BIOINFORMATICS AND COMPUTER SCIENCE SOMETHING FOR EVERYONE

L. S. Heath and L. T. Watson Departments of Computer Science and Mathematics Virginia Polytechnic Institute and State University Blacksburg, VA 24061-0106 USA

http://www.cs.vt.edu/~heath/

The scientific problems in bioinformatics.

Analyzing Raw Experimental Data

The raw signals from most lab instruments are analog ones that vary with time. These are often to be interpreted as discrete values — a base in a DNA sequence or the expression/non-expression of some trait. More and more the quantity of data to be interpreted requires that computation be used to perform the interpretation.

- Assembling DNA Fragments
- Physical Mapping of DNA
- Identifying Genes
- Annotating Gene Function
- Deriving Phylogenies
- Genome Rearrangements

Protein Folding

Predicting protein structure from amino acid sequence. Complex problem involving physics and chemistry. Both continuous and discrete approaches have been tried, though a combination is likely to be the ultimate winner.

◊ Molecular dynamics

◊ Quantum chemistry

Global optimization

• Determining Protein Function

Relating Multiple Genes to Complex Traits

Carole Cramer (tobacco), Saghai Maroof (soybeans), Ina Hoeschele (farm animals).

• Dealing With Complex Experimental Results

For example, expression information from DNA microarray technology. Image processing, expert systems, recommender systems.

Modeling Cellular Functions and Trait Expression

PSEs, simulation, numerical analysis, PDEs, ODEs, nonlinear equations, parameter estimation, optimization.

Sequence Matching

Data Visualization

Dave Bevan (molecular docking), CAVE.

• Data Organization, Compression, and Searching

Data integrity/accuracy is a problem. Old suspect information tends to stay in the data base. Original data needs to be preserved so it can be reanalyzed with new algorithms. Knowledge representation.

• BLAST and Similar Sequence Analysis Tools

A typical biologist may put unwarranted faith in the results returned by these heuristics, because it is too difficult to understand meaning and reliability.

• Data Mining

Make biologically relevant inferences or conjectures from sequence and other experimental data.

Statistical Genetics

Identify genes in organisms (e.g., cows, humans) from expressed traits. Robust data analysis.

• Image Processing

Much of the data acquisition is visual and subjective. Perfect application area for image processing and computer vision.

Drug Discovery and Design

Pharmaceutical companies have enormous data bases that need to be mined; extreme need for new discrete and continuous algorithms. Mathematical formulation of drug design goals.

• Evolutionary Algorithms

Genetic algorithms as a technology for solving bioinformatics problems.

• Model Higher Level Cell, Organ, System Functions

ODEs, bifurcation, parameter estimation, nonlinear PDEs, reaction diffusion equations, Navier-Stokes equations, fluid-solid interaction models.

 Cell models: ODEs, nonlinear PDEs, reaction diffusion equations, optimization, systems of nonlinear equations.

◇ Heart models: Navier-Stokes equations, fluid-solid interaction.

Getting Accurate Answers in a Timely Fashion

High performance and parallel computing, robotics.