
ser. ASE ’10. New York, NY, USA: ACM, 2010, pp. 33–42. [Online]. Available:
http://doi.acm.org/10.1145/1858996.1859005

[12] S. Zhang and M. D. Ernst, “Which configuration option should i change?” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014. New York, NY, USA:
ACM, 2014, pp. 152–163. [Online]. Available: http://doi.acm.org/10.1145/2568225.2568251

[13] S. Jiang, C. McMillan, and R. Santelices, “Do programmers do change impact analysis in
debugging?” Empirical Software Engineering, vol. 22, no. 2, pp. 631–669, Apr 2017. [Online].
Available: https://doi.org/10.1007/s10664-016-9441-9

[14] C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics and risk prediction of
software commits,” in Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp. 966–969. [Online].
Available: http://doi.acm.org/10.1145/2786805.2803183

[15] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, “How do developers discuss
rationale?” in 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2018, pp. 357–369.

[16] L. F. Corts-Coy, M. Linares-Vsquez, J. Aponte, and D. Poshyvanyk, “On automatically gen-
erating commit messages via summarization of source code changes,” in 2014 IEEE 14th
International Working Conference on Source Code Analysis and Manipulation, Sept 2014, pp.
275–284.

[17] M. Linares-Vsquez, L. F. Corts-Coy, J. Aponte, and D. Poshyvanyk, “Changescribe: A tool
for automatically generating commit messages,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2, May 2015, pp. 709–712.

[18] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating commit messages from
diffs using neural machine translation,” in Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE 2017. Piscataway, NJ, USA: IEEE
Press, 2017, pp. 135–146. [Online]. Available: http://dl.acm.org/citation.cfm?id=3155562.
3155583

[19] S. Jiang and C. McMillan, “Towards automatic generation of short summaries of commits,”
in Proceedings of the 25th International Conference on Program Comprehension, ser.
ICPC ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 320–323. [Online]. Available:
https://doi.org/10.1109/ICPC.2017.12

[20] S. Rastkar and G. C. Murphy, “Why did this code change?” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13. Piscataway, NJ, USA:

http://doi.acm.org/10.1145/1858996.1859005
http://doi.acm.org/10.1145/2568225.2568251
https://doi.org/10.1007/s10664-016-9441-9
http://doi.acm.org/10.1145/2786805.2803183
http://dl.acm.org/citation.cfm?id=3155562.3155583
http://dl.acm.org/citation.cfm?id=3155562.3155583
https://doi.org/10.1109/ICPC.2017.12

Khadijah Al Safwan Bibliography 33

IEEE Press, 2013, pp. 1193–1196. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2486788.2486959

[21] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a characterization of open
source software repositories,” in 2008 16th IEEE International Conference on Program Com-
prehension, June 2008, pp. 182–191.

[22] L. P. Hattori and M. Lanza, “On the nature of commits,” in Proceedings of the
23rd IEEE/ACM International Conference on Automated Software Engineering, ser.
ASE’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. III–63–III–71. [Online]. Available:
https://doi.org/10.1109/ASEW.2008.4686322

[23] A. Hindle, D. M. German, M. W. Godfrey, and R. C. Holt, “Automatic classication of large
changes into maintenance categories,” in 2009 IEEE 17th International Conference on Program
Comprehension, May 2009, pp. 30–39.

[24] R. Goyal, G. Ferreira, C. Kästner, and J. Herbsleb, “Identifying unusual commits on github,”
Journal of Software: Evolution and Process, vol. 30, no. 1, 2018.

[25] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in continuous
integration: Assurance, security, and flexibility,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017. New York, NY, USA: ACM,
2017, pp. 197–207. [Online]. Available: http://doi.acm.org/10.1145/3106237.3106270

[26] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical software engineering.
Springer, 2007.

http://dl.acm.org/citation.cfm?id=2486788.2486959
http://dl.acm.org/citation.cfm?id=2486788.2486959
https://doi.org/10.1109/ASEW.2008.4686322
http://doi.acm.org/10.1145/3106237.3106270

Appendix A

Interview Script

A.1 Interviewee Version

34

Rationale for Code Commits Page 1 of 13

Rationale for Code Commits Interview
Please answer the questions in your own words and provide as much detail as you feel is relevant to
address each question. Some questions have choices. I will instruct you to choose the answer for the
ones with choices.

Khadijah Al Safwan Appendix A. Interview Script 35

Rationale for Code Commits Page 2 of 13

Modern software is modified in packaged changes called code commits in revision control systems.
In many occasions, software developers need to examine code commits for various purposes.
Some of the main motivations for examining code commits are1:

• Debugging
• Reverse engineering requirements
• Understanding rationale (Why is the code this way?)
• …

In this study, we will discuss your experience in understanding the rationale for code commits.
Please answer each question based on your experience and provide as much information as you feel
is relevant to your answer.

1. Tell me about one time in which you investigated a code commit to understand its rationale.
a. Why did you need to find the rationale for that code commit?
b. What was the rationale for that code commit?

.

1 Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. 2015. Software history under the lens:
a study on why and how developers examine it. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 1–10.

Khadijah Al Safwan Appendix A. Interview Script 36

Rationale for Code Commits Page 3 of 13

2. If you had to divide rationale into components, what are the components of rationale for code
commits? Take as much time as you need.

.

.

Khadijah Al Safwan Appendix A. Interview Script 37

Rationale for Code Commits Page 4 of 13

Model of Rationale for Code Commits

For the next 5 minutes, please review, understand, and think about this model of rationale for code
commits. Feel free to ask me for clarifications. You may take longer than 5 minutes if you need to.

3. What do you think of this model?

4. In this model, is there something that you don’t think it should be part of rationale for code

commits? Take as much time as you need.

5. Are there any components of rationale for code commits that should be added to this model? Take

as much time as you need.

6. Would you like to change your answer for the way you divide rationale of code commits into

components? Take as much time as you need.

.

Khadijah Al Safwan Appendix A. Interview Script 38

Rationale for Code Commits Page 5 of 13

Finding and Recording Rationale for Code Commits

7. What are your strategies for finding the rationale of code commits? Please include:
a. Your steps for finding rationale of code commits.
b. The location of which you find the rationale for code commits.
c. The tools you use to find the rationale for code commits.
d. The rationale components that fit every strategy.

8. When your strategy does not lead you to the rationale of code commits, what do you do?

9. In what order do you follow your strategies?

10. What would make your life easier in this process?

Khadijah Al Safwan Appendix A. Interview Script 39

Rationale for Code Commits Page 6 of 13

.

11. As a developer, what are your strategies for keeping a record of the rationale for your code
commits? Please include:

a. Your steps for recording rationale of code commits.
b. The location of which you record the rationale for code commits.
c. The tools you use to record the rationale for code commits.
d. The rationale components that fit every strategy.

Khadijah Al Safwan Appendix A. Interview Script 40

Rationale for Code Commits Page 7 of 13

12. During your software engineering activities, how often do you record …

Frequency of Recording

Almost Never Rarely Sometimes Often Almost
Always N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected
alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Khadijah Al Safwan Appendix A. Interview Script 41

Rationale for Code Commits Page 8 of 13

.

13. During your software engineering activities, which frequency best reflects how often you sought
…

Frequency of Need

few times a
year

multiple times
a year

multiple times
a month

multiple times
a week

multiple times
a day N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected
alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Khadijah Al Safwan Appendix A. Interview Script 42

Rationale for Code Commits Page 9 of 13

14. During your software engineering activities (at any point in time), what is the maximum frequency
with which you sought …

Max. Frequency of Need

few times a
year

multiple times
a year

multiple times
a month

multiple times
a week

multiple times
a day N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected
alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Khadijah Al Safwan Appendix A. Interview Script 43

Rationale for Code Commits Page 10 of 13

15. For the components of rationale for code commits that you seek, how often do you usually find …

Frequency of Finding

Almost
Never Rarely Sometimes Often Almost

Always N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Khadijah Al Safwan Appendix A. Interview Script 44

Rationale for Code Commits Page 11 of 13

16. For the components of rationale for code commits that you seek, how difficult is it to find …

Difficulty of Finding

Very easy Easy Neutral Difficult Very difficult N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Khadijah Al Safwan Appendix A. Interview Script 45

Rationale for Code Commits Page 12 of 13

17. How important is finding each component (for understanding the rationale for code commits)?

Component

Importance

I would easily
know the

rationale for
code commits

without
finding this
component

I would know
the rationale

for code
commits
without

finding this
component

I would better
know the

rationale for
code commits
when finding

this
component

It’s hard to
know the

rationale for
code commits

without
finding this
component

I can’t know
the rationale

for code
commits
without

finding this
component

Goal O O O O O

Need O O O O O

Location O O O O O

Modifications O O O O O

Alternatives O O O O O

Selected alternative O O O O O

Validation O O O O O

Benefits O O O O O

Costs O O O O O

 O O O O O

 O O O O O

 O O O O O

 O O O O O

 O O O O O

 O O O O O

Khadijah Al Safwan Appendix A. Interview Script 46

Rationale for Code Commits Page 13 of 13

18. How important is understanding the rationale of code commits for the completion of your work?

o I don’t need the rationale of code commits and I can complete my work without it
o I don’t need the rationale of code commits but it helps me complete my work
o I need the rationale of code commits but I can complete my work without it
o I really need the rationale of code commits and I struggle to complete my work without it
o I really need the rationale of code commits and I can not complete my work without it

19. How much time do you usually spend when searching for the rationale of code commits?

o Less than 5 minutes
o 5-10 minutes
o 10-20 minutes
o 20-30 minutes
o More than 30 minutes
o I don’t search for rationale

20. In the cases where it is hard to find the rationale of code commits, how much time do you usually
spend searching for the rationale of code commits?

o Less than 5 minutes
o 5-10 minutes
o 10-20 minutes
o 20-30 minutes
o More than 30 minutes
o N/A

21. Is there anything else you want to tell me about the rationale for code commits?

22. Is there anyone you know who would participate in this study?

23. Will you be interested in disseminating a related survey to people who would participate?

Khadijah Al Safwan Appendix A. Interview Script 47

Khadijah Al Safwan Appendix A. Interview Script 48

A.2 Interviewer Version

Rationale for Code Commits Page 1 of 13

Rationale for Code Commits Interview
Please answer the questions in your own words and provide as much detail as you feel is relevant to
address each question. Some questions have choices. I will instruct you to choose the answer for the
ones with choices.

Commented [AK1]: I will hand you
your version of every interview
question

Khadijah Al Safwan Appendix A. Interview Script 49

Rationale for Code Commits Page 2 of 13

Modern software is modified in packaged changes called code commits in revision control systems.
In many occasions, software developers need to examine code commits for various purposes.
Some of the main motivations for examining code commits are1:

• Debugging
• Reverse engineering requirements
• Understanding rationale (Why is the code this way?)
• …

In this study, we will discuss your experience in understanding the rationale for code commits.
Please answer each question based on your experience and provide as much information as you feel
is relevant to your answer.

1. Tell me about one time in which you investigated a code commit to understand its rationale.
a. Why did you need to find the rationale for that code commit?
b. What was the rationale for that code commit?

.

1 Mihai Codoban, Sruti Srinivasa Ragavan, Danny Dig, and Brian Bailey. 2015. Software history under the lens:
a study on why and how developers examine it. In Software Maintenance and Evolution (ICSME), 2015 IEEE
International Conference on. IEEE, 1–10.

Commented [AK2]: I want you to take
your time and think about one
example or one situation where you
needed to investigate a code commit
to understand its rationale. Tell me...
Commented [AK3]: Can you
elaborate?
Commented [AK4]: Can you
elaborate?
Commented [AK5]: Thank you, now
think again about my question and
your answer. Remember that rationale
is informally defined as "Why the code
is this way?"

c.Can you tell me another example
in which you investigated a code
commit to understand its rationale?

Khadijah Al Safwan Appendix A. Interview Script 50

Rationale for Code Commits Page 3 of 13

2. If you had to divide rationale into components, what are the components of rationale for code
commits? Take as much time as you need.

.

.

Commented [AK6]: Now, talking about
the rationale of code commits in
general.

Commented [AK7]: Let me give you
an example, if you are to answer a
similar question. Let’s say “How did
this code change?”. This is not the
question I am asking you about. I am
asking a different question. This
question is just to clarify.

The answer could be of many
components and the way you unpack
the answer to “How did the code
change?” could include many parts.
The answer may include “who
changed the code?”, “what parts of
the code changed”, “what editor was
used”, “what transformations
happened”, etc.

“How” can mean different things to
different people. The answer to all the
questions (the person, parts, editor,
transdormations,…) is the ultimate
answer to “How did the code
change?”

Now, think of the answer to “Why the
code is this way?”
• what are the parts of the answer?
• what are the components of your
answer to the informal definition of
rationale “why the code is this
way?”.
• what are the components of
rationale for code commits?

Khadijah Al Safwan Appendix A. Interview Script 51

Rationale for Code Commits Page 4 of 13

Model of Rationale for Code Commits

For the next 5 minutes, please review, understand, and think about this model of rationale for code
commits. Feel free to ask me for clarifications. You may take longer than 5 minutes if you need to.

3. What do you think of this model?

4. In this model, is there something that you don’t think it should be part of rationale for code

commits? Take as much time as you need.

5. Are there any components of rationale for code commits that should be added to this model? Take

as much time as you need.

6. Would you like to change your answer for the way you divide rationale of code commits into

components? Take as much time as you need.

.

Commented [AK8]: This is a model of
rationale for code commits that we are
studying.

This model consists of rationale
components. Every component is
described by a question and an
example of an answer to the question.

These questions are not for you to
answer, it is an explanation of what
each component is and the answers
are example of a possible answer to
the question.

Commented [AK9]: a.What is it?
b.Why?

Commented [AK10]: a.What are
these components?

Commented [AK11]: Considering
these new components [X, Y, Z], Why
didn't you include these components
the first time?

Commented [AK12]: Given your
changes for the way you divide
rationale of code commits

a.Would you like to update the
model?
b.Is there something that you don’t
think it should be part of rationale for
code commits?
c.What are the components lacking
in this model?

Khadijah Al Safwan Appendix A. Interview Script 52

Rationale for Code Commits Page 5 of 13

Finding and Recording Rationale for Code Commits

7. What are your strategies for finding the rationale of code commits? Please include:
a. Your steps for finding rationale of code commits.
b. The location of which you find the rationale for code commits.
c. The tools you use to find the rationale for code commits.
d. The rationale components that fit every strategy.

8. When your strategy does not lead you to the rationale of code commits, what do you do?

9. In what order do you follow your strategies?

10. What would make your life easier in this process?

Commented [AK13]: In this part of the
interview, I want to know about your
strategy for finding and recording
rationale of code commits.
Commented [AK14]: What steps do
you follow to find the rationale for
code commits?
Commented [AK15]: Where do you
find the rationale for code commits?
What is the location of which you find
the rationale for code commits?
Commented [AK16]: What tools do
you use to find the rationale for code
commits?
Commented [AK17]: Considering the
components of rationale for code
commits that you look for, which
components fit this strategy?

Commented [AK18]: (improvements)

Khadijah Al Safwan Appendix A. Interview Script 53

Rationale for Code Commits Page 6 of 13

.

11. As a developer, what are your strategies for keeping a record of the rationale for your code
commits? Please include:

a. Your steps for recording rationale of code commits.
b. The location of which you record the rationale for code commits.
c. The tools you use to record the rationale for code commits.
d. The rationale components that fit every strategy.

Commented [AK19]: Let’s talk about
your strategy for keeping a record of
rationale for code commits

Khadijah Al Safwan Appendix A. Interview Script 54

Rationale for Code Commits Page 7 of 13

12. During your software engineering activities, how often do you record …

Frequency of Recording

Almost Never Rarely Sometimes Often Almost
Always N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected
alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Commented [AK20]: Please choose
your answers.

Khadijah Al Safwan Appendix A. Interview Script 55

Rationale for Code Commits Page 8 of 13

.

13. During your software engineering activities, which frequency best reflects how often you sought
…

Frequency of Need

few times a
year

multiple times
a year

multiple times
a month

multiple times
a week

multiple times
a day N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected
alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Commented [AK21]: For the rest of
this interview, let’s talk about the
rationale for code commits and the
model in more details.

Please answer the questions based
on your experience.

Commented [AK22]: Please choose
your answers.
Commented [AK23]: common
frequency

Khadijah Al Safwan Appendix A. Interview Script 56

Rationale for Code Commits Page 9 of 13

14. During your software engineering activities (at any point in time), what is the maximum frequency
with which you sought …

Max. Frequency of Need

few times a
year

multiple times
a year

multiple times
a month

multiple times
a week

multiple times
a day N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected
alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Commented [AK24]: I asked you
about the common frequency and now
asking about the maximum frequency.

Commented [AK25]: Please choose
your answers.

Khadijah Al Safwan Appendix A. Interview Script 57

Rationale for Code Commits Page 10 of 13

15. For the components of rationale for code commits that you seek, how often do you usually find …

Frequency of Finding

Almost
Never Rarely Sometimes Often Almost

Always N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Commented [AK26]: Here asking
about the common frequency too.

Please choose your answers.

Khadijah Al Safwan Appendix A. Interview Script 58

Rationale for Code Commits Page 11 of 13

16. For the components of rationale for code commits that you seek, how difficult is it to find …

Difficulty of Finding

Very easy Easy Neutral Difficult Very difficult N/A

Rationale O O O O O O

Component

Goal O O O O O O

Need O O O O O O

Location O O O O O O

Modifications O O O O O O

Alternatives O O O O O O

Selected alternative O O O O O O

Validation O O O O O O

Benefits O O O O O O

Costs O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

 O O O O O O

Commented [AK27]: Here asking
about the common difficulty.

Please choose your answers.

Khadijah Al Safwan Appendix A. Interview Script 59

Rationale for Code Commits Page 12 of 13

17. How important is finding each component (for understanding the rationale for code commits)?

Component

Importance

I would easily
know the

rationale for
code commits

without
finding this
component

I would know
the rationale

for code
commits
without

finding this
component

I would better
know the

rationale for
code commits
when finding

this
component

It’s hard to
know the

rationale for
code commits

without
finding this
component

I can’t know
the rationale

for code
commits
without

finding this
component

Goal O O O O O

Need O O O O O

Location O O O O O

Modifications O O O O O

Alternatives O O O O O

Selected alternative O O O O O

Validation O O O O O

Benefits O O O O O

Costs O O O O O

 O O O O O

 O O O O O

 O O O O O

 O O O O O

 O O O O O

 O O O O O

Commented [AK28]: Please choose
your answers.

Khadijah Al Safwan Appendix A. Interview Script 60

Rationale for Code Commits Page 13 of 13

18. How important is understanding the rationale of code commits for the completion of your work?

o I don’t need the rationale of code commits and I can complete my work without it
o I don’t need the rationale of code commits but it helps me complete my work
o I need the rationale of code commits but I can complete my work without it
o I really need the rationale of code commits and I struggle to complete my work without it
o I really need the rationale of code commits and I can not complete my work without it

19. How much time do you usually spend when searching for the rationale of code commits?

o Less than 5 minutes
o 5-10 minutes
o 10-20 minutes
o 20-30 minutes
o More than 30 minutes
o I don’t search for rationale

20. In the cases where it is hard to find the rationale of code commits, how much time do you usually
spend searching for the rationale of code commits?

o Less than 5 minutes
o 5-10 minutes
o 10-20 minutes
o 20-30 minutes
o More than 30 minutes
o N/A

21. Is there anything else you want to tell me about the rationale for code commits?

22. Is there anyone you know who would participate in this study?

23. Will you be interested in disseminating a related survey to people who would participate?

Commented [AK29]: Please choose
your answer.

Commented [AK30]: Please choose
your answer.

Commented [AK31]: Please choose
your answer.

When do you give up?

Commented [AK32]: This is an open
question for you if you wish to add
anything.

Khadijah Al Safwan Appendix A. Interview Script 61

Appendix B

Online Survey Questions

62

Rationale for Code Commits Survey

Demographics

What is your gender?

o Male
o Female
o Decline to answer
o Other

What is your age?

o 18-29
o 30-39
o 40-49
o 50-59
o 60+

How many years of experience do you have with software development?

__

Select all that apply, your software development experience is

£ Personal
£ Professional (in a company)
£ Professional (open source)

How many years of experience do you have with version control systems (eg. Git, Github)?

__

Select all that apply, your experience with version control systems is

£ Personal
£ Professional (in a company)
£ Professional (open source)

Khadijah Al Safwan Appendix B. Online Survey Questions 63

What version control systems have you used for software development?
£ CVS
£ Git
£ Mercurial
£ Perforce
£ Subversion
£ Other (please specify) __

Rationale for Code Commits

Modern software is modified in packaged changes called code commits in revision control systems. In many
occasions, software developers need to examine code commits for various purposes. Some of the main
motivations for examining code commits are:

� Debugging
� Reverse engineering requirements
� Understanding rationale (Why is the code this way?)
� ...

In this study, we want to understand developers' experiences with rationale for code commits and its
components.

During your software engineering activities, how often do you inspect your own code commits to
understand their rationale (Why the code is this way)?

o A few times per year
o Multiple times per year
o Multiple times per month
o Multiple times per week
o Multiple times per day

During your software engineering activities, how often do you inspect other developers' code commits to
understand their rationale (Why the code is this way)?

o A few times per year
o Multiple times per year
o Multiple times per month
o Multiple times per week
o Multiple times per day

Khadijah Al Safwan Appendix B. Online Survey Questions 64

Model of Rationale for Code Commits

The following table is a model of rationale for code commits that we are studying. This model consists of
rationale components. Every component is described by a question and an example of an answer to the
question.

Please spend some time (suggested 5 minutes) to review, understand, and think about this model of rationale
for code commits before answering the questions in the next page.

Khadijah Al Safwan Appendix B. Online Survey Questions 65

Experience with Rationale for Code Commits and its Components

The model is presented here again for your reference. Please, click here to open it in a separate
window: http://people.cs.vt.edu/~khsaf/RationaleModel.html.

Khadijah Al Safwan Appendix B. Online Survey Questions 66

For rationale (in general) and the components of rationale for code commits, please specify:

 How often do you
record ...

Which frequency
best reflects how
often you sought

...

At any point in
time, what is the

maximum
frequency with

which you sought
...

How often do you
usually find ... How difficult is it to find ...

Rationale (in general) ▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Goal (What did you want
to achieve?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Need (Why did you need
to achieve that?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Constraints (What were
the constraints limiting your
implementation choice?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Alternatives (What other
alternatives did you have?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Selected Alternative (Why
did you make those specific
changes and not others?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Dependency (What other
changes does this change
depend on?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Validation (How did those
specific changes achieve
the goal?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Committer (Who changed
the code?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Time (Why were the
changes made at that
time?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Maturity Stage (How
mature is this code

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Location (What artifacts
were changed?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Modifications (What
specific changes were
performed in the artifacts?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Explanation of
Modifications. (What are
the details of the
implementation?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Benefits (What is the
benefit of what you want to
achieve?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Side Effects (What are the
side effects of the change?)

▼ Almost Never ...
N/A

▼ A few times a
year ... N/A

▼ A few times a
year ... N/A

▼ Almost Never ...
N/A ▼ Very easy ... N/A

Khadijah Al Safwan Appendix B. Online Survey Questions 67

How important is finding each rationale component (for understanding the rationale for code commits)?

I would easily know
the rationale for code

commits without
finding this
component

I would know the
rationale for code
commits without

finding this
component

I would better know
the rationale for code

commits when
finding this
component

It’s hard to know the
rationale for code
commits without

finding this
component

I can’t know the
rationale for code
commits without

finding this
component

Rationale (in
general) o o o o o

Goal (What did you
want to achieve?) o o o o o

Need (Why did you
need to achieve that?) o o o o o

Constraints (What
were the constraints
limiting your
implementation
choice?)

o o o o o

Alternatives (What
other alternatives did
you have?)

o o o o o

Selected Alternative
(Why did you make
those specific changes
and not others?)

o o o o o

Dependency (What
other changes does
this change depend
on?)

o o o o o

Validation (How did
those specific changes
achieve the goal?)

o o o o o

Committer (Who
changed the code?) o o o o o

Time (Why were the
changes made at that
time?)

o o o o o

Maturity Stage (How
mature is this code o o o o o

Location (What
artifacts were
changed?)

o o o o o

Modifications (What
specific changes were
performed in the
artifacts?)

o o o o o

Explanation of
Modifications. (What
are the details of the
implementation?)

o o o o o

Benefits (What is the
benefit of what you
want to achieve?)

o o o o o

sSide Effects (What
are the side effects of
the change?)

o o o o o

Khadijah Al Safwan Appendix B. Online Survey Questions 68

 How important is understanding the rationale of code commits for the completion of your work?

o I don’t need the rationale of code commits and I can complete my work without it
o I don’t need the rationale of code commits but it helps me complete my work
o I need the rationale of code commits but I can complete my work without it
o I really need the rationale of code commits and I struggle to complete my work without it
o I really need the rationale of code commits and I can not complete my work without it

How much time do you usually spend when searching for the rationale of code commits?

o Less than 5 minutes
o 5-10 minutes
o 10-20 minutes
o 20-30 minutes
o More than 30 minutes
o I don’t search for rationale

In the cases where it is hard to find the rationale of code commits, how much time do you usually spend
searching for the rationale of code commits?

o Less than 5 minutes
o 5-10 minutes
o 10-20 minutes
o 20-30 minutes
o More than 30 minutes
o N/A

To be eligible for the Amazon.com gift card raffle, please enter your name and email address.

What is your name?

__

What is your email address?

__

Khadijah Al Safwan Appendix B. Online Survey Questions 69

Appendix C

Quantitative Questions Report

70

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Rationale
Goal

Need
Location

Modi�cations
Alternatives

Selected Alternative
Validation

Bene�ts
Side E�ects
Committer

Maturity Stage
Time

Constraints
Dependency

Explanation of Modi�cations

1 2 2 8 13 18
1 1 5 10 27

6 11 12 5 13
2 2 4 6 7 23

3 3 6 10 22
3 13 16 11 1 1

1 13 13 13 2 4
7 11 13 11 3

10 12 12 7 3
8 15 9 7 8

3 4 1 1 19
7 8 7 3 2

2 3 5 4 4 8
7 8 7 1 2

2 7 5 9 2
2 6 7 6 4

Ra
tio

na
le

 C
om

po
ne

nt
s

Responses

N/A Almost Never Rarely Sometimes Often Almost Always

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Rationale
Goal

Need
Location

Modi�cations
Alternatives

Selected Alternative
Validation

Bene�ts
Side E�ects
Committer

Maturity Stage
Time

Constraints
Dependency

Explanation of Modi�cations

1 6 12 13 12
1 7 12 7 17

3 11 4 9 8 12
2 4 4 9 10 15

5 2 8 13 16
8 14 8 5 7 3

5 11 9 8 10 3
7 10 5 11 7 5
9 9 3 7 11 5

6 14 4 13 6 4
2 5 1 7 4 9

6 4 3 6 6 2
5 5 1 4 5 6

6 5 4 1 5 4
2 3 6 4 6 4

1 5 3 6 4 6

Ra
tio

na
le

 C
om

po
ne

nt
s

Responses

N/A A few times per
year

Multiple times
per year

Multiple times
per month

Multiple times
per week

Multiple times
per day

Rationale Components Frequency of Recording

Rationale Components Frequency of Need

Khadijah Al Safwan Appendix C. Quantitative Questions Report 71

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Rationale
Goal

Need
Location

Modi�cations
Alternatives

Selected Alternative
Validation

Bene�ts
Side E�ects
Committer

Maturity Stage
Time

Constraints
Dependency

Explanation of Modi�cations

1 4 7 11 21
1 5 7 8 23

3 10 3 2 9 20
1 4 2 5 9 23

5 1 4 7 27
8 14 4 4 9 6

5 11 6 3 10 11
7 8 4 5 10 11

9 10 2 5 9 9
7 11 4 8 9 8

2 4 1 7 4 10
6 4 2 6 6 3

5 4 1 4 6 6
6 5 4 1 5 4

2 3 6 3 7 4
1 5 3 6 4 6

Ra
tio

na
le

 C
om

po
ne

nt
s

Responses

N/A A few times per
year

Multiple times
per year

Multiple times
per month

Multiple times
per week

Multiple times
per day

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Rationale
Goal

Need
Location

Modi�cations
Alternatives

Selected Alternative
Validation

Bene�ts
Side E�ects
Committer

Maturity Stage
Time

Constraints
Dependency

Explanation of Modi�cations

2 3 12 15 12
1 4 9 14 16

4 4 7 12 13 7
4 10 2 28

5 6 6 27
5 14 14 9 2 1

5 9 10 11 6 5
6 6 12 10 7 4

7 3 12 15 4 3
6 8 21 8 2 2

1 2 1 3 21
3 4 5 8 4 3

3 2 4 3 3 11
4 5 5 7 1 3

3 2 8 7 3 2
1 2 6 13 1 2

Ra
tio

na
le

 C
om

po
ne

nt
s

Responses

N/A Almost Never Rarely Sometimes Often Almost Always

Rationale Components Maximum Frequency of Need

Rationale Components Frequency of Finding

Khadijah Al Safwan Appendix C. Quantitative Questions Report 72

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

Rationale
Goal

Need
Location

Modi�cations
Alternatives

Selected Alternative
Validation

Bene�ts
Side E�ects
Committer

Maturity Stage
Time

Constraints
Dependency

Explanation of Modi�cations

2 12 16 13 1
3 21 13 5 2

4 114 14 12 2
20 11 6 7

21 12 8 3
8 2 8 14 13

7 2 5 12 12 8
7 7 16 10 5

8 1 6 15 7 7
7 2 8 17 13

1 18 7 2
5 2 4 6 6 4

3 6 5 5 5 2
4 2 1 7 6 5

3 2 10 7 3
1 9 6 8 1

Ra
tio

na
le

 C
om

po
ne

nt
s

Responses

N/A Very easy Easy Neutral Di�cult Very di�cult

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

6 21 14 3

Responses

I don't need the
rationale of code
commits and I
can complete my
work without it

I don't need the
rationale of code
commits but it
helps me
complete my
work

I need the
rationale of code
commits but I
can complete my
work without it

I really need the
rationale of code
commits and I
struggle to
complete my
work without it

I really need the
rationale of code
commits and I
can not complete
my work without
it

Rationale Components Difficulty of Finding

Rationale Importance

Rationale

Khadijah Al Safwan Appendix C. Quantitative Questions Report 73

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

16 14 14
2 3 18 11 13

3 5 11 11 14
3 3 9 10 19

8 15 12 5 5
5 11 15 10 5

5 13 17 9 1
3 15 16 9 1

8 15 14 9 1
11 8 7 2

8 6 10 2 1
6 8 7 3 2

4 5 5 9 2
1 5 13 5 1

2 4 10 7 2

Ra
tio

na
le

 C
om

po
ne

nt
s

Responses

I would easily
know the
rationale for
code commits
without �nding
this component

I would know the
rationale for
code commits
without �nding
this component

I would better
know the
rationale for
code commits
when �nding this
component

It's hard to know
the rationale for
code commits
without �nding
this component

I can't know the
rationale for
code commits
without �nding
this component

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

6 4 10 17 7

Rationale Components Usual Search Time
Responses

I don’t search for
rationale

More than 30
minutes

20-30 minutes 10-20 minutes 5-10 minutes Less than 5
minutes

Rationale Components Importance

)%"'
*((+

,%-"#$%&
.%+B-"#$%&0
1'#(2&"#$3(0

4('(-#(+ 1'#(2&"#$3(
5"'$+"#$%&
6(&(B$#0

4$+(7BB(-#0
9%::$##(2

."#;2$#< 4#"=(
>$:(

9%&0#2"$�
?(@(&+(&-<

7A@'"&"#$%& %B .%+$B$-"#$%&0

Rationale

Khadijah Al Safwan Appendix C. Quantitative Questions Report 74

-100% -80% -60% -40% -20% 0% 20% 40% 60% 80% 100%

21 10 10 1 2

Rationale Components Hard Cases Search Time
Responses

N/A More than 30
minutes

20-30 minutes 10-20 minutes 5-10 minutes Less than 5
minutes

Rationale

Khadijah Al Safwan Appendix C. Quantitative Questions Report 75

Appendix D

Virginia Tech IRB Approval

76

Office of Research Compliance
Institutional Review Board
North End Center, Suite 4120, Virginia Tech
300 Turner Street NW
Blacksburg, Virginia 24061
540/231-4606 Fax 540/231-0959
email irb@vt.edu
website http://www.irb.vt.edu

MEMORANDUM

DATE: October 25, 2017

TO: Francisco Javier Servant Cortes, Khadijah Ahmad Alsafwan

FROM: Virginia Tech Institutional Review Board (FWA00000572, expires January 29,
2021)

PROTOCOL TITLE: Empirical study about software history (commits)

IRB NUMBER: 17-970

Effective October 25, 2017, the Virginia Tech Institution Review Board (IRB) Chair, David M Moore,
approved the New Application request for the above-mentioned research protocol.

This approval provides permission to begin the human subject activities outlined in the IRB-approved
protocol and supporting documents.

Plans to deviate from the approved protocol and/or supporting documents must be submitted to the
IRB as an amendment request and approved by the IRB prior to the implementation of any changes,
regardless of how minor, except where necessary to eliminate apparent immediate hazards to the
subjects. Report within 5 business days to the IRB any injuries or other unanticipated or adverse
events involving risks or harms to human research subjects or others.

All investigators (listed above) are required to comply with the researcher requirements outlined at:
http://www.irb.vt.edu/pages/responsibilities.htm

(Please review responsibilities before the commencement of your research.)

PROTOCOL INFORMATION:

Approved As: Expedited, under 45 CFR 46.110 category(ies) 5,6,7
Protocol Approval Date: October 25, 2017
Protocol Expiration Date: October 24, 2018
Continuing Review Due Date*: October 10, 2018
*Date a Continuing Review application is due to the IRB office if human subject activities covered
under this protocol, including data analysis, are to continue beyond the Protocol Expiration Date.

FEDERALLY FUNDED RESEARCH REQUIREMENTS:

Per federal regulations, 45 CFR 46.103(f), the IRB is required to compare all federally funded grant
proposals/work statements to the IRB protocol(s) which cover the human research activities included
in the proposal / work statement before funds are released. Note that this requirement does not apply
to Exempt and Interim IRB protocols, or grants for which VT is not the primary awardee.

The table on the following page indicates whether grant proposals are related to this IRB protocol, and
which of the listed proposals, if any, have been compared to this IRB protocol, if required.

Khadijah Al Safwan Appendix D. Virginia Tech IRB Approval 77

IRB Number 17-970 page 2 of 2 Virginia Tech Institutional Review Board

Date* OSP Number Sponsor Grant Comparison Conducted?

* Date this proposal number was compared, assessed as not requiring comparison, or comparison
information was revised.

If this IRB protocol is to cover any other grant proposals, please contact the IRB office (irbadmin@vt.
edu) immediately.

Khadijah Al Safwan Appendix D. Virginia Tech IRB Approval 78

	List of Figures
	List of Tables
	Introduction
	Literature Review
	Software History Studies
	Rationale Studies
	Change-Understanding Research

	Methodology
	Research Questions
	Interviews
	Preparations
	Questions and Structure
	Recruitment
	Participants

	Survey
	Preparations
	Recruitment
	Participants

	Results
	Overview
	Components of the Rationale for Code Commits
	Importance of Each Rationale Component
	The Need for Rationale and its Components
	Finding Rationale and its Components
	Recording Rationale and its Components

	Discussion
	Components of the Rationale for Code Commits
	Importance of Rationale Components
	The Need for Rationale and its Components
	Finding Rationale and its Components
	Recording Rationale and its Components

	Threats to Validity
	Construct
	Internal
	External
	Replicability

	Future Work
	Conclusion
	Bibliography
	Appendix Interview Script
	Interviewee Version
	Interviewer Version

	Appendix Online Survey Questions
	Appendix Quantitative Questions Report
	Appendix Virginia Tech IRB Approval

